VÝROBA ELEKTRICKEJ ENERGIE Z OBNOVITEĽNÝCH ZDROJOV ENERGIE. Katedra výkonových elektrotechnických systémov http:
|
|
- Marcela Králová
- před 7 lety
- Počet zobrazení:
Transkript
1 VÝROBA ELEKTRICKEJ ENERGIE Z OBNOVITEĽNÝCH ZDROJOV ENERGIE 1
2 Obsah prednášky Pojem obnoviteľné zdroje energie Premena obnoviteľných zdrojov energie na elektrickú energiu v geotermálnych elektrárňach, bioelektrárňach, vodných elektrárňach, veterných elektrárňach a slnečných elektrárňach. 2
3 ENERGETICKÉ ZDROJE Poskytujú také formy energie, ktoré sú, alebo môžu byť využiteľné pre potreby ľudstva. Elektrická energia sa získava premenou (niekedy aj viacnásobnou) zo základných a doplnkových zdrojov energie. chemická Biomasa tepelná para mechanická otáčky elektrická 3
4 ENERGETICKÉ ZDROJE Podľa možnosti obnoviteľnosti sa môžu zdroje energie rozdeliť na: obnoviteľné a neobnoviteľné. 4
5 ENERGETICKÉ ZDROJE Obnoviteľné zdroje energie sú také, ktoré sa nezávisle od ich využívania neustále obnovujú a sú prakticky bez zmeny neustále k dispozícii. polohová a kinetická energia vody energia vetra teplo zemského vnútra (geotermálna) slnečné žiarenie 5
6 ENERGETICKÉ ZDROJE biomasa energia prostredia (vzduch, pôda, voda) fotosyntéza príliv a odliv, morské vlny tepelný gradient mora. 6
7 ENERGETICKÉ ZDROJE Neobnoviteľné zdroje energie sú také, ktoré sa ich využívaním postupne nevratne vyčerpávajú. chemická energia fosílnych palív (uhlie, ropa, plyn, rašelina) jadrová (atómová) energia štiepnych palív. 7
8 ENERGETICKÉ ZDROJE Súčasné využívanie obnoviteľných energetických zdrojov na Slovensku V roku 2010 MH SR uverejnilo Národný akčný plán pre energiu z obnoviteľných zdrojov, ktorý deklaruje, že očakávané množstvo energie z obnoviteľných zdrojov zodpovedajúce cieľu 14 % na rok 2020 predstavuje pre Slovensko hodnotu 1572 ktoe ( TJ). 8
9 ZDROJE ELEKTRICKEJ ENERGIE Elektrárne Tepelné Vodné Veterné Slnečné Geotermálne Prietočné Os rotácie Priame Hydrotermálne Akumulačné Horizontálne Fotické Obnovované Prečerpávacie Vertikálne Elektrické Neobnovované Prílivové Generátora Tepelné Cirkulačné Vlnové Synchrónne Nepriame Bioelektrárne Príbojové Asynchrónne 9
10 ZDROJE ELEKTRICKEJ ENERGIE Inštalovaná kapacita a výroba elektrickej energie z obnoviteľných zdrojov v rokoch 2009 a
11 GEOTERMÁLNE ELEKTRÁRNE Súčasnou technikou vrtných súprav je prístupná asi desaťkilometrová hĺbka pod povrchom. V tejto hĺbke je teplota asi 200 C. Naakumulované teplo je asi J. Ochladením 1 km 2 hornín z teploty 200 C na teplotu 100 C by sa uvoľnila energia, ktorá by postačila na pohon elektrárne s výkonom 30 MW na dobu 30 rokov. Tomuto využitiu stoja v ceste technické, geologické a ekonomické problémy. 11
12 GEOTERMÁLNE ELEKTRÁRNE Na Slovensku je tepelno-energetický potenciál geotermálnych vôd stanovený na 5538 MWt. Majú nižšiu teplotu 45 až 130 C, preto sú vhodné prakticky iba na vykurovanie. Len pri 40% využití tohto potenciálu by bolo možné získať tepelný výkon až 2200 MWt. Geotermálne vody sa využívajú spolu v 36 lokalitách a skutočne využívaný inštalovaný výkon predstavuje asi 131 MWt. 12
