Nejnižší vnitřní povrchová teplota a teplotní faktor
|
|
- Viktor Němec
- před 8 lety
- Počet zobrazení:
Transkript
1 Nejnižší vnitřní povrchová teplota a teplotní faktor Zbyněk Svoboda, FSv ČVUT Původní text ze skript Stavební fyzika 31 z roku Částečně aktualizováno v roce 2014 především s ohledem na změny v normách. Nejnižší vnitřní povrchová teplota a teplotní faktor vnitřního povrchu se používají při hodnocení rizika kondenzace vodní páry a výskytu plísní na vnitřním povrchu stavební konstrukce Požadavky Pro hodnocení požadavků na vnitřní povrchovou teplotu používá norma ČSN teplotní faktor vnitřního povrchu. Jedná se o poměrnou veličinu, která je na rozdíl od vnitřní povrchové teploty vlastností konstrukce a nezávisí na působících teplotách. Požadavky na teplotní faktor jsou stanoveny odlišně pro neprůsvitné konstrukce a pro výplně otvorů (okna, dveře). Pro neprůsvitné konstrukce je kritériem vyloučení vzniku plísní, pro okna je kritériem vyloučení povrchové kondenzace vodní páry. Za hranici vyloučení vzniku plísní je pokládána relativní vlhkost vnitřního povrchu 80 %. Pokud je povrchová relativní vlhkost nižší, vznik plísní je prakticky vyloučen. Při vyšší relativní vlhkosti je naopak riziko velmi značné. Kritická povrchová relativní vlhkost pro vyloučení povrchové kondenzace je 100 % - při nižších vlhkostech ke kondenzaci vodní páry na povrchu konstrukce nedochází. Konkrétní požadavky stanovuje ČSN v čl Konstrukce v běžných prostorech s relativní vlhkostí vnitřního vzduchu do maximálně 60 % musí ve všech místech svého vnitřního povrchu splňovat podmínku f R fr, N = fr, cr, [-] (1) kde f R je vypočtený nejnižší teplotní faktor vnitřního povrchu konstrukce a f R,cr je kritický teplotní faktor vnitřního povrchu. Kritický teplotní faktor f R,cr je hodnotou, při které bude relativní vlhkost na vnitřním povrchu konstrukce dosahovat předepsaného maxima. Stanovuje se s pomocí vztahu 237,3 + 2,1 θ 1 f R, cr = 1, [-] (2) θ θex 1,1 17,269 ln( ϕi, r ϕ, cr ) kde θ je návrhová teplota vnitřního vzduchu ve C, θ ex je návrhová teplota prostředí na vnější straně hodnocené konstrukce ve C (obvykle jde o návrhovou venkovní teplotu), φ,cr je kritická vnitřní povrchová vlhkost v % (pro výplně otvorů se uvažuje 100 %, pro ostatní konstrukce 80 %), a φ i,r je relativní vlhkost vnitřního vzduchu pro stanovení požadavku v %, která se určí: a) pro prostory, v nichž je upravována vlhkost vzduchu vzduchotechnikou, ze vztahu ϕ = ϕi + 5, [%] (3) kde φ i je návrhová relativní vlhkost vnitřního vzduchu v zimním období zajišťovaná vzduchotechnikou v % (pro místnosti s dlouhodobým pobytem osob v běžných budovách se uvažuje φ i 40 %,). b) pro ostatní prostory ze vztahu ϕ ϕ + θ 10, [%] (4) = i e + přičemž pro stavební konstrukce s výjimkou výplní otvorů nesmí hodnota ϕ i,r klesnout pod úroveň
2 ϕ = ϕi 5, [%] (5) kde φ i je návrhová relativní vlhkost vnitřního vzduchu v zimním období v % (standardně se uvažuje ϕ i = 50 %) a θ e je návrhová teplota venkovního vzduchu v zimním období ve C. Vztah (4) vyjadřuje závislost relativní vlhkosti vnitřního vzduchu na teplotě a vlhkosti venkovního vzduchu v zimním období 1. Předpokládá se pokles relativní vlhkosti vnitřního vzduchu o 1 % na každý 1 C poklesu návrhové teploty venkovního vzduchu pod hraniční hodnotu -5 C. Pro základní případy návrhové teploty vnitřního vzduchu a vnitřní relativní vlhkosti lze hodnoty f R,cr najít přímo tabelované v ČSN Pokud je relativní vlhkost vnitřního vzduchu vyšší než 60 %, připouští ČSN nesplnění požadavku (1) ovšem s tím, že musí být: a) pro výplně otvorů splněn požadavek na součinitel prostupu tepla a současně musí být zajištěna bezchybná funkce konstrukce při povrchové kondenzaci a vyloučeno nepříznivé působení kondenzátu na navazující konstrukce b) pro ostatní konstrukce zajištěno vyloučení růstu plísní jiným způsobem než splněním požadavku (1) účinnost tohoto opatření musí být doložena. Zároveň musí být buď vyloučeno riziko vzniku povrchové kondenzace nebo musí být zajištěna bezchybná funkce konstrukce při povrchové kondenzaci a vyloučeno nepříznivé působení kondenzátu na navazující konstrukce. Ve vlhkých provozech je přípustné splnit požadavek ČSN na teplotní faktor i tím, že se u hodnocené konstrukce sníží potřebným způsobem relativní vlhkost vnitřního vzduchu (obvykle s pomocí vzduchotechniky) 2. Posledním normovým požadavkem týkajícím se rizika vzniku povrchové kondenzace je požadavek na vnitřní povrchovou teplotu vnějšího pláště dvouplášťových konstrukcí. Norma požaduje v čl , aby vypočtený teplotní faktor vnitřního povrchu vnějšího pláště splňoval podmínku (1), přičemž požadovaná hodnota kritického teplotního faktoru vnitřního povrchu f R,cr se stanoví ze vztahu (2). Návrhové parametry vnitřního vzduchu ve vztahu (2) tj. hodnoty θ a ϕ i,r se přitom uvažují rovné teplotě, resp. relativní vlhkosti vzduchu ve větrané vzduchové vrstvě (bez dalších přepočtů a úprav) a kritická relativní vlhkost se uvažuje ϕ,cr = 90 %. Obvykle postačuje posoudit splnění tohoto požadavku jen na konci větrané vzduchové vrstvy Postup výpočtu Plošné konstrukce Nejnižší teplotní faktor vnitřního povrchu konstrukce se stanoví z obecného vztahu θ θ θ θ e f R =, [-] (6) e kde θ je teplota na vnitřní straně hodnocené konstrukce ve C (obvykle návrhová teplota vnitřního vzduchu), θ e je teplota na vnější straně hodnocené konstrukce ve C (obvykle návrhová venkovní teplota) a θ je nejnižší vnitřní povrchová teplota ve C. Z konstrukce vztahu (6) je zřejmé, že na konkrétních hodnotách teplot v zásadě nezáleží hodnota teplotního faktoru vyjde shodně pro prakticky libovolnou kombinaci vnitřní a vnější teploty. Podmínkou je ovšem to, aby byla venkovní 1 Vztah (4) byl oproti zápisu v ČSN zjednodušen stejně jako vztahy (3) a (5). Z normového zápisu je zřejmější, jak je zajištěna rozměrová kompatibilita v uvedených vztazích. 2 Typickým příkladem je ofukování prosklených konstrukcí bazénových hal teplým suchým vzduchem.
