PRŮRAZ VZDUCHOVÉ MEZERY MEZI ELEKTRODAMI GENERÁTORU NÍZKOTEPLOTNÍ PLAZMY (reg.číslo GAČR 101/05/0643)

Rozměr: px
Začít zobrazení ze stránky:

Download "PRŮRAZ VZDUCHOVÉ MEZERY MEZI ELEKTRODAMI GENERÁTORU NÍZKOTEPLOTNÍ PLAZMY (reg.číslo GAČR 101/05/0643)"

Transkript

1 PRŮRAZ VZDUCHOVÉ MEZERY MEZI ELEKTRODAMI GENERÁTORU NÍZKOTEPLOTNÍ PLAZMY (reg.číslo GAČR /5/643) Ing. Libor Fiala Generátor nízkoteplotní plazmy je nejmodernější zařízení pro roztápění a stabilizaci uhelných energetických bloků v uhelných elektrárnách s granulačním či výtavným ohništěm. Pro prvotní inicializaci plazmové pochodně jiskrovým výbojem se používá vysokonapěťový a vysokofrekvenční ionizační zdroj. Tento zdroj má velmi nepříznivé vlastnosti ovlivňují funkci celé technologie. Z tohoto důvodu byla vytvořena idea nahrazení ionizačního zdroje při prvotní ionizaci generátoru nízkoteplotní plazmy metodou přibližování elektrod k sobě až do okamžiku vzniku elektrického oblouku vlivem průrazu vzduchu v mezielektrodovém prostoru intenzitou elektrického pole. Pro ověření této metody ionizace byla provedena matematická simulace elektrického pole v mezielektrodovém prostoru. Generator of low-temperature plasma is state-of-the-art equipment for smelting and stabilization of coal generating blocks in coal power stations with granulating or smelting fireplace. The high-voltage and high-frequency ionisation source has been used for primary initialization of plasma cresset with spark discharge. This source has very adversely features influencing functions of the whole technology. On this account it was created the idea of supplying ionisation source for primary ionizing plasma cresset, method approximation electrode on till moment rise electric arc owing to electric intensity becomes disruptive discharge air in space between electrode. The mathematic simulation of electric field in space between electrode was performed for checking of those method of ionisation. 3. ANSYS Users Meeting, září 25 Přerov - -

2 Plazmová technologie představuje nový trend ve způsobu iniciace hoření uhelné směsi při roztápění kotlů ze studeného či teplého stavu, dále je využitelná pro stabilizaci kotle. Tento způsob roztápění kotlů je založen na iniciaci hoření uhelné směsi proudem nízkoteplotního plazmatu využívaného jako počátečního aktivačního či stabilizačního zdroje. Jediným palivem využívaným pro roztápění kotle touto nejmodernější technologií je uhelný prášek aktivovaný proudem nízkoteplotního plazmatu vytékající z anodové části plazmatronu, který šetří provozní náklady na roztápění kotle oproti mazutu či zemnímu plynu. Generátor nízkoteplotní plazmy je elektrické zařízení principielně se skládající z dvou elektrodových částí (katodové a anodové) a oddělovací izolační části. Každá elektrodová část se skládá z vlastní měděné elektrody a z vlastního ocelového obalu. Potřebnými medii pro provoz plazmového generátoru jsou tlakový vzduch a voda pro chlazení měděných elektrod. Každá elektroda generátoru plazmy má vlastní chladící okruh integrovaný do katodového a anodového obalu a chladící voda je dodávána z externího zdroje vody. Tlakové vzduchy mají za úkol formovat oblouk v ose plazmatronu jako nosné médium a dále unášet elektrický oblouk přes výstupní anodu difuzorového provedení do aktivační a iniciační komory. Plnící tlakový vzduch je do generátoru nízkoteplotní plazmy přiváděn ve dvou rozdělených větvích, a to na vzduch proudící do katody přes tří drážkový zavířovač s osovou tryskou a na vzduch proudící do anody přes osmi cestný tryskový zavířovač integrovaný do oddělovací izolační vložky. Na obrázku č. je zobrazen osový řez generátorem nízkoteplotní plazmy. Obr. Osový řez generátorem nízkoteplotní plazmy 3. ANSYS Users Meeting, září 25 Přerov - 2 -

3 Nízkoteplotní plazma vzniká působením stejnosměrného elektrického oblouku na zavířenou soustavu plnících tlakových vzduchů v prostoru vymezeném měděnými elektrodami. Plazmatron je napájený stejnosměrným stabilizovaným proudem a dosahuje elektrického výkonu v regulačním rozsahu 6 32 kw. Stěžejními podmínkami pro správný chod generátoru nízkoteplotní plazmy a stabilní proces hoření elektrického oblouku v mezielektrodovém prostoru jsou stejnosměrný stabilizovaný proud vztažený k průtočnému množství plnících tlakových vzduchů. Na obrázku č.2 je zobrazen boční pohled na plazmovou pochodeň vystupující z plazmového generátoru. Obr.2 Boční pohled na plazmovou pochodeň vystupující z generátoru nízkoteplotní plazmy Pro prvotní ionizaci mezielektrodového prostoru je používán vysokonapěťový a vysokofrekvenční ionizační zdroj (oscilátor) s parametry výstupního napětí 5 kv a frekvenci 2 MHz. Tento způsob inicializace elektrického oblouku má několik zásadních nevýhod. Mezi tyto nevýhody patří vysoká hladina elektromagnetického rušení, která má vliv na veškerá elektrická zařízení v okolním prostoru. Vliv elektromagnetického rušení lze eliminovat pouze do stavu, že ionizační zdroj ruší v omezené míře pouze vlastní elektrické zařízení plazmové technologie. Z důvodu, aby toto rušení neovlivňovalo systémy měření a regulace celé technologie byly vyvinuty nezávislé ochrany, které oddělují citlivé elektrické okruhy od zbylých zarušených okruhů. Mezi další nevýhody patří citlivost na kvalitu povrchu elektrod v místech vzniku ionizační elektrické jiskry vyvolané oscilátorem. S touto nevýhodou úzce souvisí nepříliš velká vlastní spolehlivost ionizačního zdroje. Z následujícího plyne, že s uvedeným způsobem inicializace plazmové pochodně elektrickou jiskrou oscilátoru, nelze zaručit % spolehlivost při startu generátoru nízkoteplotní plazmy. Právě z těchto důvodů byla objevena idea změny způsobu ionizace elektrodového prostoru. Nový způsob zapalování plazmového generátoru 3. ANSYS Users Meeting, září 25 Přerov - 3 -