13 GEOTERMÁLNE ELEKTRÁRNE Elektrickú energiu je možné vyrobiť premenou geotermálnej energie v elektrárňach: hydrotermálnych, pomocou geotermálne nahriatej spodnej vode alebo pare, obnovované zásoby geotermálnych vôd neobnovované zásoby geotermálnych vôd cirkulačných, prostredníctvom výmenníkov tepla. 13
14 GEOTERMÁLNE ELEKTRÁRNE Geotermálne elektrárne využívajú tepelnú energiu geotermálnej vody, resp. geotermálnej pary na výrobu elektrickej energie. Z ekonomického hľadiska je výroba elektrickej energie najvýhodnejšia pri teplote geotermálneho zdroja vyššej ako 180 C. 14
15 GEOTERMÁLNE ELEKTRÁRNE Základné typy sú tieto: s prehriatou parou, para -> turbogenerátor; para -> parogenerátor -> turbogenerátor s horúcou vodou, voda s vysokým tlakom a teplotou -> expandér-> mokrá para -> turbogenerátor s binárnym cyklom, geotermálna voda s teplotou nad cca 130 C -> čpavok, izobután 15
16 GEOTERMÁLNE ELEKTRÁRNE 16
17 BIOELEKTRÁRNE Výroba elektrickej energie v bioelektrárňach je podobná ako v tepelných elektrárňach pri spaľovaní fosílnych palív, ale s podstatne nižšími hodnotami emisií oxidu uhličitého (CO 2 ). Palivom je biomasa alebo biopalivo. 17
18 BIOELEKTRÁRNE Biomasa je organická hmota zámerne produkovaná na energetické účely. Podľa zdroja vzniku existuje: Fytomasa (napr. obilná a repková slama, konope a pod.) Dendromasa (drevný odpad, rýchlorastúce dreviny) Živočíšna biomasa (exkrementy, biologický odpad) Tuhý spáliteľný odpad (z poľnohospodárstva, domácností) Skládkový plyn (zo skládok, čistiarenských kalov) 18
19 BIOELEKTRÁRNE Biopalivo. Z biomasy sa vyrábajú ušľachtilé palivá pre výrobu elektrickej energie. Sú to najmä: tuhé palivá (Drevné štiepky, pelety a brikety) plynné produkty: Drevoplyn pyrolytickým splyňovaním drevných odpadov Bioplyn anaeróbnou fermentáciou organického odpadu tekuté biopalivá: Bionafta najmä zo semien repky olejnatej Bioalkohol alkoholovým kvasením a destiláciou 19
20 BIOELEKTRÁRNE Premena biomasy na energiu prebieha dvoma základnými spôsobmi: Termochemické premeny: Priame spaľovanie Pyrolýza zohrieva bez prístupu vzduchu a tým sa uvoľňuje zmes horľavých plynov alebo kvapalín Splyňovanie prebieha pri obmedzenom prístupe vzduchu pri procese nedokonalého horenia. 20
21 BIOELEKTRÁRNE Biochemické premeny : Alkoholové kvasenie fermentácia rastlinných látok obsahujúcich škrob, cukor a buničinu. Etanol, metanol Metánové kvasenie anaeróbna fermentácia (kvasenie bez prístupu vzduchu). Bioplyn 21
22 BIOELEKTRÁRNE 22
23 BIOELEKTRÁRNE Schéma elektrárne na bioplyn Vykurovací okruh Generátor Bioplyn Bioplynový motor Výmenník spaliny-voda Výfukové plyny Vratná voda Výmenník voda-voda 23
24 VODNÉ ELEKTRÁRNE Zdrojom energie vodných elektrární je voda pochádzajúca najmä z atmosférických zrážok, dažďa a snehu. Obeh vody v prírode udržuje energia Slnka. Primárny technicky využiteľný hydroenergetický potenciál SR je GW.h za rok. Doteraz je využívaný na cca 53 %. 24
25 VODNÉ ELEKTRÁRNE Vodné elektrárne pracujú na princípe využitia energie vody: potenciálnej, ktorá môže byť vo forme energie polohovej tlakovej kinetickej 25
26 VODNÉ ELEKTRÁRNE Výkon vodných elektrární je daný vzťahom: P = γ Q H = ρ g Q H = = ,81 Q H = 9810 Q H W Kde γ merná tiaž vody kg.m 2.s 2 ρ hustota vody 1000 kg.m 3 g tiažové zrýchlenie 9,81 m.s 2 Q prietočné množstvo vody m 3.s 1 H spád t. j. výškový rozdiel vody pred a za turbínou m 26