3 teplota nižší než teplota vnitřní a aby byl navíc zachován výraznější rozdíl mezi oběma teplotami 3. Potřebnou nejnižší vnitřní povrchovou teplotu plošné konstrukce s jednorozměrným šířením tepla (Obr. 1) lze stanovit ze vztahu θ ( θ θ ) = θ U R, [ C] (7) e kde θ je návrhová teplota vnitřního vzduchu ve C, θ e je návrhová teplota na vnější straně konstrukce ve C (obvykle jde o návrhovou venkovní teplotu), U je součinitel prostupu tepla konstrukce ve W/(m 2.K) a R je tepelný odpor při přestupu na vnitřní straně v m 2.K/W. Odpor při přestupu tepla R se podle ČSN a ČSN EN ISO uvažuje hodnotou 0,25 m 2.K/W pro neprůsvitné konstrukce a hodnotou 0,13 m 2.K/W pro výplně otvorů Tepelné mosty a vazby Teplotní faktor lze stanovit podle vztahu (6) nejen pro plošné konstrukce, ale samozřejmě i pro libovolné styky stavebních konstrukcí (tepelné vazby) či pro místa v plošných konstrukcích poblíž systematických tepelných mostů. Problémem je ovšem určení nejnižší vnitřní povrchové teploty v těchto místech. Jednoduchý vztah (7) již totiž bohužel nelze pro tepelné mosty a vazby s vícerozměrným šířením tepla (Obr. 1) použít. Zóna s 3D Zóna s 2D Zóna s 1D Obr. 1 Zóny s různými typy vedení tepla V těchto případech je nezbytné stanovit nejnižší vnitřní povrchovou teplotu numerickým řešením parciální diferenciální rovnice vedení tepla 4. Tradičně se pro tyto účely používá metoda sítí, nověji pak metoda konečných prvků. Provést výpočet teplotního pole ručně je prakticky vyloučeno dnes se pro tyto účely používají specializované programy. Na základě výsledků výpočtu lze pak následně určit nejnižší vnitřní povrchovou teplotu. Vzhledem k rozsahu skript není bohužel možné dále podrobně probírat pravidla pro modelování detlů či popisovat použití konkrétního programu (tyto informace lze nalézt v rozličné a rozsáhlé literatuře). Podívejme se ale podrobněji alespoň na jednu velmi důležitou součást hodnocení tepelných mostů na zadávání okrajových podmínek. 3 V opačném případě nemusí být teplotní faktor dobře definován (vyjde buď záporná či naopak příliš vysoká kladná hodnota) nebo nemusí jít vůbec vypočítat (při shodě teplot). 4 Pro určité typy tepelných mostů a vazeb (např. pro kouty a pro pásové tepelné mosty) byly vytvořeny přibližné metody výpočtu nejnižší vnitřní povrchové teploty. Jedná se o vztahy odvozené z přesného numerického řešení, které pracují s přesností zhruba ±20%. Některé z těchto postupů uvádí ČSN
4 exteriér interiér exteriér přízemí Podmínka v zemině suterén suterénní stěna zemina Obr. 2 Umístění okrajových podmínek zemina Obr. 3 Svislá okrajová podmínka v zemině Ve výpočtech se používá návrhová teplota vnitřního vzduchu, návrhová venkovní teplota a teplota v zemině (viz část Okrajové podmínky). Součinitele přestupu tepla se uvažují podle Tab. 2 v části Součinitel prostupu tepla v tomto případě musí být samozřejmě použity hodnoty pro výpočet povrchových teplot. Okrajové podmínky se standardně zadávají pro ty hranice detlu, které jsou v kontaktu s vnitřním vzduchem, vnějším vzduchem a se zeminou 5 (Obr. 2). Zásadně se nezadávají na rozhraních mezi řešeným detlem a okolní konstrukcí. Výjimkou je jen hodnocení suterénních stěn, kdy je nutné okrajovou podmínku v zemině zadat ve směru svislém (Obr. 3). Tuto podmínku je dále třeba rozdělit na několik dílčích částí po zhruba 1 m a teploty v zemině zadávat podle Tab. 1 v části Okrajové podmínky. Nejnižší vnitřní povrchovou teplotu lze po výpočtu teplotního pole nalézt jako minimum z teplot v těch uzlových bodech sítě, které leží na vnitřním povrchu detlu. Některé z aplikačních programů tento výběr provádějí dokonce i samy. Často je možné hledat nejnižší vnitřní povrchovou teplotu i s pomocí grafického výstupu Příklady Plošná konstrukce Prvním příkladem je stěnová jednovrstvá zděná konstrukce tl. 400 mm o součiniteli prostupu tepla U = 0,4 W/(m 2.K). Konstrukce je umístěna v prostředí o návrhové teplotě vnitřního vzduchu 25 C a relativní vlhkosti 75 %. Vlhkost je udržována vzduchotechnikou. Návrhová venkovní teplota je -15 C. Vytápění je nepřerušované. Nejprve je třeba stanovit požadavek na minimální teplotní faktor. Kritický teplotní faktor vychází ze vztahu (2) jako f R,cr = 0,944, takže požadavek ČSN činí f R,N = 0,944. Výpočtem ze vztahu (7) dostáváme = 25 0,4 0,25 ( ) = ( 21,0 + 15) ( ) θ = 21,0 C a ze vztahu (6) pak f = 0,900. Vypočtená hodnota je nižší než f R R,N konstrukce tedy nesplňuje požadavek ČSN na vnitřní povrchovou teplotu (resp. teplotní faktor). Vzhledem k tomu, že relativní vlhkost vnitřního vzduchu přesahuje 60 %, nicméně ČSN připouští nesplnění uvedeného požadavku. Musí být ovšem vyloučen nějakým trvale účinným způsobem růst plísní a musí být zajištěna funkce konstrukce při povrchové kondenzaci vodní páry Tepelný most Druhým příkladem je detl styku dvou úrovní střešní konstrukce (Obr. 4). V místě styku je umístěna betonová stěna tl. 250 mm. Střecha má obrácenou skladbu s převážně pochůznou 5 Hloubka zeminy přilehlá k detlu se uvažuje podle Obr. 2 v části Okrajové podmínky (varianta pro výpočet povrchových teplot).