4 spočívá v přibližování měděných elektrod k sobě, čímž se zmenšuje vzduchová mezera a roste intenzita elektrického pole. V určité vzdálenosti elektrod od sebe dojde k elektrickému průrazu mezielektrodového prostoru a tím ke vzniku elektrického výboje mezi katodou a anodou. Protože plazmová technologie je nasazená na elektrárně Prunéřov I. a tudíž jsme limitováni elektrickými parametry zde nasazeného výkonového tyristorového usměrňovače. Tento usměrňovač dává při zatížení naprázdno napětí max. 56 V. Tato hodnota napětí je přivedena na katodovou elektrodu, druhá anodová elektroda je přizemněna. Při analytickém ověření možnosti použití metody přibližování elektrod pro inicializaci elektrického oblouku jsme vyšli ze známé Paschenovy křivky. Z Paschenovy křivky uvedené na obrázku č.3 a z přibližných výpočtu dle dostupných analytických rovnic pro homogenní pole jsme došli k výsledku, že k průrazu elektrické pole a vzniku elektrického oblouku dojde při vzdálenosti vzduchové mezery přibližně,2 mm. Z analytického přiblížení řešeného problému pro homogenní pole jsme došli k přibližné vzduchové mezeře potřebné k přeskoku elektrického oblouku definovaným stejnosměrným napětím. Pro hodnotu tlakových poměrů vzduchu mezi elektrodami a pro hodnotu napětí 56V mezi měděnými elektrodami je přeskoková vzdálenost přibližně,2 mm pro homogenní elektrické pole. - experimentální závislost - vypočítaná závislost Up [kv] Up,,, pd [kpa cm] Obr.3 Závislost přeskokového napětí v homogenném poli pro vzduch 3. ANSYS Users Meeting, září 25 Přerov - 4 -

5 Protože elektrické pole v oblasti elektrod generátoru nízkoteplotní plazmy nelze považovat za homogenní, bylo nutné pro zpřesnění analýzy přistoupit k řešení simulace elektrického pole numerickými metodami. Pro takové řešení analýzy byl použit software ANSYS Emag, který využívá numerické metody konečných prvků. Pro reálnost analýzy byl vytvořen přesný geometrický numerický model oblasti mezi elektrodami plazmatronu. Pro urychlení výpočtu analýzy bylo s výhodou použito osové geometrické souměrnosti a byl tedy vytvořen dvourozměrný model s definovanou osou symetrie (na obrázku č.4 je zobrazen geometrický model oblasti mezi elektrodami plazmatronu, obrázek č.5 přestavuje detailní zobrazení oblasti vzduchového prostředí mezi měděnými elektrodami). Výpočet numerickými metodami provedeme z hlediska spolehlivosti průrazu mezielektrodového prostoru plazmového generátoru pro snížené napětí na katodě o hodnotě 5V. AREAS TYPE NUM 9:3:7 Y Z X Obr.4 Zobrazení vytvořené geometrie modelu prostoru mezi elektrodami generátoru nízkoteplotní plazmy 3. ANSYS Users Meeting, září 25 Přerov - 5 -

6 AREAS TYPE NUM 9:4:2 Obr.5 Detailní zobrazení geometrie modelu prostoru mezi elektrodami generátoru nízkoteplotní plazmy Pro přesnost výpočtu je velmi důležitá kvalitně vytvořená výpočetní síť. Při pokrývání modelu sítí byl dán důraz na vytvoření kvalitní mapované sítě a dále na vhodné nastavení hustoty elementů v různých místech modelu dle předpokládaného rozložení elektrického pole a to podle amplitudy pole a především změn směru pole. V místech s předpokládaným vysokým gradientem pole byla nastavena hustší síť, v místech s malým gradientem jemnější síť. Důraz byl rovněž kladen na síť představující okolní vzduch, vnější plocha vytvořeného modelu byla pokryta pro zpřesnění výpočtu sítí INFIN zohledňující prostup elektrického pole dále do okolního prostoru. Provedení modelu sítě konečných prvků je ukázáno na obrázku č ANSYS Users Meeting, září 25 Přerov - 6 -

7 ELEMENTS 9::3 Obr.6 Zobrazení sítě konečných prvků řešeného modelu Řešení této numerické analýzy bylo provedeno pro 2 předem definovaných vzdáleností měděných elektrod generátoru nízkoteplotní plazmy. Tyto vzdálenosti byli vybrány dle analytického výpočtu a představují postupné přibližování elektrod dle kroku, který se zmenšuje s klesající vzduchovou mezerou mezi elektrodami. V okamžiku, kdy překročí intenzita elektrického pole hodnotu 3 MV/m můžeme dle teoretických předpokladů předpokládat, že nastane průraz mezielektrodového prostředí intenzitou elektrického pole v důsledku překročení průrazné pevnosti vzduchu. Zobrazení průběhu elektrické intenzity mezi elektrodami ve vybraných velikostech vzduchové mezery jsou uvedeny na obrázcích č.7, 9,, 3 a 5. Dále jsou vyobrazeny grafické výstupy závislosti intenzity elektrického pole na vzdálenosti vzduchové mezery v nejužším místě mezielektrodového prostoru mezi měděnými elektrodami generátoru nízkoteplotní plazmy. Tyto závislosti jsou uvedeny na obrázcích č.8,, 2, 4 a ANSYS Users Meeting, září 25 Přerov - 7 -

8 NODAL SOLUTION STEP= SUB = TIME= EFSUM (AVG) RSYS= SMN =2.492 SMX = :56:48 POST STEP= SUB = TIME= PATH PLOT NOD=682 NOD2=72 EFSUM (x**2) :24:39 MX intenzita el. pole [V/m] (x**-3) vzduchová mezera [m] Obr.7 Kontury intenzity el. pole v mezielektrodovém prostoru pro vzduchovou mezeru,62 mm Obr.8 Závislost intenzity el. pole na vzdálenosti vzduchové mezery o velikosti,62 mm NODAL SOLUTION STEP= SUB = TIME= EFSUM (AVG) RSYS= SMN =2.586 SMX =5878 3:6:26 POST STEP= SUB = TIME= PATH PLOT NOD=69 NOD2=73 EFSUM (x**2) :3:4 MX intenzita el. pole [V/m] (x**-3) vzduchová mezera [m] Obr.9 Kontury intenzity el. pole v mezielektrodovém prostoru pro vzduchovou mezeru,4 mm Obr. Závislost intenzity el. pole na vzdálenosti vzduchové mezery o velikosti,4 mm NODAL SOLUTION STEP= SUB = TIME= EFSUM (AVG) RSYS= SMN =2.657 SMX =.3E+7 3:32:59 POST STEP= SUB = TIME= PATH PLOT NOD=7 NOD2=792 EFSUM (x**3) :2:2 MX intenzita el. pole [V/m] (x**-4) vzduchová mezera [m] E+7 Obr. Kontury intenzity el. pole v mezielektrodovém prostoru pro vzduchovou mezeru,46 mm Obr.2 Závislost intenzity el. pole na vzdálenosti vzduchové mezery o velikosti,46 mm 3. ANSYS Users Meeting, září 25 Přerov - 8 -