27 VODNÉ ELEKTRÁRNE Užitočný výkon na svorkách generátora závisí na účinnosti turbíny a generátora a preto je daný: P g = ρ g Q H η T η G Kde ρ hustota vody 1000 kg.m 3 g tiažové zrýchlenie 9,81 m.s 2 Q prietočné množstvo vody m 3.s 1 H spád t. j. výškový rozdiel vody pred a za turbínou m η T, η G účinnosť turbíny, generátora 27
28 VODNÉ ELEKTRÁRNE Znamená to, že spád a prietočné množstvo vody určujú výkon elektrárne. Čím väčší spád sa využíva, tým menšie sú merné investičné náklady na 1 kw inštalovaného výkonu a tým menšie sú aj prevádzkové náklady na 1 kw.h vyrobenej elektrickej energie. Čo najväčšia koncentrácia spádu je základnou podmienkou hospodárnosti výstavby VE. 28
29 VODNÉ ELEKTRÁRNE Koncentráciu spádu možno docieliť viacerými spôsobmi: pomocou priehrady alebo hate, využitím derivácie (beztlakový obtok kanálom, alebo tlakový privádzač), prečerpávaním vody, využitím prílivu a odlivu. 29
30 VODNÉ ELEKTRÁRNE Vodné turbíny patria k najstarším motorom v histórii ľudstva. Pôvod majú vo vodných kolesách pre pohon mlynov, hámrov a pod. Mali malú účinnosť, pretože nápor vody pôsobil len na niekoľko lopatiek. Základom moderných vodných motorov sa stal v 18. storočí vynález nemeckého fyzika, bratislavského rodáka J. A. Segnera ( ). 30
31 VODNÉ ELEKTRÁRNE Pre stavbu prvých väčších elektrární v 80. rokoch 19. storočia boli potrebné výkonnejšie a účinnejšie turbíny. S nimi prišli Angličan James Bicheno Francis, Američan Lester Pelton a neskoršie (v roku 1918) aj brnenský inžinier Viktor Kaplan. 31
32 VODNÉ ELEKTRÁRNE Francisova turbína Voda je do rozvádzacích lopatiek privedená špirálovou skriňou. Odtiaľ prúdi na pevné lopatky obežného kolesa. Z obežného kolesa vystupuje v axiálnom smere do sacej rúry - savky. Tým, že stĺpec vody vytvára pod obežným kolesom podtlak, dovoľujú Francisove turbíny využiť celý spád medzi hornou a dolnou hladinou. Používa sa regulácia len rozvádzacím kolesom (Čierny Váh, Dobšiná). Najvhodnejšie sú pre málo sa meniaci prietok a spád. 32
33 VODNÉ ELEKTRÁRNE Peltonova turbína Rovnotlaká turbína, používa sa pre veľké spády s menším prietokom vody. Voda sa privádza na koleso tangenciálnou tryskou. V nej sa mení polohová a tlaková energia vody na pohybovú energiu. Pomalá regulácia je možná ihlou v tryske. Pri náhlej poruche sa vychyľuje vodný prúd mimo kolesa, pretože náhle uzatvorenie by spôsobilo silný dynamický ráz. 33
34 VODNÉ ELEKTRÁRNE Kaplanova turbína obežné koleso v tvare lodnej skrutky s natáčanými lopatkami. Natáčaním je možné optimálne nastavovať nátokové uhly vodného prúdu. Nastávajú však problémy s kavitáciou, na spodných stranách lopatiek sa voda vyparuje a bublinky pary a plynov vyvolávajú pri implózii vibrácie a silnú koróziu. V praxi sa turbína reguluje natáčaním obežného kolesa aj lopatiek. Používa sa do 80 m premenlivého spádu. 34
35 VODNÉ ELEKTRÁRNE Prečerpávacia (reverzibilná) Deriazova turbína Je to obdoba Kaplanovej turbíny, pretože má riadené otvorenie rozvádzacieho i obežného kolesa, ale prietok vody je šikmý (diagonálny). Pri prečerpávaní sa turbína a s ňou celý agregát otáča opačným smerom. Rozbeh agregátu do čerpadlovej prevádzky sa robí frekvenčným rozbehom. 35