5 úpravou 6. Pod ní jsou umístěny kanceláře s návrhovou teplotou vnitřního vzduchu 21 C a relativní vlhkostí 50% (přirozeně větrané, bez klimatizace). Vytápění je tlumené s poklesem výsledné teploty do 5 C. Návrhová venkovní teplota je -15 C. θ e Betonová stěna 250 mm 11,96 C 11,8 C Vegetační souvrství 250 mm XPS 140 mm Spád. vrstva Žb deska 300 mm θ i Obr. 4 Detl styku dvou úrovní střechy Požadovaný minimální teplotní faktor vnitřního povrchu je f R,N = 0,749. Výpočtem teplotního pole programem Area byla stanovena nejnižší vnitřní povrchová teplota konstrukce ve výši 11,8 C a nejnižší teplotní faktor vnitřního povrchu f R = 0,744. Průběh izotermy 11,96 C (odpovídá požadovanému teplotnímu faktoru 0,749) v detlu ukazuje Obr. 4 je zřejmé, že detl v části pod betonovou stěnou nesplní požadavek ČSN na vnitřní povrchovou teplotu. Detl bylo nutné upravit. Vložením bloku pěnového skla 100 x 250 mm pod betonovou stěnu bylo docíleno zvýšení nejnižší vnitřní povrchové teploty na 16,2 C a teplotního faktoru na 0,867 a detl pak požadavky splnil. 6 Dlažba na podložkách - tato vrstva se do hodnocení detlu ovšem nezadává.
BH059 Tepelná technika budov
BH059 Tepelná technika budov Ing. Danuše Čuprová, CSc. Ing. Sylva Bantová, Ph.D. Výpočet součinitele prostupu okna Lineární a bodový činitel prostupu tepla Nejnižší vnitřní povrchová teplota konstrukce
Lineární činitel prostupu tepla
Lineární činitel prostupu tepla Zbyněk Svoboda, FSv ČVUT Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2018 především s ohledem na změny v normách. Lineární činitel
Školení DEKSOFT Tepelná technika 1D
Školení DEKSOFT Tepelná technika 1D Program školení 1. Blok Požadavky na stavební konstrukce Okrajové podmínky Nové funkce Úvodní obrazovka Zásobník materiálů Uživatelské skupiny Vlastní katalogy Zásady
Průměrný součinitel prostupu tepla budovy
Průměrný součinitel prostupu tepla budovy Zbyněk Svoboda, FSv ČVUT Praha Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2014 především s ohledem na změny v normách.
SF2 Podklady pro cvičení
SF Podklady pro cvičení Úloha 7 D přenos tepla riziko růstu plísní a kondenzace na vnitřním povrchu konstrukce Ing. Kamil Staněk 11/010 kamil.stanek@fsv.cvut.cz 1 D přenos tepla 1.1 Úvodem Dosud jsme se
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Stavební fyzika (L) Jan Tywoniak A428
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Stavební fyzika (L) 3 Jan Tywoniak A428 tywoniak@fsv.cvut.cz Bilanci lze sestavit pro krátký nebo dlouhý časový úsek odlišná využitelnost (proměňujících
WiFi: název: InternetDEK heslo: netdekwifi. Školení DEKSOFT Tepelná technika
WiFi: název: InternetDEK heslo: netdekwifi Školení DEKSOFT Tepelná technika Program školení 1. Blok Legislativa Normy a požadavky Představení aplikací pro tepelnou techniku Představení dostupných studijních
POROVNÁNÍ TEPELNĚ TECHNICKÝCH VLASTNOSTÍ MINERÁLNÍ VLNY A ICYNENE
POROVNÁNÍ TEPELNĚ TECHNICKÝCH VLASTNOSTÍ MINERÁLNÍ VLNY A ICYNENE Řešitel: Doc. Ing. Miloš Kalousek, Ph.D. soudní znalec v oboru stavebnictví, M-451/2004 Pod nemocnicí 3, 625 00 Brno Brno ČERVENEC 2009
BH059 Tepelná technika budov Konzultace č.1
Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov Konzultace č.1 Literatura, podmínky zápočtu Zadání, protokoly Součinitel prostupu tepla U, teplotní
Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství. BH059 Tepelná technika budov Konzultace č.1
Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov Konzultace č.1 Literatura: Studijní opory: BH10 Tepelná technika budov Normy: ČSN 73 0540 Tepelná
BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D.
Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D. Průběh zkoušky, literatura Tepelně
TZB Městské stavitelsví
Katedra prostředí staveb a TZB TZB Městské stavitelsví Zpracovala: Ing. Irena Svatošová, Ph.D. Nové výukové moduly vznikly za podpory projektu EU a státního rozpočtu ČR: Inovace a modernizace studijního
Okrajové podmínky pro tepelně technické výpočty
Okrajové podmínky pro tepelně technické výpočty Zbyněk Svoboda, FSv ČVUT Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2014 především s ohledem na změny v normách.