9 NODAL SOLUTION STEP= SUB = TIME= EFSUM (AVG) RSYS= SMN =2.676 SMX =.237E+7 3:48:58 POST STEP= SUB = TIME= PATH PLOT NOD=7 NOD2=792 EFSUM (x**3) :28:47 MX intenzita el. pole [V/m] (x**-4) vzduchová mezera [m] E+7.55E+7.27E+7.29E+7.8E+7.237E+7 Obr.3 Kontury intenzity el. pole v mezielektrodovém prostoru pro vzduchovou mezeru,23 mm Obr.4 Závislost intenzity el. pole na vzdálenosti vzduchové mezery o velikosti,23 mm NODAL SOLUTION STEP= SUB = TIME= EFSUM (AVG) RSYS= SMN =2.68 SMX =.335E+7 4::52 POST STEP= SUB = TIME= PATH PLOT NOD=69 NOD2=73 EFSUM (x**3) :2:52 MX intenzita el. pole [V/m] (x**-4) vzduchová mezera [m] E+7.22E+7.293E+7.E+7.83E+7.257E+7.335E+7 Obr.5 Kontury intenzity el. pole v mezielektrodovém prostoru pro vzduchovou mezeru,5 mm Obr.6 Závislost intenzity el. pole na vzdálenosti vzduchové mezery o velikosti,5 mm Na uvedených obrázcích č.7-6 je názorně vidět, jak se zvyšuje intenzita elektrického pole při snižující se vzdálenosti vzduchové mezeře mezi měděnými elektrodami. Pro větší přehlednost závislosti intenzity elektrického pole na velikosti vzduchové mezery bylo provedeno grafické zhodnocení této závislosti pro všechny vypočtené vzdálenosti vzduchové mezery. V grafickém zobrazení závislosti je zobrazena oblast teoretického průrazu mezielektrodového prostoru překročením průrazné pevnosti vzduchového prostředí mezi elektrodami intenzitou elektrického pole. Tato závislost intenzity elektrického pole na velikosti vzduchové mezery je zobrazena na obrázku č ANSYS Users Meeting, září 25 Přerov - 9 -

10 Intenzita elektrického pole mezielektrodového prostoru v závislosti na velikosti vzduchové mezery Oblast teoretického průrazu mezielektrodového prostoru intenzitou elektrického pole Intenzita el.pole - max. hodnoty [kv/m] ,2,4,6,8,2,4,6,8 velikost vzduchové mezery [mm] Obr.7 Závislost intenzity elektrického pole mezielektrodového prostoru na velikosti vzduchové mezery Ze závislosti intenzity elektrického pole na velikosti vzduchové mezery uvedené na obrázku č.7 vyplývá, že pro tvar elektrod plazmového generátoru má tato závislost tvar hyperbolické křivky a hranici teoretického průrazu mezielektrodového prostoru dosahuje při hodnotě vzdálenosti vzduchové mezery,7 mm. Tuto definovanou vzdálenost elektrod můžeme považovat za bezpečnou hodnotu vzduchové mezery, při které spolehlivě dojde k přeskoku. Protože jsme pro výpočet numerické analýzy použili snížené napětí, bude tedy minimální vzdálenost vzduchové mezery větší a dle experimentálním pokusům provedených na zařízení plazmové technologie je přeskoková vzdálenost v rozmezí vzdálenosti,2,25 mm. Přeskoková vzdálenost je závislá nejen na použitém napětí mezi elektrodami, ale také na tlaku vzduchového média v mezielektrodovém prostoru ( viz. Paschenova křivka obrázek č.3). Vzhledem k tomu, že v mezielektrodovém prostoru proudí tlakový vzduch z rozváděcích kanálů katody a zejména anody je zřejmé, že ke zvýšené přeskokové vzdálenosti mezi elektrodami plazmového generátoru oproti numerické analýze přispívá nejenom zvýšené napětí, ale také právě proudění tlakové vzdušiny v mezielektrodovém prostoru. Příspěvek zpracován v rámci řešení projektu GAČR /5/643 Využití plazmové technologie v uhelné energetice. 3. ANSYS Users Meeting, září 25 Přerov - -

Ing. Kamil Stárek, Ing. Libor Fiala, Prof. Ing. Pavel Kolat,DrSc., Dr. Ing. Bohumír Čech

Ing. Kamil Stárek, Ing. Libor Fiala, Prof. Ing. Pavel Kolat,DrSc., Dr. Ing. Bohumír Čech MATEMATICKÁ SIMULOVACE PROUDĚNÍ UHELNÉ AEROSMĚSI APLIKOVANÁ NA VÍŘIVÝ HOŘÁK č.2 KOTLE K3 EVO I STABILIZOVANÝ PLAZMOVOU TECHNOLOGIÍ (reg.číslo GAČR 101/05/0643) Ing. Kamil Stárek, Ing. Libor Fiala, Prof.

Více

Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky

Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky Konference ANSYS 2009 Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky J. Štěch Západočeská univerzita v Plzni, Katedra energetických strojů a zařízení jstech@kke.zcu.cz

Více

Výpočet magnetického pole a indukčnosti výkonové vyhlazovací tlumivky

Výpočet magnetického pole a indukčnosti výkonové vyhlazovací tlumivky Výpočet magnetického pole a indukčnosti výkonové vyhlazovací tlumivky Ing. Martin Marek VŠB Technická Univerzita Ostrava, Fakulta Elektrotechniky a Informatiky, Katedra elektrických strojů a přístrojů

Více

Plazma. magnetosféra komety. zbytky po výbuchu supernovy. formování hvězdy. slunce

Plazma. magnetosféra komety. zbytky po výbuchu supernovy. formování hvězdy. slunce magnetosféra komety zbytky po výbuchu supernovy formování hvězdy slunce blesk polární záře sluneční vítr - plazma je označována jako čtvrté skupenství hmoty - plazma je plyn s významným množstvím iontů

Více

Popis softwaru VISI Flow

Popis softwaru VISI Flow Popis softwaru VISI Flow Software VISI Flow představuje samostatný CAE software pro komplexní analýzu celého vstřikovacího procesu (plnohodnotná 3D analýza celého vstřikovacího cyklu včetně chlazení a

Více

HOŘÁKY A TOPNÉ SYSTÉMY

HOŘÁKY A TOPNÉ SYSTÉMY Ústav využití plynu Brno, s.r.o. Radlas 7 602 00 Brno Česká republika KATALOG HOŘÁKY A TOPNÉ SYSTÉMY Kontaktní osoby Ing. Pavel Pakosta Ing. Zdeněk Kalousek Tel.: +420 545 321 219, 545 244 898 Ústav využití

Více

Proudění vzduchu v chladícím kanálu ventilátoru lokomotivy

Proudění vzduchu v chladícím kanálu ventilátoru lokomotivy Proudění vzduchu v chladícím kanálu ventilátoru lokomotivy P. Šturm ŠKODA VÝZKUM s.r.o. Abstrakt: Příspěvek se věnuje optimalizaci průtoku vzduchu chladícím kanálem ventilátoru lokomotivy. Optimalizace

Více

Simulace elektrostatického pole při experimentálním zjišťování průrazné pevnosti transformátorového oleje

Simulace elektrostatického pole při experimentálním zjišťování průrazné pevnosti transformátorového oleje Konference ANSYS 2009 Simulace elektrostatického pole při experimentálním zjišťování průrazné pevnosti transformátorového oleje Martin Marek, Radoslav Špita VŠB-TU Ostrava, FEI, Katedra elektrických strojů

Více

Základní analýza energetického monitoru

Základní analýza energetického monitoru 1 Vážený pane Zákazníku, příloha obsahuje automaticky vygenerovanou základní analýzu zkoumané otopné soustavy provedenou měřící soupravou Energetický monitor Testo v kombinaci s manuálním sběrem dat. Součástí

Více

CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE

CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE Autoři: Ing. Michal KŮS, Ph.D., Západočeská univerzita v Plzni - Výzkumné centrum Nové technologie, e-mail: mks@ntc.zcu.cz Anotace: V článku je uvedeno porovnání

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 1: Kondenzátor, mapování elektrického pole

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 1: Kondenzátor, mapování elektrického pole FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 5.5.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Úloha 1: Kondenzátor, mapování

Více

Numerická simulace sdílení tepla v kanálu mezikruhového průřezu

Numerická simulace sdílení tepla v kanálu mezikruhového průřezu Konference ANSYS 2009 Numerická simulace sdílení tepla v kanálu mezikruhového průřezu Petr Kovařík Západočeská univerzita v Plzni, Univerzitní 22, 306 14 Plzeň, kovarikp@ntc.zcu.cz Abstract: The paper

Více

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj DOUTNAVÝ VÝBOJ Další technologie využívající doutnavý výboj Plazma doutnavého výboje je využíváno v technologiích depozice povlaků nebo modifikace povrchů. Jedná se zejména o : - depozici povlaků magnetronovým

Více

Plazmové svařování a dělení materiálu. Jaromír Moravec

Plazmové svařování a dělení materiálu. Jaromír Moravec Plazmové svařování a dělení materiálu Jaromír Moravec 1 Definice plazmatu Definice plazmatu je následující: Plazma je kvazineutrální soubor částic s volnými nosiči nábojů, který vykazuje kolektivní chování.