36 VODNÉ ELEKTRÁRNE Bánkiho turbína Je to priečna dvojnásobne pretekaná horizontálna prietoková turbína. Voda vstupuje do obežného kolesa turbíny tangenciálne a po prvom prietoku lopatkami sa turbíne odovzdá asi 79 % z celkového výkonu a na náprotivnej strane odovzdá voda ďalších 21 % energie. Výrazne okysličuje vodu. Regulácia výkonu je posúvačom (šupátkom) alebo klapkou v prívodnom potrubí. Ložiská turbíny sú umiestnené mimo vody. Obežné koleso má veľký počet dlhých lopatiek (28 36 ks). 36
37 VODNÉ ELEKTRÁRNE Prietoková vrtuľová turbína Sú vhodné pre najnižšie spády na vyrovnávacích prietokových priehradách. Vstavané sú priamo do prietokového kanála v hermetickom puzdre. Okolo prúdiaca voda ich chladí. Odvodené sú od Kaplánovej turbíny a majú natáčacie obežné koleso aj lopatky. U nás sú použité napr. vo vyrovnávacej nádrži Tvrdošín. 37
38 VODNÉ ELEKTRÁRNE Vodné elektrárne delíme podľa: využívaného spádu nízkotlakové spád do 20m strednotlakové spád od 20m do 100m vysokotlakové spády nad 100m pokrývania denného diagramu zaťaženia základné polo špičkové špičkové samostatné pracujú v ostrovnej prevádzke 38
39 VODNÉ ELEKTRÁRNE pracovného režimu akumulačné vodné elektrárne derivačné vodné elektrárne prietokové vodné elektrárne prečerpávacie vodné elektrárne prílivové vodné elektrárne 39
40 VODNÉ ELEKTRÁRNE 40
41 VETERNÉ ELEKTRÁRNE Asi 1% slnečnej energie sa premieňa na kinetickú energiu vzduchu a je možné ju využívať vo veterných turbínach. Od najstarších dôb sa premieňa kinetická energia na mechanickú (veterný mlyn, píla, zavlažovanie). Ďalším zo spôsobov využitia mechanickej energie je jej premena na elektrickú energiu vo veterných elektrárňach. 41
42 VETERNÉ ELEKTRÁRNE Veterné turbíny s vertikálnou osou rotácie sú výhodné pri vysokých a stredných rýchlostiach vetra. Pri prekročení optimálnych rýchlostí vetra rýchlo klesá ich účinnosť a dochádza k poklesu výkonu. Sú nezávislé na smere vetra a lopatky majú nízko pri zemi. 42
43 VETERNÉ ELEKTRÁRNE Veterné turbíny s horizontálnou osou rotácie sú v súčasnej dobe najrozšírenejšie. Najvyššie využitie výkonu je možné dosiahnuť dvoj- a trojlistovými vrtuľami. Gondola, umiestnená na stožiari otáčavo. Na nasmerovanie osi vrtule v smere vetra slúži postranné veterné koleso alebo elektromotor. 43
44 VETERNÉ ELEKTRÁRNE Energia vetra vo forme jej kinetickej energie E = 1 2 m v2 m = ρ V E = 1 2 ρ V v2 44
45 VETERNÉ ELEKTRÁRNE Výkon vzdušného prúdu P = 1 2 ρ S v v2 = 1 2 ρ S v3 S = π D2 = 0,785 D2 4 Teoretický výkon P = 1 2 ρ S v3 = 1 2 ρ 0,785 D2 v 3 = 0,393 ρ D 2 v 3 45
46 VETERNÉ ELEKTRÁRNE Pri výpočte maximálneho výkonu veternej elektrárne sa berie do úvahy len 59,3 % z celkového výkonu (Betz výkonový činiteľ ), t. j. P max = 0,393 ρ D 2 v 3 0,593 P max = 0,233 ρ D 2 v 3 46
47 VETERNÉ ELEKTRÁRNE Výstavba veternej elektrárne je efektívna len v miestach s priemernou ročnou rýchlosťou vetra väčšou než 4 až 5 m.s -1 vo výške 10 m nad zemou. Dolná hranica energetického využitia vetra je 4 m.s -1, optimálna rýchlosť vetra je 12 až 14 m.s