TEPELNĚ TECHNICKÉ POSOUZENÍ
TEPELNĚ TECHNICKÉ POSOUZENÍ BD Obsah: 1. Zadání... 2 2. Seznam podkladů... 2 2.1. Normy a předpisy... 2 2.2. Odborný software... 2 3. Charakteristika situace... 2 4. Místní šetření... 2 5. Obecné podmínky
s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y Tepelně technické vlastnosti l i s t o p a d 2 0 0 8
s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y Tepelně technické vlastnosti l i s t o p a d 2 0 0 8 s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y
VÝPOČET TEPELNÝCH ZTRÁT
VÝPOČET TEPELNÝCH ZTRÁT A. Potřebné údaje pro výpočet tepelných ztrát A.1 Výpočtová vnitřní teplota θ int,i [ C] normová hodnota z tab.3 určená podle typu a účelu místnosti A.2 Výpočtová venkovní teplota
VÝPOČET TEPELNÝCH ZTRÁT
VÝPOČET TEPELNÝCH ZTRÁT A. Potřebné údaje pro výpočet tepelných ztrát A.1 Výpočtová vnitřní teplota θ int,i [ C] normová hodnota z tab.3 určená podle typu a účelu místnosti A.2 Výpočtová venkovní teplota
TZB Městské stavitelsví
Katedra prostředí staveb a TZB TZB Městské stavitelsví Zpracovala: Ing. Irena Svatošová, Ph.D. Nové výukové moduly vznikly za podpory projektu EU a státního rozpočtu ČR: Inovace a modernizace studijního
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: Obecní úřad Suchonice Ulice: 29 PSČ: 78357 Město: Stručný popis budovy Seznam
Tepelná technika 1D verze TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: Bytový dům čp. 357359 Ulice: V Lázních 358 PSČ: 252 42 Město: Jesenice Stručný
BH059 Tepelná technika budov
BH059 Tepelná technika budov Přednáška č. 4 Přídavný difúzní odpor Výpočet roční bilance kondenzace a vypařování vodní páry v konstrukci -ručně Výpočet roční bilance kondenzace a vypařování vodní páry
TZB II Architektura a stavitelství
Katedra prostředí staveb a TZB TZB II Architektura a stavitelství Zpracovala: Ing. Irena Svatošová, Ph.D. Nové výukové moduly vznikly za podpory projektu EU a státního rozpočtu ČR: Inovace a modernizace
NPS. Nízkoenergetické a pasivní stavby. Přednáška č. 3. Vysoká škola technická a ekonomická V Českých Budějovicích
Vysoká škola technická a ekonomická V Českých Budějovicích NPS Nízkoenergetické a pasivní stavby Přednáška č. 3 Přednášky: Ing. Michal Kraus, Ph.D. Garant: Ing. Michal Kraus, Ph.D. Katedra stavebnictví
TEPELNĚ TECHNICKÉ POSOUZENÍ STAVEBNÍ KONSTRUKCE. Varianta B Hlavní nosná stěna
TEPELNĚ TECHNICKÉ POSOUZENÍ STAVEBNÍ KONSTRUKCE Varianta B Hlavní nosná stěna ZÁKLADNÍ KOMPLEXNÍ TEPELNĚ TECHNICKÉ POSOUZENÍ STAVEBNÍ KONSTRUKCE podle ČSN EN ISO 13788, ČSN EN ISO 6946, ČSN 730540 a STN
1.2. Postup výpočtu. d R =, [m 2.K/W] (6)
1. Součinitel prostupu tepla Součinitel prostupu tepla a tepelný odpor jsou základními veličinami charakterizujícími tepelně izolační vlastnosti stavebních konstrukcí. 1.1. Požadavky Požadavky na součinitel
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: BD Ulice: Družstevní 279 PSČ: 26101 Město: Příbram Stručný popis budovy
IDENTIFIKAČNÍ ÚDAJE ZAKÁZKY ZHOTOVITEL: Thákurova 7, Praha 6, IČO: , DIČ:
ČVUT v Praze, Fakulta stavební, Katedra technických zařízení budov 09/2013 IDENTIFIKAČNÍ ÚDAJE ZAKÁZKY ZHOTOVITEL: ČVUT v Praze, Fakulta stavební, Katedra technických zařízení budov, Thákurova 7,166 29
1. Energetický štítek obálky budovy. 2. Energetický průkaz budov a grafické vyjádření průkazu ENB. 3. Energetický audit
1. Energetický štítek obálky budovy 2. Energetický průkaz budov a grafické vyjádření průkazu ENB 3. Energetický audit Energetický průkaz budov a grafické vyjádření průkazu ENB ENB obsahuje informace o
POSOUZENÍ KCÍ A OBJEKTU
PROTOKOL TEPELNĚ TECHNICKÉ POSOUZENÍ KCÍ A OBJEKTU dle ČSN 73 0540 Studentská cena ENVIROS Nízkoenergetická výstavba 2006 Kateřina BAŽANTOVÁ studentka 5.ročníku VUT Brno - fakulta stavební obor NAVRHOVÁNÍ
Difúze vodní páry a její kondenzace uvnitř konstrukcí
Difúze vodní páry a její kondenzace uvnitř konstrukcí Zbyněk Svoboda, FSv ČVUT Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2014 především s ohledem na změny v normách.
EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO
EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO KONKRÉTNÍ ROZBOR TEPELNĚ TECHNICKÝCH POŽADAVKŮ PRO VYBRANĚ POROVNÁVACÍ UKAZATELE Z HLEDISKA STAVEBNÍ FYZIKY příklady z praxe Ing. Milan Vrtílek,
průměrný úhrn srážek v listopadu (mm) průměrná teplota vzduchu v prosinci ( C) 0 1
Příl. 1. Tab. 1. Klimatické charakteristiky okolí obce Střelice průměrná roční teplota vzduchu ( C) 7 8 průměrný roční úhrn srážek (mm) 500 550 průměrná teplota vzduchu na jaře ( C) 8 9 průměrný úhrn srážek
TEPELNÁ TECHNIKA OKEN A LOP
TEPELNÁ TECHNIKA OKEN A LOP změny související s vydáním ČSN 73 0540-2 (2011) Ing. Olga Vápeníková ČSN 73 0540-2 (říjen 2011, platnost listopad 2011) PROJEKČNÍ NORMA okna + dveře = výplně otvorů ostatní
Prezentace: Martin Varga SEMINÁŘE DEKSOFT 2016 ČINITELÉ TEPLOTNÍ REDUKCE
Prezentace: Martin Varga www.stavebni-fyzika.cz SEMINÁŘE DEKSOFT 2016 ČINITELÉ TEPLOTNÍ REDUKCE Co to je činitel teplotní redukce b? Činitel teplotní redukce b je bezrozměrná hodnota, pomocí které se zohledňuje
Tepelnětechnický výpočet kondenzace vodní páry v konstrukci
Zakázka číslo: 2015-1201-TT Tepelnětechnický výpočet kondenzace vodní páry v konstrukci Bytový dům Kozlovská 49, 51 750 02 Přerov Objednatel: Společenství vlastníků jednotek domu č.p. 2828 a 2829 v Přerově
Návrh skladby a tepelnětechnické posouzení střešní konstrukce
Návrh skladby a tepelnětechnické posouzení střešní konstrukce Objednatel: FYKONY spol. s r.o. Beskydská 552 741 01 Nový Jičín - Žilina Kontaktní osoba: Petr Konečný, mob.: +420 736 774 855 Objekt: Bytový
Oblast podpory A Snižování energetické náročnosti stávajících rodinných domů. Oblast podpory C.2 Efektivní využití zdrojů energie, výměna zdrojů tepla
Metodický pokyn k upřesnění výpočetních postupů a okrajových podmínek pro podprogram Nová zelená úsporám - RODINNÉ DOMY v rámci 2. Výzvy k podávání žádostí Oblast podpory A Snižování energetické náročnosti
VÝPOČTOVÉ MODELOVÁNÍ KONSTRUKCÍ PODKROVÍ
VÝPOČTOVÉ MODELOVÁNÍ KONSTRUKCÍ PODKROVÍ Zbyněk Svoboda FSv ČVUT v Praze, Thákurova 7, Praha 6, e-mail: svobodaz@fsv.cvut.cz The following paper contains overview of recommended calculation methods for
Vysoká škola technická a ekonomická V Českých Budějovicích. Energetický audit budov EAB. Seminář č. 2. Ing. Michal Kraus, Ph.D. Katedra stavebnictví
Vysoká škola technická a ekonomická V Českých Budějovicích Energetický audit budov Seminář č. 2 Ing. Michal Kraus, Ph.D. Katedra stavebnictví Tepelná ochrana budov Přehled základních požadavků na stavební
ZÁKLADNÍ KOMPLEXNÍ TEPELNĚ TECHNICKÉ POSOUZENÍ STAVEBNÍ KONSTRUKCE
ZÁKLADNÍ KOMPLEXNÍ TEPELNĚ TECHNICKÉ POSOUZENÍ STAVEBNÍ KONSTRUKCE podle ČSN EN ISO 13788, ČSN EN ISO 6946, ČSN 730540 a STN 730540 Teplo 2009 SO1 Název úlohy : Zpracovatel : Josef Fatura Zakázka : VVuB
Lineární činitel prostupu tepla
Lineární činitel prostupu tepla Zyněk Svooda, FSv ČVUT Původní text ze skript Stavení fyzika 31 z roku 2004. Částečně aktualizováno v roce 2015 především s ohledem na změny v normách. Lineární činitel
TEPELNĚ TECHNICKÉ POSOUZENÍ DETAILŮ OBLUKOVÝCH PŘEKLADŮ ATBET
STOPTERM spol. s r.o.,plamínkové 1564 / 5, Praha 4 tel. / fax : 241 400 533 TEPELNĚ TECHNICKÉ POSOUZENÍ DETAILŮ OBLUKOVÝCH PŘEKLADŮ ATBET Zadavatel : Roman Čejka Hrdlořezy 208 293 07 Zpracoval : Robert
SEMINÁŘE DEKSOFT SEKCE TEPELNÁ OCHRANA BUDOV. Úvod
SEMINÁŘE DEKSOFT SEKCE TEPELNÁ OCHRANA BUDOV Úvod Normy Klíčovou normou pro tepelnou ochranu budov v ČR je norma ČSN 73 0540-1 až 4 ČSN 73 0540-1 (2005) Část 1: Terminologie ČSN 73 0540-2 (2011) Část 2:
BH059 Tepelná technika budov
BH059 Tepelná technika budov Tepelná stabilita místnosti v zimním období Tepelná stabilita místnosti v letním období Tepelná stabilita charakterizuje teplotní vlastnosti prostoru, tvořeného stavebními
Oblast podpory B Výstavba rodinných domů s velmi nízkou energetickou náročností
Metodický pokyn k upřesnění výpočetních postupů a okrajových podmínek pro podprogram Nová zelená úsporám - RODINNÉ DOMY v rámci 2. Výzvy k podávání žádostí Oblast podpory B Výstavba rodinných domů s velmi
KOMPLEXNÍ POSOUZENÍ SKLADBY STAVEBNÍ KONSTRUKCE Z HLEDISKA ŠÍŘENÍ TEPLA A VODNÍ PÁRY
KOMPLEXNÍ POSOUZENÍ SKLADBY STAVEBNÍ KONSTRUKCE Z HLEDISKA ŠÍŘENÍ TEPLA A VODNÍ PÁRY podle EN ISO 13788, EN ISO 6946, ČSN 730540 a STN 730540 Teplo 2014 EDU stěna obvodová Název úlohy : Zpracovatel : Jan
POŽADAVKY NA TEPELNOU OCHRANU BUDOV, STAVEBNÍ ŘEŠENÍ
POŽADAVKY NA TEPELNOU OCHRANU BUDOV, STAVEBNÍ ŘEŠENÍ Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci
Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost
Výňatek z normy ČSN EN ISO 13370 Tepelně technické vlastnosti zeminy Použijí se hodnoty odpovídající skutečné lokalitě, zprůměrované pro hloubku. Pokud je druh zeminy znám, použijí se hodnoty z tabulky.