Více

TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE

TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE Autoři: Ing. David LÁVIČKA, Ph.D., Katedra eneegetických strojů a zařízení, Západočeská univerzita v Plzni, e-mail:

Více

Vlny konečné amplitudy vyzařované bublinou vytvořenou jiskrovým výbojem ve vodě

Vlny konečné amplitudy vyzařované bublinou vytvořenou jiskrovým výbojem ve vodě 12. 14. května 2015 Vlny konečné amplitudy vyzařované bublinou vytvořenou jiskrovým výbojem ve vodě Karel Vokurka Technická univerzita v Liberci, katedra fyziky, Studentská 2, 461 17 Liberec karel.vokurka@tul.cz

Více

SVOČ FST Bc. Václav Sláma, Zahradní 861, Strakonice Česká republika

SVOČ FST Bc. Václav Sláma, Zahradní 861, Strakonice Česká republika VÝPOČET PROUDĚNÍ V NADBANDÁŽOVÉ UCPÁVCE PRVNÍHO STUPNĚ OBĚŽNÉHO KOLA BUBNOVÉHO ROTORU TURBÍNY SVOČ FST 2011 Bc. Václav Sláma, Zahradní 861, 386 01 Strakonice Česká republika Bc Jan Čulík, Politických vězňů

Více

Gas Discharges. Overview of Different Types. 14. listopadu 2011

Gas Discharges. Overview of Different Types. 14. listopadu 2011 Gas Discharges Overview of Different Types Jan Voráč ÚFE 14. listopadu 2011 Obrázky použité v této prezentaci jsou nestoudně ukradeny z internetu, z archivů pracovníků ÚFE MU, ze skript Základy fyziky

Více

Plazmové metody. Elektrické výboje v plynech

Plazmové metody. Elektrické výboje v plynech Plazmové metody Elektrické výboje v plynech Plazmové metody aplikované v technice velkou většinou používají jako zdroje plazmatu elektrické výboje v plynech. Výboje rozdělujeme podle doby trvání na - ustálené

Více

NUMERICKÉ SIMULACE ZAŘÍZENÍ PRO ODLUČOVANÍ PEVNÉ FÁZE ZE VZDUŠINY

NUMERICKÉ SIMULACE ZAŘÍZENÍ PRO ODLUČOVANÍ PEVNÉ FÁZE ZE VZDUŠINY NUMERICKÉ SIMULACE ZAŘÍZENÍ PRO ODLUČOVANÍ PEVNÉ FÁZE ZE VZDUŠINY Autoři: Ing. Jan SEDLÁČEK, Ph.D., NTC, ZČU V PLZNI, e-mail: sedlacek@ntc.zcu.cz Ing. Richard MATAS, Ph.D., NTC, ZČU V PLZNI, e-mail: mata@ntc.zcu.cz

Více

AUTOMATICKÁ EMISNÍ SPEKTROMETRIE

AUTOMATICKÁ EMISNÍ SPEKTROMETRIE AUTOMATICKÁ EMISNÍ SPEKTROMETRIE SPEKTROGRAFIE Jako budící zdroj slouží plazma elektrického výboje, kdy se výkon generátoru mění v plazmatu na teplo, ionizační a budící práci a zářivou E. V praxi se spektrografie

Více

9. Harmonické proudy pulzních usměrňovačů

9. Harmonické proudy pulzních usměrňovačů Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

Pavol Bukviš 1, Pavel Fiala 2

Pavol Bukviš 1, Pavel Fiala 2 MODEL MIKROVLNNÉHO VYSOUŠEČE OLEJE Pavol Bukviš 1, Pavel Fiala 2 ANOTACE Příspěvek přináší výsledky numerického modelování při návrhu zařízení pro úpravy transformátorového oleje. Zařízení pracuje v oblasti

Více

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (40) Zveřejněno 31 07 79 N

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (40) Zveřejněno 31 07 79 N ČESKOSLOVENSKÁ SOCIALISTICKÁ R E P U B L I K A (19) POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ 196670 (11) (Bl) (51) Int. Cl. 3 H 01 J 43/06 (22) Přihlášeno 30 12 76 (21) (PV 8826-76) (40) Zveřejněno 31 07

Více

Numerická simulace přestupu tepla v segmentu výměníku tepla

Numerická simulace přestupu tepla v segmentu výměníku tepla Konference ANSYS 2009 Numerická simulace přestupu tepla v segmentu výměníku tepla M. Kůs Západočeská univerzita v Plzni, Výzkumné centrum Nové technologie, Univerzitní 8, 306 14 Plzeň Abstract: The article

Více

DOPRAVNÍ A ZDVIHACÍ STROJE

DOPRAVNÍ A ZDVIHACÍ STROJE OBSAH 1 DOPRAVNÍ A ZDVIHACÍ STROJE (V. Kemka).............. 9 1.1 Zdvihadla a jeřáby....................................... 11 1.1.1 Rozdělení a charakteristika zdvihadel......................... 11 1.1.2

Více

Diskrétní řešení vzpěru prutu

Diskrétní řešení vzpěru prutu 1 z 5 Diskrétní řešení vzpěru prutu Discrete solution of beam buckling Petr Frantík Abstract Here is described discrete method for solution of beam buckling. The beam is divided into a number of tough

Více

Plazmové svařovací hořák ABICOR BINZEL

Plazmové svařovací hořák ABICOR BINZEL Plazmové svařovací hořák ABICOR BINZEL Základním požadavkem na všechny moderní procesy spojování materiálů je co vyšší výkon při současné úspoře investičních i provozních nákladů. Z tohoto pohledu je dnes

Více

IONTOVÉ ZDROJE. Účel. Požadavky. Elektronové zdroje. Iontové zdroje. Princip:

IONTOVÉ ZDROJE. Účel. Požadavky. Elektronové zdroje. Iontové zdroje. Princip: Účel IONTOVÉ ZDROJE vyrobit svazek částic vytvarovat ho a dopravit do urychlovací komory předurychlit ho (10 kev) Požadavky intenzita svazku malá emitance svazku trvanlivost zdroje stabilita zdroje minimální

Více

Numerické řešení proudění deuteria v katodě pulzního generátoru proudu

Numerické řešení proudění deuteria v katodě pulzního generátoru proudu Numerické řešení proudění deuteria v katodě pulzního generátoru proudu Bc. Jiří Stodůlka Vedoucí práce: Ing. Tomáš Hyhlík, Ph.D. Abstrakt Tato práce se zabývá numerickým řešením proudění deuteria v trysce