48 VETERNÉ ELEKTRÁRNE 48
49 VETERNÉ ELEKTRÁRNE Potenciál veternej energie na Slovensku Podľa Energetickej politiky SR lokality vhodné na umiestnenie veterných turbín (s rýchlosťou vetra vyššou ako 5 m.s -1 ) predstavujú energetický potenciál 1626 MW, očakávaný výkon je 335 MW a predpokladaná ročná výroba 1992 GWh. 49
50 SLNEČNÉ ELEKTRÁRNE Slnečná energia Slnečná energia dopadá na povrch Zeme vo forme žiarenia 1, W.s % sa odráža do medziplanetárneho priestoru, 19 % sa pohltí v atmosfére a premení na teplo, 47 % pohltí povrch Zeme. V našich zemepisných šírkach dopadne ročne na 1 m 2 energia asi 3 kw.h za deň (125 W.m -2 Žilina, 143 W.m -2 Hurbanovo, 290 W.m -2 Sahara). 50
51 SLNEČNÉ ELEKTRÁRNE Premeny slnečnej energie Priame Nepriame Fotické Elektrické Tepelné Fotolýza Fotokatalýza Fotoelektrokatalýza Fotovoltická Termoelektrická Termoionická Tepelné stroje Priamy rozklad vody Termochemický rozklad vody Hybridný rozklad vody 51
52 SLNEČNÉ ELEKTRÁRNE Premeny slnečnej energie Priame Nepriame Mechanické Energia vetra Energia mora Organické Termochemické Biochemické Energia riek 52
53 SLNEČNÉ ELEKTRÁRNE VYUŽITIE SLNEČNEJ ENERGIE fotovoltickou premenou, kde je účinnosť teoreticky 30 % (bežne okolo 20 %). Pre získanie väčšieho výkonu je nutné sérioparalelne prepojiť viac článkov do tzv. solárneho panelu. 53
54 SLNEČNÉ ELEKTRÁRNE Solárnou tepelnou premenou, lineárne parabolické zrkadlá, olej (400 C) 54
55 SLNEČNÉ ELEKTRÁRNE tanierové parabolické zrkadlá, olej (650 C) 55
56 SLNEČNÉ ELEKTRÁRNE termálne solárne veže, olej (1000 C) 56
57 SLNEČNÉ ELEKTRÁRNE komínová slnečná elektráreň 57
58 ĎAKUJEM ZA POZORNOSŤ 58
Henrich Pifko. Technológie prevádzkyenergia. FA STU, Bratislava PDF vytvořeno zkušební verzí pdffactory
Henrich Pifko Technológie prevádzkyenergia z obnoviteľných zdrojov FA STU, Bratislava 2006 Zásada: Obnoviteľné zdroje energie nespotrebovávať energiu ak ju už treba, využiť obnoviteľné zdroje ak treba
Doplnkové zdroje energie
Doplnkové zdroje energie Doplnkové (obnovitelné) zdroje energie -trvalo sa obnovujú (voda, vietor, biomasa), - prakticky sú nevyčerpateľné (energia zemského vnútra, slnečné žiarenie), - energeticky sa
INFORMÁCIE ENERGII-ELEKTRÁRNE
INFORMÁCIE O ENERGII-ELEKTRÁRNE ENERGIA? ČO JE Energia je schopnosť konať prácu. Energia je všade v slnečnom svetle ako teplo i svetlo, v magnetofóne ako energia zvuku, dokonca aj v hrude uhlia ako skrytá
TRADIČNÉ A OBNOVITEĽNÉ ZDROJE ENERGIÍ. a perspektíva ich využívania v podmienkach Slovenska z hľadiska Únie miest Slovenska a združenia CITENERGO
TRADIČNÉ A OBNOVITEĽNÉ ZDROJE ENERGIÍ a perspektíva ich využívania v podmienkach Slovenska z hľadiska Únie miest Slovenska a združenia CITENERGO Náš spoločný cieľ: vyššia kvalita života a životného prostredia
Celkové vyhodnotenie - 38 stredných škôl
Celkové vyhodnotenie - 38 stredných škôl Vyhodnotenie úvodného dotazníka pre študentov Strategické riadenie a plánovanie využívania domácej energie SMAPUDE_LIFE - LIFE12 INF/SK/000165 1. Čo znamená slovo
P o d p o r a p r e O Z E a p l n e n i e c i e ľ o v z a k č n é h o p l á n u p r e o b n o v i t e ľ n ú e n e r g i u.