2. Tepelné ztráty dle ČSN EN
Základy vytápění (2161596) 2. Tepelné ztráty dle ČSN EN 12 831-1 19. 10. 2018 Ing. Jindřich Boháč ČSN EN 12 831-1 ČSN EN 12 831-1 Energetická náročnost budov Výpočet tepelného výkonu Část 1: Tepelný výkon
148 VYHLÁŠKA ze dne 18. června 2007 o energetické náročnosti budov
148 VYHLÁŠKA ze dne 18. června 2007 o energetické náročnosti budov Ministerstvo průmyslu a obchodu (dále jen "ministerstvo") stanoví podle 14 odst. 5 zákona č. 406/2000 Sb., o hospodaření energií, ve znění
Protokol č. V- 213/09
Protokol č. V- 213/09 Stanovení součinitele prostupu tepla U, lineárního činitele Ψ a teplotního činitele vnitřního povrchu f R,si podle ČSN EN ISO 10077-1, 2 ; ČSN EN ISO 10211-1, -2, a ČSN 73 0540 Předmět
Oprava a modernizace bytového domu Odborný posudek revize č.1 Václava Klementa 336, Mladá Boleslav
Obsah: Úvod... 1 Identifikační údaje... 1 Seznam podkladů... 2 Tepelné technické posouzení... 3 Energetické vlastnosti objektu... 10 Závěr... 11 Příloha č.1: Tepelně technické posouzení konstrukcí obálky
Tepelně technické vlastnosti zdiva
Obsah 1. Úvod 2 2. Tepelná ochrana budov 3-4 2.1 Závaznost požadavků 3 2.2 Budovy které musí splňovat normové požadavky 4 ČSN 73 0540-2(2007) 5 2.3 Ověřování požadavků 4 5 3. Vlastnosti použitých materiálů
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Stavební fyzika (L) Jan Tywoniak A428
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Stavební fyzika (L) 4 Jan Tywoniak A428 tywoniak@fsv.cvut.cz volba modelu pro výpočet vícerozměrného vedení tepla Lineární a bodový tepelný most Lineární
Stavební tepelná technika 1
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Stavební tepelná technika 1 Část B Prof.Ing.Jan Tywoniak,CSc. Praha 2011 04/11/2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Návrh skladby a koncepce sanace teras
Návrh skladby a koncepce sanace teras Bytový dům Kamýcká 247/4d 160 00 Praha - Sedlec Zpracováno v období: Březen 2016 Návrh skladby a koncepce sanace střešního pláště Strana 1/8 OBSAH 1. VŠEOBECNĚ...
Předmět VYT ,
Předmět VYT 216 1085, 216 2114 Podmínky získání zápočtu: 75 % docházka na cvičení (7 cvičení = minimálně 5 účastí) Konzultační hodiny: po dohodě Roman.Vavricka@fs.cvut.cz Místnost č. 215 Fakulta strojní,
Vytápění BT01 TZB II - cvičení
Vytápění BT01 TZB II - cvičení BT01 TZB II HARMONOGRAM CVIČENÍ AR 2012/2012 Týden Téma cvičení Úloha (dílní úlohy) Poznámka Stanovení součinitelů prostupu tepla stavebních Zadání 1, slepé matrice konstrukcí
SOFTWAROVÁ PODPORA PŘI NAVRHOVÁNÍ STAVEB Ing. Jiří Teslík
SOFTWAROVÁ PODPORA PŘI NAVRHOVÁNÍ STAVEB Ing. Jiří Teslík Tvorba vzdělávacího programu Dřevěné konstrukce a dřevostavby CZ.1.07/3.2.07/04.0082 OBSAH 1. ÚVOD 2. SOFTWAROVÁ PODPORA V POZEMNÍM STAVITELSTVÍ
1. Hodnocení budov z hlediska energetické náročnosti
H O D N O C E N Í B U D O V Z H L E D I S K A E N E R G E T I C K É N Á R O Č N O S T I K A P I T O L A. Hodnocení budov z hlediska energetické náročnosti Hodnocení stavebně energetické vlastnosti budov
ZÁKLADNÍ KOMPLEXNÍ TEPELNĚ TECHNICKÉ POSOUZENÍ STAVEBNÍ KONSTRUKCE
ZÁKLADNÍ KOMPLEXNÍ TEPELNĚ TECHNICKÉ POSOUZENÍ STAVEBNÍ KONSTRUKCE podle ČSN EN ISO 13788, ČSN EN ISO 6946, ČSN 730540 a STN 730540 Teplo 2009 Název úlohy : Stěna 1. Zpracovatel : pc Zakázka : Datum :
Detail nadpraží okna
Detail nadpraží okna Zpracovatel: Energy Consulting, o.s. Alešova 21, 370 01 České Budějovice 386 351 778; 777 196 154 roman@e-c.cz Autor: datum: leden 2007 Ing. Roman Šubrt a kolektiv Lineární činitelé
Oblast podpory B Výstavba rodinných domů s velmi nízkou energetickou náročností
Metodický pokyn k upřesnění výpočetních postupů a okrajových podmínek pro podprogram Nová zelená úsporám - RODINNÉ DOMY v rámci 3. Výzvy k podávání žádostí Oblast podpory B Výstavba rodinných domů s velmi
Tepelná technika 1D verze TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: Základní škola Slatina nad Zdobnicí Ulice: Slatina nad zdobnicí 45 PSČ:
slovo odborníka Vdne ní dobû narûstajících Posouzení spodní stavby panelového z hlediska stavební tepelné techniky 12/2008 Modelované konstrukce
26-30_12_08 27.11.2008 11:04 Stránka 1 Vdne ní dobû narûstajících cen energií se zaãínají klást ãím dál tím vût í po- Ïadavky na omezení úniku tepla z objektu. Jednou z moïností omezení ztrát tepla je
kde U součinitel prostupu tepla stavební konstrukce [W/m2 K] Rsi vnitřní tepelný odpor při přestupu tepla (internal) [W/m2 K] Rse vnější tepelný
VYTÁPĚNÍ - cvičení č. Výpočet tepelných ztrát Ing. Roman Vavřička Vavřička,, Ph.D Ph.D.. ČVUT v Praze, Fakulta strojní Ústav techniky prostředí Roman.Vavricka@ Roman.Vavricka @fs.cvut.cz neprůsvitné části