Více

11.1. indukční světelné. zdroje induction lighting sources

11.1. indukční světelné. zdroje induction lighting sources 11.1 indukční světelné zdroje induction lighting sources ÚVOD Indukční zdroj světla se skládá z elektronického předřadníku a světelného výbojového zdroje. Indukční fluorescenční zdroj světla bez elektrod

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

Elektroenergetika 1. Základní pojmy a definice

Elektroenergetika 1. Základní pojmy a definice Základní pojmy a definice Elektroenergetika vědní disciplína, jejímž předmětem zkoumání je zabezpečení elektrické energie pro lidstvo Výroba elektrické energie Přenos a distribuce elektrické energie Spotřeba

Více

Modelování proudění vzdušiny v elektroodlučovači ELUIII

Modelování proudění vzdušiny v elektroodlučovači ELUIII Konference ANSYS 2009 Modelování proudění vzdušiny v elektroodlučovači ELUIII Richard Matas, František Wegschmied Západočeská univerzita v Plzni, Výzkumné centrum Nové technologie, Univerzitní 8, 306 14

Více

Generování sítě konečných prvků

Generování sítě konečných prvků Generování sítě konečných prvků Jaroslav Beran Modelování a simulace Tvorba výpočtového modelu s využitím MKP zahrnuje: Tvorbu (import) geometrického modelu Generování sítě konečných prvků Definování vlastností

Více

PM generátory s různým počtem pólů a typem vinutí pro použití v manipulační technice

PM generátory s různým počtem pólů a typem vinutí pro použití v manipulační technice Rok / Year: Svazek / Volume: Číslo / Number: 014 16 PM generátory s různým počtem pólů a typem vinutí pro použití v manipulační technice PM Generators with Different Number of Poles an Wining Types for

Více

Numerické řešení transsonického proudění v trysce

Numerické řešení transsonického proudění v trysce Numerické řešení transsonického proudění v trysce Jiří Stodůlka Vedoucí práce: Ing. Tomáš Hyhlík, Ph.D. Abstrakt Pro fuzní Z-pinchové experimenty je potřeba vytvořit rychlé napuštění plynem, neboli Gasspuff,

Více

VÝPOČET RELATIVNÍCH POSUVŮ TURBINY

VÝPOČET RELATIVNÍCH POSUVŮ TURBINY VÝPOČET RELATIVNÍCH POSUVŮ TURBINY Ing. Miroslav Hajšman, Ph.D. Anotace : Důležitou součástí návrhu každého stroje je výpočet relativních posuvů turbiny (axiální posuv rotorové části mínus axiální posuv

Více

Proudový ventil. Pro pulsní řízení AC 24 V pro elektrické výkony do 30 kw. Proudové ventily jsou konstruovány pro spínání těchto odporových zátěží:

Proudový ventil. Pro pulsní řízení AC 24 V pro elektrické výkony do 30 kw. Proudové ventily jsou konstruovány pro spínání těchto odporových zátěží: 4 937 DESIO Proudový ventil Pro pulsní řízení AC 24 V pro elektrické výkony do 30 kw SEA45.1 Použití Proudový ventil se používá pro regulaci topných elementů v zařízeních vytápění, větrání a klimatizace,

Více

Modelování magnetického pole v železobetonových konstrukcích

Modelování magnetického pole v železobetonových konstrukcích Modelování magnetického pole v železobetonových konstrukcích Petr Smékal Anotace: Článek pojednává o modelování magnetického pole uvnitř železobetonových stavebních konstrukcí. Pro vytvoření modelu byly

Více

CZ Přehled chlazení páry

CZ Přehled chlazení páry 02-12.0 11.16.CZ Přehled chlazení páry -1- Chlazení páry V energetických procesech se pára využívá jako nosič mechanické práce (turbíny) nebo jako teplonosná látka (výměníky). Každý z těchto procesů vyžaduje

Více

1. Úvod do pružnosti a pevnosti

1. Úvod do pružnosti a pevnosti 1. Úvod do pružnosti a pevnosti Mechanika je nejstarší vědní obor a její nedílnou součástí je nauka o pružnosti a pevnosti. Pružností nazýváme schopnost pevných těles získat po odstranění vnějších účinků

Více

Studentská tvůrčí činnost 2009

Studentská tvůrčí činnost 2009 Studentská tvůrčí činnost 2009 Numerické řešení proudového pole v kompresorové lopatkové mříži Balcarová Lucie Vedoucí práce: Prof. Ing. P. Šafařík, CSc. a Ing. T. Hyhlík, PhD. Numerické řešení proudového

Více

CFD simulace obtékání studie studentské formule FS.03

CFD simulace obtékání studie studentské formule FS.03 CFD simulace obtékání studie studentské formule FS.03 Bc. Marek Vilím Vedoucí práce: Ing. Tomáš Hyhlík, Ph.D. Abstrakt Práce pojednává o návrhu numerické simulace obtékání studie studentské formule FS.03

Více

ŘADA E24, E35MA, E40MA, E50MA, E57MA VHODNÉ PRO NAPÁJENÍ SPOTŘEBIČŮ VYŽADUJÍCÍ STABILIZOVANÉ NAPĚTÍ.

ŘADA E24, E35MA, E40MA, E50MA, E57MA VHODNÉ PRO NAPÁJENÍ SPOTŘEBIČŮ VYŽADUJÍCÍ STABILIZOVANÉ NAPĚTÍ. 137 GENERÁTORY 13 138 generátory Modely pro profesionální použití, s pohodlným čelním panelem Spolehlivý a úsporný motor Mitsubishi OHV Bezkartáčkový design generátoru Velká palivová nádrž s indikátorem

Více

PRACOVNÍ NÁVRH VYHLÁŠKA. ze dne o způsobu stanovení pokrytí signálem televizního vysílání

PRACOVNÍ NÁVRH VYHLÁŠKA. ze dne o způsobu stanovení pokrytí signálem televizního vysílání PRACOVNÍ NÁVRH VYHLÁŠKA ze dne 2008 o způsobu stanovení pokrytí signálem televizního vysílání Český telekomunikační úřad stanoví podle 150 odst. 5 zákona č. 127/2005 Sb., o elektronických komunikacích

Více

Studentská tvůrčí činnost 2009. 3D modelování vírových struktur v rozváděcí turbínové lopatkové mříži. David Jícha

Studentská tvůrčí činnost 2009. 3D modelování vírových struktur v rozváděcí turbínové lopatkové mříži. David Jícha Studentská tvůrčí činnost 2009 3D modelování vírových struktur v rozváděcí turbínové lopatkové mříži David Jícha Vedoucí práce : Prof.Ing.P.Šafařík,CSc. a Ing.D.Šimurda 3D modelování vírových struktur

Více

Univerzitní centrum energeticky efektivních budov, České vysoké učení technické, Buštěhrad

Univerzitní centrum energeticky efektivních budov, České vysoké učení technické, Buštěhrad Zjednodušená měsíční bilance solární tepelné soustavy BILANCE 2015/v2 Tomáš Matuška, Bořivoj Šourek Univerzitní centrum energeticky efektivních budov, České vysoké učení technické, Buštěhrad Úvod Pro návrh