P o d p o r a p r e O Z E a p l n e n i e c i e ľ o v z a k č n é h o p l á n u p r e o b n o v i t e ľ n ú e n e r g i u. CONECO/RACIOENERGIA Bratislava, 23.3.2016 O B S A H Obsah Úvod Národný akčný plán
Tomáš Malatinský v. r.
Vyhláška Ministerstva hospodárstva Slovenskej republiky č. 337/2012 Z. z. z 26. októbra 2012, ktorou sa ustanovuje energetická účinnosť premeny energie pri prevádzke, rekonštrukcii a budovaní zariadenia
Zoznam povinných merateľných ukazovateľov národného projektu Zelená domácnostiam
Príloha č. 5 vyzvania Zoznam povinných merateľných ukazovateľov projektu, vrátane ukazovateľov relevantných k HP Zoznam povinných merateľných ukazovateľov národného projektu Zelená domácnostiam Operačný
TVORBA, VYUŽÍVANIE A SPRACOVANIE BIOPLYNU Naďa Langová
TVORBA, VYUŽÍVANIE A SPRACOVANIE BIOPLYNU Naďa Langová Klíčová slova: biomasa, využití a výroba bioplynu, fermentace Tvorba, využívanie a spracovanie bioplynu Ing. Naďa Langová, PhD. Technická univerzita
Elektroenergetika 1. Vodní elektrárny
Vodní elektrárny Využití vodního toku Využití potenciální (polohové a tlakové) a čátečně i kinetické energie vodního toku Využití hydroenergetického potenciálu vodních toků má výhody oproti jiným zdrojům
Základné informácie o projekte Zelená domácnostiam
O b n o v i t e ľ n é z d r o j e e n e r g i e v d o m á c n o s t i a c h Matej Veverka Nízkouhlíkové riešenia pri využívaní energie - obnoviteľné zdroje, CONECO RACIOENERGIA 2018, 12.4.2018 O B S A
KOMBINOVANÁ VÝROBA TEPLA a ELEKTRINY Z BIOMASY
KOMBINOVANÁ VÝROBA TEPLA a ELEKTRINY Z BIOMASY Kombinovaná výroba z biomasy Pri kombinovanej výrobe elektriny a tepla z biomasy je možné využiť niektorú z nasledujúcich možností: Spaľovaním biomasy v parnom
Smerom k zelenému rastu v podmienkach SR
Smerom k zelenému rastu v podmienkach SR Efektívnosť podpory výroby elektriny na báze biomasy ENERGIA PRE BUDÚCNOSŤ Autor : Ing. Július Jankovský, člen prezídia ASPEK, jankovsky@apertis.eu Zelený rast
AKTUÁLNY STAV A VÝVOJ ROZVOJA OZE NA SLOVENSKU
AKTUÁLNY STAV A VÝVOJ ROZVOJA OZE NA SLOVENSKU Názov konferencie: Spoločná energetická politika EÚ a energetická bezpečnosť Slovenska Autor: Alojz Bernát, Peter Bobuľa, AVEOZ Prednášajúci: Peter Bobuľa,
Okruh otázok z predmetu TEPELNÁ TECHNIKA A HUTNÍCKE PECE. Štátna skúška - Bc. štúdium
TEPELNÁ TECHNIKA A HUTNÍCKE PECE 1. Palivá a ich vlastnosti. 2. Statika spaľovania: stechiometria spaľovania prebytok spaľovacieho vzduchu. 3. Spaľovacie teploty. 4. Kontrola spaľovania. 5. Prúdenie tekutín:
Obnoviteľné zdroje energie
Obnoviteľné zdroje energie potenciály, bariéry, výzvy Jún 2007 Druhy OZE (podľa pôvodu) Biomasa lesná biomasa, odpady z poľnohospodárskej produkcie, energetické dreviny, bioodpad z komunálnej sféry Bioplyn,
Informačný list 1. Čo je energia? Všetci potrebujeme energiu! Energia doma
Informačný list 1 Čo je energia? Ľudia potrebujú energiu, aby sa mohli hrať a hýbať. Energiu získajú z jedla. Potrebuješ energiu, aby si mohol rásť. Dokonca aj keď spíš, potrebuješ energiu. Aj zvieratá