BH059 Tepelná technika budov Konzultace č. 3
Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov Konzultace č. 3 Zadání P7 (Konzultace č. 2) a P8 P7 Kondenzace vodní páry uvnitř konstrukce P8 Prostup
PTV. Progresivní technologie budov. Seminář č. 5 a 6. Vysoká škola technická a ekonomická V Českých Budějovicích
Vysoká škola technická a ekonomická V Českých Budějovicích PTV Progresivní technologie budov Seminář č. 5 a 6 Seminář: Ing. Michal Kraus, Ph.D. Garant: Ing. Michal Kraus, Ph.D. Katedra stavebnictví Vývoj
Zakázka číslo: 2010-02040-StaJ. Energetická studie pro program Zelená úsporám. Bytový dům Královická 1688 250 01 Brandýs nad Labem Stará Boleslav
Zakázka číslo: 200-02040-StaJ Energetická studie pro program Zelená úsporám Bytový dům Královická 688 250 0 Brandýs nad Labem Stará Boleslav Zpracováno v období: březen 200 Obsah.VŠEOBECNĚ...3..Předmět...3.2.Úkol...3.3.Objednatel...3.4.Zpracovatel...3.5.Vypracoval...3.6.Kontroloval...3.7.Zpracováno
NÁVRH STANDARTU REVITALIZACE A ZATEPLENÍ OBJEKTU
ČVUT V PRAZE, FAKULTA ARCHITEKTURY ÚSTAV STAVITELSTVÍ II. SGS14/160/OHK1/2T/15 ENERGETICKÁ EFEKTIVNOST OBNOVY VYBRANÝCH HISTORICKÝCH BUDOV 20. STOLETÍ. SGS14/160/OHK1/2T/15 ENERGETICAL EFFICIENCY OF RENEWAL
Ověřovací nástroj PENB MANUÁL
Ověřovací nástroj PENB MANUÁL Průkaz energetické náročnosti budovy má umožnit majiteli a uživateli jednoduché a jasné porovnání kvality budov z pohledu spotřeb energií Ověřovací nástroj kvality zpracování
Ing. Pavel Šuster. březen 2012
1. VŠEOBECNĚ 1.1. Předmět 1.2. Úkol 1.3. Zadavatel 1.4. Zpracovatel 1.5. Vypracoval 1.6. Zpracováno v období Bytový dům Peškova 6, Olomouc Jiří Velech byt pod střechou v 5.NP Diagnostika parametrů vnitřního
rekreační objekt dvůr Buchov orientační výpočet potřeby tepla na vytápění stručná průvodní zpráva
rekreační objekt dvůr Buchov orientační výpočet potřeby tepla na vytápění stručná průvodní zpráva Jiří Novák činnost technických poradců v oblasti stavebnictví květen 2006 Obsah Obsah...1 Zadavatel...2
Stavební Fyzika 2008/ představení produktů. Havlíčkův Brod
- představení produktů Havlíčkův Brod 29.04.2009 Pohled do Historie - ložnice pod širým nebem Pohled do Historie - chráníme se před počasím Pohled do Historie - mění se klima - stěhujeme se na sever Pohled
PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY DLE VYHLÁŠKY 78/2013 SB.
PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY DLE VYHLÁŠKY 78/2013 SB. Název akce: Zadavatel: Zpracovatel: Rodinný dům Vodňanského č.p. 2249, 253 80 Hostivice JUDr. Farouk Azab a Ing. arch. Amal Azabová Ing. Lada
Oblast podpory A Snižování energetické náročnosti stávajících bytových domů
Metodický pokyn k upřesnění výpočetních postupů a okrajových podmínek pro podprogram Nová zelená úsporám - BYTOVÉ DOMY v rámci 1. Výzvy k podávání žádostí Oblast podpory A Snižování energetické náročnosti
Posudek bytového domu Údolní 72, Brno v souladu s vyhláškou č. 78/2013 Sb
Posudek bytového domu Údolní 72, Brno v souladu s vyhláškou č. 78/2013 Sb Dokument vznikl za podpory SGS14/160/OHK1/2T/15 Ing.arch.et Ing. Jiří Adámek: Energetická efektivnost obnovy vybraných historických
ZEMĚDĚLSKÉ STAVBY (9)
10. října 2014, Brno Připravil: Ing. Petr Junga, Ph.D. ZEMĚDĚLSKÉ STAVBY (9) Stavební fyzika Inovace studijních programů AF a ZF MENDELU směřující k vytvoření mezioborové integrace CZ.1.07/2.2.00/28.0302
EFEKTIVNÍ ENERGETICKÝ REGION ECHY DOLNÍ BAVORSKO
EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍČECHY ECHY DOLNÍ BAVORSKO Vytápěnía využitíobnovitelných zdrojůenergie se zaměřením na nízkoenergetickou a pasivní výstavbu Parametry pasivní výstavby Investice do Vaší
PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY. DLE VYHL.Č. 78/2013 Sb. RODINNÝ DŮM. čp. 24 na stavební parcele st.č. 96, k.ú. Kostelík, obec Slabce,
Miloslav Lev autorizovaný stavitel, soudní znalec a energetický specialista, Čelakovského 861, Rakovník, PSČ 269 01 mobil: 603769743, e-mail: mlev@centrum.cz, www.reality-lev.cz PRŮKAZ ENERGETICKÉ NÁROČNOSTI
Součinitel prostupu tepla
Součinitel prostupu tepla Zbyněk Svoboda, FSv ČVUT Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2018 především s ohledem na změny v normách. Součinitel prostupu
Nestacionární šíření tepla. Pokles dotykové teploty podlah
Nestacionární šíření tepla Pokles dotykové teploty podlah Pokles dotykové teploty θ 10 termoregulační proces: výměna tepla Pokles dotykové teploty Požadavek ČSN 730540-2: θ 10 θ 10,N v závislosti na druhu
Součinitel prostupu tepla
Součinitel prostupu tepla Zbyněk Svoboda, FSv ČVUT Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2014 především s ohledem na změny v normách. Součinitel prostupu