Více

DOUTNAVÝ VÝBOJ. 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace

DOUTNAVÝ VÝBOJ. 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace DOUTNAVÝ VÝBOJ 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace Doutnavý výboj Připomeneme si voltampérovou charakteristiku výboje v plynech : Doutnavý výboj Připomeneme si, jaké

Více

REKONSTRUKCE REGULOVANÝCH POHONŮ VÁLCOVACÍ LINKY TANDEM NA VŠB-TU FMMI OSTRAVA

REKONSTRUKCE REGULOVANÝCH POHONŮ VÁLCOVACÍ LINKY TANDEM NA VŠB-TU FMMI OSTRAVA REKONSTRUKCE REGULOVANÝCH POHONŮ VÁLCOVACÍ LINKY TANDEM NA VŠB-TU FMMI OSTRAVA Václav Sládeček, Pavel Hlisnikovský, Petr Bernat *, Ivo Schindler **, VŠB TU Ostrava FEI, Katedra výkonové elektroniky a elektrických

Více

Vliv úhlu distální anastomózy femoropoplitálního bypassu na proudové charakteristiky v napojení

Vliv úhlu distální anastomózy femoropoplitálního bypassu na proudové charakteristiky v napojení Vliv úhlu distální anastomózy femoropoplitálního bypassu na proudové charakteristiky v napojení Manoch Lukáš Abstrakt: Práce je zaměřena na stanovení vlivu úhlu napojení distální anastomózy femoropoplitálního

Více

Vodík jako alternativní ekologické palivo. palivové články a vodíkové hospodářství

Vodík jako alternativní ekologické palivo. palivové články a vodíkové hospodářství Vodík jako alternativní ekologické palivo palivové články a vodíkové hospodářství Charakteristika vodíku vodík je nejrozšířenějším prvkem ve vesmíru na Zemi je třetím nejrozšířenějším prvkem po kyslíku

Více

Elektrická zařízení III.ročník

Elektrická zařízení III.ročník Elektrická zařízení III.ročník (Ing. Jiří Hájek) Přehled témat a tématických celků, odpřednášených pro žáky SPŠE oboru Zařízení silnoproudé elektrotechniky v rámci předmětu Elektrická zařízení El. světlo

Více

1 Svařování Laser-Hybridem

1 Svařování Laser-Hybridem 1 Svařování Laser-Hybridem Laser-Hybrid je kombinace svařování nejčastěji pevnolátkovým Nd YAG laserem a jinou obloukovou technologií. V zásadě jsou známy tyto kombinace: laser TIG, laser MIG/MAG, laser

Více

A45. Příloha A: Simulace. Příloha A: Simulace

A45. Příloha A: Simulace. Příloha A: Simulace Příloha A: Simulace A45 Příloha A: Simulace Pro ověření výsledků z teoretické části návrhu byl využit program Matlab se simulačním prostředím Simulink. Simulink obsahuje mnoho knihoven s bloky, které dokáží

Více

Dělení a svařování svazkem plazmatu

Dělení a svařování svazkem plazmatu Dělení a svařování svazkem plazmatu RNDr. Libor Mrňa, Ph.D. Osnova: Fyzikální podstat plazmatu Zdroje průmyslového plazmatu Dělení materiálu plazmou Svařování plazmovým svazkem Mikroplazma Co je to plazma?

Více

Analýza poměrů při použití ukolejňovacího lana v železniční stanici

Analýza poměrů při použití ukolejňovacího lana v železniční stanici Karel Hlava 1, Michal Satori 2, Tomáš Krčma 3 Univerzita Pardubice Analýza poměrů při použití ukolejňovacího lana v železniční stanici Klíčová slova: dotykové/přístupné napětí, podpěry trolejového vedení,

Více

CFD simulace teplotně-hydraulické charakteristiky na modelu palivové tyči v oblasti distanční mřížky

CFD simulace teplotně-hydraulické charakteristiky na modelu palivové tyči v oblasti distanční mřížky Konference ANSYS 011 CFD simulace teplotně-hydraulické charakteristiky na modelu palivové tyči v oblasti distanční mřížky D. Lávička Západočeská univerzita v Plzni, Katedra energetických strojů a zařízení,

Více

Stupeň Datum ZKRATOVÉ POMĚRY Číslo přílohy 10

Stupeň Datum ZKRATOVÉ POMĚRY Číslo přílohy 10 Projektant Šlapák Kreslil Šlapák ČVUT FEL Technická 1902/2, 166 27 Praha 6 - Dejvice MVE ŠTĚTÍ ELEKTROTECHNICKÁ ČÁST Stupeň Datum 5. 2016 ZKRATOVÉ POMĚRY Číslo přílohy 10 Obsah Seznam symbolů a zkratek...

Více

SEMESTRÁLNÍ PRÁCE. Leptání plasmou. Ing. Pavel Bouchalík

SEMESTRÁLNÍ PRÁCE. Leptání plasmou. Ing. Pavel Bouchalík SEMESTRÁLNÍ PRÁCE Leptání plasmou Ing. Pavel Bouchalík 1. ÚVOD Tato semestrální práce obsahuje písemné vypracování řešení příkladu Leptání plasmou. Jde o praktickou zkoušku znalostí získaných při přednáškách

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní materiál vznikl za finanční podpory

Více

SIMULACE JEDNOFÁZOVÉHO MATICOVÉHO MĚNIČE

SIMULACE JEDNOFÁZOVÉHO MATICOVÉHO MĚNIČE SIMULE JEDNOFÁZOVÉHO MATICOVÉHO MĚNIČE M. Kabašta Žilinská univerzita, Katedra Mechatroniky a Elektroniky Abstract In this paper is presented the simulation of single-phase matrix converter. Matrix converter

Více

Úloha 1: Kondenzátor, mapování elektrostatického pole

Úloha 1: Kondenzátor, mapování elektrostatického pole Úloha 1: Kondenzátor, mapování elektrostatického pole FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 19.4.2010 Jméno: František Batysta Pracovní skupina: 5 Ročník a kroužek: 2. ročník, pond. odp.

Více

TECHNIKA VYSOKÝCH NAPĚŤÍ. #4 Elektrické výboje v elektroenergetice

TECHNIKA VYSOKÝCH NAPĚŤÍ. #4 Elektrické výboje v elektroenergetice TECHNIKA VYSOKÝCH NAPĚŤÍ #4 Elektrické výboje v elektroenergetice Korónový výboj V homogenním elektrickém poli dochází k celkovému přeskoku mezi elektrodami najednou U nehomogenních uspořádání dochází

Více

GEA Ultra-DENCO : Přesná klimatizace pro datová centra. Spolehlivost s nízkou spotřebou energie. 09/2012 (CZ) GEA Heat Exchangers

GEA Ultra-DENCO : Přesná klimatizace pro datová centra. Spolehlivost s nízkou spotřebou energie. 09/2012 (CZ) GEA Heat Exchangers GEA Ultra-DENCO : Přesná klimatizace pro datová centra Spolehlivost s nízkou spotřebou energie 09/2012 (CZ) GEA Heat Exchangers vysoké nízké Numerická simulace proudění Tlakové pole Tlakové pole na tepelném

Více

REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV. Jan VALTER HVM Plasma s.r.o. www.hvm.cz

REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV. Jan VALTER HVM Plasma s.r.o. www.hvm.cz REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV OVÁNÍ Jan VALTER SCHEMA REAKTIVNÍHO NAPRAŠOV OVÁNÍ zdroj výboje katoda odprašovaný terč plasma inertní napouštění plynů reaktivní zdroj předpětí p o v l a k o v a n é s

Více

Technika vysokých napětí. Elektrické výboje v elektroenergetice

Technika vysokých napětí. Elektrické výboje v elektroenergetice Elektrické výboje v elektroenergetice Korónový výboj V homogenním elektrickém poli dochází k celkovému přeskoku mezi elektrodami najednou U nehomogenních uspořádání dochází k optickým a akustickým projevům

Více

musí být odolný vůči krátkodobým zkratům při zkratovém přenosu kovu obloukem,

musí být odolný vůči krátkodobým zkratům při zkratovém přenosu kovu obloukem, 1 SVAŘOVACÍ ZDROJE PRO OBLOUKOVÉ SVAŘOVÁNÍ Svařovací zdroj pro obloukové svařování musí splňovat tyto požadavky : bezpečnost konstrukce dle platných norem a předpisů, napětí naprázdno musí odpovídat druhu

Více

Centrum kompetence automobilového průmyslu Josefa Božka - AutoSympo a Kolokvium Božek 2. a , Roztoky -

Centrum kompetence automobilového průmyslu Josefa Božka - AutoSympo a Kolokvium Božek 2. a , Roztoky - Popis obsahu balíčku WP13: Aerodynamika motorového prostoru a chlazení WP13: Aerodynamika motorového prostoru a chlazení Vedoucí konsorcia podílející se na pracovním balíčku České vysoké učení technické

Více

Tvorba výpočtového modelu MKP

Tvorba výpočtového modelu MKP Tvorba výpočtového modelu MKP Jaroslav Beran (KTS) Modelování a simulace Tvorba výpočtového modelu s využitím MKP zahrnuje: Tvorbu (import) geometrického modelu Generování sítě konečných prvků Definování

Více

RENTGENKY ČASU. Vojtěch U l l m a n n f y z i k OD KATODOVÉ TRUBICE PO URYCHLOVAČE

RENTGENKY ČASU. Vojtěch U l l m a n n f y z i k OD KATODOVÉ TRUBICE PO URYCHLOVAČE RENTGENKY V PROMĚNÁCH ČASU OD KATODOVÉ TRUBICE PO URYCHLOVAČE Vojtěch U l l m a n n f y z i k Klinika nukleární mediciny FN Ostrava Ústav zobrazovacích metod ZSF OU Ostrava VÝBOJKY: plynem plněné trubice

Více

TECHNICKÉ PARAMETRY AMBIENT

TECHNICKÉ PARAMETRY AMBIENT Ceny HP3AW 08 08 R 16 16 R Objednací číslo W20369 W20371 W20370 W20372 SVT Na dotaz Na dotaz Cena [CZK] 229 000 239 000 249 000 259 000 "R" varianta tepelných čerpadel s aktivním chlazením Technické parametry

Více

EXPERIMENTÁLNÍ A NUMERICKÝ VÝZKUM SPALOVACÍ KOMORY

EXPERIMENTÁLNÍ A NUMERICKÝ VÝZKUM SPALOVACÍ KOMORY 10 th conference on Power System Engineering, Thermodynamics & Fluid Flow - ES 2011 June 16-17, 2011, Pilsen, Czech Republic EXPERIMENTÁLNÍ A NUMERICKÝ VÝZKUM SPALOVACÍ KOMORY TŮMA Jan, KUBATA Jan, BĚTÁK

Více

Kulové jiskřiště. Fakulta elektrotechnická 2014/15. Katedra teoretické elektrotechniky. Semestrální práce. Petr Zemek E12B0300P

Kulové jiskřiště. Fakulta elektrotechnická 2014/15. Katedra teoretické elektrotechniky. Semestrální práce. Petr Zemek E12B0300P Fakulta elektrotechnická Katedra teoretické elektrotechniky Semestrální práce Kulové jiskřiště 2014/15 Petr Zemek E12B0300P Vyučující: Ing. David Pánek, Ph.D Předmět: KTE/TEMP Obsah 1 Zadání semestrální

Více

Elektrolytické vylučování mědi (galvanoplastika)

Elektrolytické vylučování mědi (galvanoplastika) Elektrolytické vylučování mědi (galvanoplastika) 1. Úvod Často se setkáváme s požadavkem na zhotovení kopie uměleckého nebo muzejního sbírkového předmětu. Jednou z možností je použití galvanoplastické

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROENERGETIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení)

VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení) VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení) Autoři: Martin Fusek, Radim Halama, Jaroslav Rojíček Verze: 0 Ostrava

Více

Tomáš Syka Komořanská 3118, Most Česká republika

Tomáš Syka Komořanská 3118, Most Česká republika SOUČINITEL PŘESTUPU TEPLA V MAKETĚ PALIVOVÉ TYČE ZA RŮZNÝH VSTUPNÍH PARAMETRŮ HLADÍÍHO VZDUHU SVOČ FST 2008 Tomáš Syka Komořanská 38, 434 0 Most Česká republika ABSTRAKT Hlavním úkolem této práce bylo

Více

NESTACIONÁRNÍ ŘEŠENÍ OCHLAZOVÁNÍ BRZDOVÉHO KOTOUČE

NESTACIONÁRNÍ ŘEŠENÍ OCHLAZOVÁNÍ BRZDOVÉHO KOTOUČE NESTACIONÁRNÍ ŘEŠENÍ OCHLAZOVÁNÍ BRZDOVÉHO KOTOUČE Autor: Ing. Pavel ŠTURM, ŠKODA VÝZKUM s.r.o., pavel.sturm@skodavyzkum.cz Anotace: Příspěvek se věnuje nestacionárnímu řešení chlazení brzdového kotouče

Více

SPECIÁLNÍ METODY OBRÁBĚNÍ SPECIÁLNÍ METODY OBRÁBĚNÍ

SPECIÁLNÍ METODY OBRÁBĚNÍ SPECIÁLNÍ METODY OBRÁBĚNÍ Předmět: Ročník: Vytvořil: Datum: STROJÍRENSKÁ TECHNOLOGIE TŘETÍ JANA ŠPUNDOVÁ 06.04.2014 Název zpracovaného celku: SPECIÁLNÍ METODY OBRÁBĚNÍ SPECIÁLNÍ METODY OBRÁBĚNÍ Používají se pro obrábění těžkoobrobitelných

Více

Optimalizace proudění vzduchu pro boční chladicí jednotky CoolTeg Plus

Optimalizace proudění vzduchu pro boční chladicí jednotky CoolTeg Plus Optimalizace proudění vzduchu pro boční chladicí jednotky CoolTeg Plus Trendy a zkušenosti z oblasti datových center Zpracoval: CONTEG Datum: 15. 11. 2013 Verze: 1.15.CZ 2013 CONTEG. Všechna práva vyhrazena.

Více

Tvorba modelu přilby z 3D skenování

Tvorba modelu přilby z 3D skenování Tvorba modelu přilby z 3D skenování Micka Michal, Vyčichl Jan Anotace: Příspěvek se zabývá přípravou numerického modelu cyklistické ochranné přilby pro výpočet v programu ANSYS. Přilba byla snímána ručním

Více

TECHNICKÉ PARAMETRY DYNAMIC

TECHNICKÉ PARAMETRY DYNAMIC DYNAMIC Ceny HP3AWX DYNAMIC 08 08 R 16 16 R Objednací číslo W20307 W20385 W20308 W20386 SVT SVT 21435 SVT 21435 SVT 21436 SVT 21436 Cena [CZK] 199 000 209 000 229 000 239 000 "R" varianta tepelných čerpadel

Více

Nové výzvy pro spolehlivý provoz přenosové soustavy Ing. Ivo Ullman, Ph.D.

Nové výzvy pro spolehlivý provoz přenosové soustavy Ing. Ivo Ullman, Ph.D. Nové výzvy pro spolehlivý provoz přenosové soustavy Ing. Ivo Ullman, Ph.D. Senior specialista Obor Technická politika Vývoj přenosu elektřiny Od výroby ke spotřebě (osvětlení, pohony) Stejnosměrný vs.

Více

Elektrostatické pole. Vznik a zobrazení elektrostatického pole

Elektrostatické pole. Vznik a zobrazení elektrostatického pole Elektrostatické pole Vznik a zobrazení elektrostatického pole Elektrostatické pole vzniká kolem nepohyblivých těles, které mají elektrický náboj. Tento náboj mohl vzniknout například přivedením elektrického

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROENERGETIKY A EKOLOGIE DIPLOMOVÁ PRÁCE

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROENERGETIKY A EKOLOGIE DIPLOMOVÁ PRÁCE ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROENERGETIKY A EKOLOGIE DIPLOMOVÁ PRÁCE Elektrická pevnost vzduchového dielektrika v závislosti na tlaku a stupni nehomogenity pole

Více

Základní charakteristika

Základní charakteristika Základní charakteristika Plynové kogenerační jednotky (KGJ) značky ADW jsou modulové stavebnicové systémy určené k zástavbě do strojoven, určené k trvalé výrobě elektřiny a tepla. Jako palivo je standardně

Více

H. PŘÍLOHA č.5. Posouzení vlivu neionizujícího záření ČEPS Invest, a.s.

H. PŘÍLOHA č.5. Posouzení vlivu neionizujícího záření ČEPS Invest, a.s. Dokumentace záměru Zdvojení stávajícího vedení V403 Prosenice - Nošovice dle 8 a přílohy č. 4 zákona č. 100/2001 Sb. H. PŘÍLOHA č.5 Posouzení vlivu neionizujícího záření ČEPS Invest, a.s. Červen 2014 5.1.

Více

CFD. Společnost pro techniku prostředí ve spolupráci s ČVUT v Praze, Fakultou strojní, Ústavem techniky prostředí

CFD. Společnost pro techniku prostředí ve spolupráci s ČVUT v Praze, Fakultou strojní, Ústavem techniky prostředí Společnost pro techniku prostředí ve spolupráci s ČVUT v Praze, Fakultou strojní, Ústavem techniky prostředí Program celoživotního vzdělávání: kurz Klimatizace a Větrání 2013/2014 CFD Jan Schwarzer Počítačová

Více

VYTÁPĚNÍ 05 VYTÁPĚNÍ

VYTÁPĚNÍ 05 VYTÁPĚNÍ 56 VYTÁPĚNÍ 05 VYTÁPĚNÍ 57 Nepřímé ohřívače s odtahem zplodin Pro vytápění v chovech drůbeže a prasat nabízíme celou řadu ohřívačů, které je možné různě kombinovat. Mezi klíčová kritéria volby správného

Více

Expert na svařování MMA

Expert na svařování MMA Expert na svařování MMA Invertor, tyristor i usměrňovač, kompletní nabídka zařízení Oerlikon na svařování obalenými elektrodami. www.oerlikon-welding.com www.airliquidewelding.com Svařování MMA Při svařování

Více

Přednáška 4. Úvod do fyziky plazmatu : základní charakteristiky plazmatu, plazma v elektrickém vf plazma. Doutnavý výboj : oblasti výboje

Přednáška 4. Úvod do fyziky plazmatu : základní charakteristiky plazmatu, plazma v elektrickém vf plazma. Doutnavý výboj : oblasti výboje Přednáška 4 Úvod do fyziky plazmatu : základní charakteristiky plazmatu, plazma v elektrickém vf plazma. Doutnavý výboj : oblasti výboje Jak nahradit ohřev při vypařování Co třeba bombardovat ve vakuu

Více

Měření teplotních a rychlostních polí za velkoplošnou vyústkou

Měření teplotních a rychlostních polí za velkoplošnou vyústkou Měření teplotních a rychlostních polí za velkoplošnou vyústkou Bystřická, Alena 1 & Janotková, Eva 2 1 Ing, VUT v Brně, Fakulta strojního inženýrství, Energetický ústav, Odbor termomechaniky a techniky

Více

4 Měření nelineárního odporu žárovky

4 Měření nelineárního odporu žárovky 4 4.1 Zadání úlohy a) Změřte proud I Ž procházející žárovkou při různých hodnotách napětí U, b) sestrojte voltampérovou charakteristiku dané žárovky, c) z naměřených hodnot dopočítejte hodnoty stejnosměrného

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9 Nestacionární vedení tepla v rovinné stěně Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento

Více

Simulace oteplení typového trakčního odpojovače pro různé provozní stavy

Simulace oteplení typového trakčního odpojovače pro různé provozní stavy Konference ANSYS 2009 Simulace oteplení typového trakčního odpojovače pro různé provozní stavy Regina Holčáková, Martin Marek VŠB-TUO, FEI, Katedra elektrických strojů a přístrojů Abstract: Paper focuses

Více

LABORATORNÍ PROTOKOL Z PŘEDMĚTU SILNOPROUDÁ ELEKTROTECHNIKA

LABORATORNÍ PROTOKOL Z PŘEDMĚTU SILNOPROUDÁ ELEKTROTECHNIKA LABORATORNÍ PROTOKOL Z PŘEDMĚTU SILNOPROUDÁ ELEKTROTECHNIKA Transformátor Měření zatěžovací a převodní charakteristiky. Zadání. Změřte zatěžovací charakteristiku transformátoru a graficky znázorněte závislost

Více

PREDIKCE DÉLKY KOLONY V KŘIŽOVATCE PREDICTION OF THE LENGTH OF THE COLUMN IN THE INTERSECTION

PREDIKCE DÉLKY KOLONY V KŘIŽOVATCE PREDICTION OF THE LENGTH OF THE COLUMN IN THE INTERSECTION PREDIKCE DÉLKY KOLONY V KŘIŽOVATCE PREDICTION OF THE LENGTH OF THE COLUMN IN THE INTERSECTION Lucie Váňová 1 Anotace: Článek pojednává o předpovídání délky kolony v křižovatce. Tato úloha je řešena v programu

Více

Programové nástroje Eaton Pavouk 3

Programové nástroje Eaton Pavouk 3 This is a photographic template your photograph should fit precisely within this rectangle. Programové nástroje Eaton Pavouk 3 Eaton tour 2017 Bc. Jan Marek Pavouk 3 Program pro návrh a dimenzování sítí

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV STROJÍRENSKÉ TECHNOLOGIE FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MANUFACTURING TECHNOLOGY ŘEZÁNÍ PLAZMOU

Více