STOPTERM spol. s r.o.,plamínkové 1564 / 5, Praha 4 tel. / fax : 241 400 533. Zadavatel: Ing. Marian Groch Třemblat 93 251 65 Ondřejov
STOPTERM spol. s r.o.,plamínkové 1564 / 5, Praha 4 tel. / fax : 241 400 533 PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY reprezentant rodinných domů EKORD 182 t 78 a POSOUZENÍ POROVNÁVACÍCH UKAZATELŮ stavebních
102FYZB-Termomechanika
České vysoké učení technické v Praze Fakulta stavební katedra fyziky 102FYZB-Termomechanika Sbírka úloh (koncept) Autor: Doc. RNDr. Vítězslav Vydra, CSc Poslední aktualizace dne 20. prosince 2018 OBSAH
SCHEMA OBJEKTU. Obr. 3: Pohled na rodinný dům
Samostatně stojící dvoupodlažní rodinný dům s obytným podkrovím. Obvodové stěny jsou vystavěny z pórobetonových tvárnic tl. 250mm. Střecha je sedlová se m nad krokvemi. Je provedeno fasády kontaktním zateplovacím
ENS. Nízkoenergetické a pasivní stavby. Přednáška č. 5. Vysoká škola technická a ekonomická V Českých Budějovicích
Vysoká škola technická a ekonomická V Českých Budějovicích ENS Nízkoenergetické a pasivní stavby Přednáška č. 5 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: Ing. Michal
KOMPLEXNÍ POSOUZENÍ SKLADBY STAVEBNÍ KONSTRUKCE Z HLEDISKA ŠÍŘENÍ TEPLA A VODNÍ PÁRY
KOMPLEXNÍ POSOUZENÍ SKLADBY STAVEBNÍ KONSTRUKCE Z HLEDISKA ŠÍŘENÍ TEPLA A VODNÍ PÁRY podle EN ISO 13788, EN ISO 6946, ČSN 730540 a STN 730540 Teplo 2015 obvodová stěna - Porotherm Název úlohy : Zpracovatel
DIFÚZNÍ MOSTY. g = - δ grad p (2) Doc. Ing. Šárka Šilarová, CSc. Ing. Petr Slanina Stavební fakulta ČVUT v Praze
Doc. Ing. Šárka Šilarová, CSc. Ing. Petr Slanina Stavební fakulta ČVUT v Praze DIFÚZNÍ MOSTY ABSTRAKT Při jednoduchém výpočtu zkondenzovaného množství vlhkosti uvnitř střešního pláště podle ČSN EN ISO
ICS Listopad 2005
ČESKÁ TECHNICKÁ NORMA ICS 91. 120. 10 Listopad 2005 Tepelná ochrana budov - Část 3: Návrhové hodnoty veličin ČSN 73 0540-3 Thermal protection of buildings - Part 3: Design value quantities La protection
ZÁKLADNÍ KOMPLEXNÍ TEPELNĚ TECHNICKÉ POSOUZENÍ STAVEBNÍ KONSTRUKCE ZÁKLADNÍ KOMPLEXNÍ TEPELNĚ TECHNICKÉ POSOUZENÍ STAVEBNÍ KONSTRUKCE
ZÁKLADNÍ KOMPLEXNÍ TEPELNĚ TECHNICKÉ POSOUZENÍ STAVEBNÍ KONSTRUKCE podle ČSN EN ISO 13788, ČSN EN ISO 6946, ČSN 730540 a STN 730540 Teplo 2008 ZÁKLADNÍ KOMPLEXNÍ TEPELNĚ TECHNICKÉ POSOUZENÍ STAVEBNÍ KONSTRUKCE
Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy
Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy Ing. arch. Tereza Vojancová Technický poradce tech.poradce@uralita.com 602 439 813 www.ursa.cz OBSAH 1 ÚVOD 2 ENERGETICKY
Metodický pokyn k upřesnění výpočetních postupů a okrajových podmínek
Metodický pokyn k upřesnění výpočetních postupů a okrajových podmínek Oblast podpory A Snižování energetické náročnosti stávajících rodinných domů Pro účely programu Nová zelená úsporám 2013 se rozumí:
Autor: Ing. Martin Varga
Konstrukce přilehlé k zemině - zadání dle ČSN EN ISO 13 370 (1. část) 3. 4. 2018 Autor: Ing. Martin Varga V tomto článku obecně popíšeme výpočetní případy dle ČSN EN ISO 13 370 pro konstrukce přilehlé
Principy návrhu střech s opačným pořadím izolačních vrstev
Seminář portálu TZB-info na veletrhu For Arch 2011 Principy návrhu střech s opačným pořadím izolačních vrstev Ing. Vladimír Vymětalík MONTAKO s.r.o., vedoucí střediska technické podpory Předpisy a normy
VÝVOJ A ZÁVAZNOS TEPELNĚ-TECHNICKÝCH PO
VÝVOJ A ZÁVAZNOS TEPELNĚ-TECHNICKÝCH PO VZHLEDEM K POLOZE ČESKÉ REPUBLIKY PATŘÍ TEPELNĚ-VLHKOSTNÍ VLASTNOSTI KONSTRUKCÍ A STAVBY MEZI ZÁKLADNÍ POŽADAVKY SLEDOVANÉ ZÁVAZNOU LEGISLATIVOU. NAŠÍM CÍLEM JE
Výpočet potřeby tepla na vytápění
Výpočet potřeby tepla na vytápění Výpočty a posouzení byly provedeny při respektování zásad CSN 73 05 40-2:2011, CSN EN ISO 13789, CSN EN ISO 13790 a okrajových podmínek dle TNI 73 029, TNI 73 030. Vytvořeno
KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÝ PŘÍKLAD KE CVIČENÍ II.
KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÝ PŘÍKLAD KE CVIČENÍ II. (DIMENZOVÁNÍ VĚTRACÍHO ZAŘÍZENÍ BAZÉNU) Ing. Jan Schwarzer, Ph.D.. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší
Obr. 3: Pohled na rodinný dům
Samostatně stojící dvoupodlažní rodinný dům. Obvodové stěny jsou vystavěny z keramických zdících prvků tl. 365 mm, stropy provedeny z keramických tvarovek typu Hurdis. Střecha je pultová bez. Je provedeno
termín pasivní dům se používá pro mezinárodně uznávaný standard budov s velmi nízkou spotřebou energie a vysokým komfortem bydlení pasivní domy jsou
Michal Kovařík, 3.S termín pasivní dům se používá pro mezinárodně uznávaný standard budov s velmi nízkou spotřebou energie a vysokým komfortem bydlení pasivní domy jsou současně základem pro téměř nulové