Slovenská inovačná a energetická agentúra
Nové ekologické trendy v stavebníctve - biomasa, vodná, veterná a slnečná energia Stavebné fórum. sk OBNOVITEĽNÉ ZDROJE ENERGIE základné východiska a zámery, podpora OZE Košice 19. máj 2009 Ing. Keher
Legislatíva v oblasti bioplynu a biometánu. Ing. Juraj Novák MH SR
Legislatíva v oblasti bioplynu a biometánu Ing. Juraj Novák MH SR Legislatíva EU a ciele roku 2020 pre OZE Smernica 2009/28/ES o podpore využívania energie z obnoviteľných zdrojov energie 14 % OZE na hrubej
Osnova kurzu. Výroba elektrické energie. Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 3
Osnova kurzu 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 1 Základy teorie elektrických obvodů 2 Základy teorie elektrických
Vzor. Správa k energetickému certifikátu budovy
Príloha č. 4 k vyhláške č. /2012 Z. z. Vzor Správa k energetickému certifikátu budovy Správa k energetickému certifikátu obsahuje najmä tieto údaje: A. Výpočtové energetické hodnotenie a) identifikačné
Technologie výroby elektrárnách. Základní schémata výroby
Technologie výroby elektrárnách Základní schémata výroby Kotle pro výroby elektřiny Získávání tepelné energie chemickou reakcí fosilních paliv: C + O CO + 33910kJ / kg H + O H 0 + 10580kJ / kg S O SO 10470kJ
Identifikace vzdělávacího materiálu VY_52_INOVACE_F.9.A.22 EU OP VK. Obnovitelné zdroje
Identifikace vzdělávacího materiálu VY_52_INOVACE_F.9.A.22 EU OP VK Škola, adresa Autor ZŠ Smetanova 1509, Přelouč Mgr. Ladislav Hejný Období tvorby VM Březen 2012 Ročník 9. Předmět Fyzika Obnovitelné
Spracovanie biomasy. výroba ušľachtilých tuhých biopalív, výroba kvapalných biopalív, výroba plynných biopalív.
BIOMASA Spracovanie biomasy výroba ušľachtilých tuhých biopalív, výroba kvapalných biopalív, výroba plynných biopalív. Ušľachtilé tuhé biopalivá BRIKETY Brikety sú vyrobené z odpadovej biomasy drvením,
Rotační výsledkem je otáčivý pohyb (elektrické nebo spalovací #5, vodní nebo větrné
zapis_energeticke_stroje_vodni08/2012 STR Ga 1 z 5 Energetické stroje Rozdělení energetických strojů: #1 mění pohyb na #2 dynamo, alternátor, čerpadlo, kompresor #3 mění energii na #4 27. Vodní elektrárna
Obnovitelné zdroje energie
Obnovitelné zdroje energie Identifikace regionálních disparit v oblasti obnovitelných zdrojů energie na Jesenicku Bc. Krystyna Nováková Komplexní regionální marketing jako koncept rozvoje rurálního periferního
ALTERNATIVNÍ ZDROJE ENERGIE
ALTERNATIVNÍ ZDROJE ENERGIE Využití energie slunce Na zemský povrch dopadá průměrně 0,2 kw/m 2 V ČR dopadne na 1 m 2 přibližně 1000 kwh energie ročně Je několik možností, jak přeměnit energii slunečního
Na čo je potrebné myslieť pri výstavbe alebo modernizácií zdrojov tepla
ENERGETICKÁ EFEKTÍVNOSŤ VEC VEREJNÁ Na čo je potrebné myslieť pri výstavbe alebo modernizácií zdrojov tepla Ing. Ladislav Truchlík KKH spol. s r.o. Bratislava Hlavné témy prednášky Efektívnosť plynových
Digitální učební materiál
Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn CZ.1.07/1.5.00/34.0061 VY_32_INOVACE_D.1.10 Integrovaná střední škola technická
Popis výukového materiálu
Popis výukového materiálu Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_ SZ_20.7. Autor: Ing. Luboš Veselý Datum vytvoření: 13. 02. 2013 Předmět, ročník Tematický celek Téma Druh učebního materiálu
ODPAD AKO ALTERNATÍVNY ZDROJ ENERGIE Z POHĽADU VÝROBCOV TEPLA
ODPAD AKO ALTERNATÍVNY ZDROJ ENERGIE Z POHĽADU VÝROBCOV TEPLA Odborný seminár: Nakladanie s odpadmi v Moravskosliezskom a Žilinskom kraji 17. septembra 2014 Žilinská teplárenská, a.s. Profil firmy: Žilinská
Obnovitelné zdroje energie
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 2 1 je hmota organického původu (rostlinného
Nádrže HSK a DUO. Akumulačné nádrže s prípravou ohriatej pitnej vody a deliacim plechom. Úsporné riešenie pre vaše kúrenie
Nádrže HSK a DUO Akumulačné nádrže s prípravou ohriatej pitnej vody a deliacim plechom www.regulus.sk NÁDRŽE HSK NÁDRŽE DUO Akumulačné nádrže Regulus HSK s deliacim plechom s nerezovými výmenníkmi pre
Postavenie energetiky v spolo nosti - možnosti uplatnenia OZE
Postavenie energetiky v spolo nosti - možnosti uplatnenia OZE doc. Ing. Radim RYBÁR, PhD. Centrum obnovite ných zdrojov energie, Fakulta BERG, Technická univerzita v Košiciach neobnovite né Zdroje energie
21.6.2011. Projekt realizovaný na SPŠ Nové Město nad Metují
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 03 - TP ing. Jan Šritr ing. Jan Šritr 2 1 Vodní
LOPATKOVÉ STROJE LOPATKOVÉ STROJE
Předmět: Ročník: Vytvořil: Datum: STROJÍRENSTVÍ ČTVRTÝ BIROŠČÁKOVÁ I. 22. 11. 2013 Název zpracovaného celku: LOPATKOVÉ STROJE LOPATKOVÉ STROJE Lopatkové stroje jsou taková zařízení, ve kterých dochází
Hydroenergetika (malé vodní elektrárny)
Hydroenergetika (malé vodní elektrárny) Hydroenergetický potenciál ve světě evaporizace vody (¼ solární energie) maximální potenciál: roční srážky 10 17 kg prum výška kontinetálního povrchu nad mořem =
MOŽNOSTI VYUŽITIA KOMBINOVANEJ VÝROBY ELEKTRINY A TEPLA OVANÍM M ODPADNEJ BIOMASY V PODMIENKACH CZT
MOŽNOSTI VYUŽITIA KOMBINOVANEJ VÝROBY ELEKTRINY A TEPLA SPAĽOVAN OVANÍM M ODPADNEJ BIOMASY V PODMIENKACH CZT Ing. Radoslav Kňazúr, DATATHERM, spol. s r.o., Na rybník 947, 013 01 Teplička nad Váhom PRÍKLAD
GEOTERMÁLNA ENERGIA. Ing. OTO HALÁS. Galanta
GEOTERMÁLNA ENERGIA Perspektívne riešenie enie pre vybrané regióny Ing. OTO HALÁS Galanta 23.6.2010 1 Úvod Slovensko krajina s nadpriemernými geotermálnymi podmienkami Vysoký stupeň poznania a preskúmanosti
Ročník 7. ročník Predmet Biológia Školský rok 2014/2015 Tvorca materiálu Mgr. Milada Rajterová
Financované Prijímateľ: Názov projektu: Kód projektu: Aktivita, resp. názov seminára z Finančného mechanizmu EHP a ŠR SR Základná škola s materskou školou kráľa Svätopluka Šintava Revitalizuj a zachráň
NALADÍ SA MODRÁ PLANÉTA NA ZELENÚ VLNU?
Gymnázium Vranov nad Topľou RNDr. Mária Onderková RNDr. Silvia Konečná NALADÍ SA MODRÁ PLANÉTA NA ZELENÚ VLNU? Práve nevyhnutnosť hľadania alternatívnych zdrojov energie nás, študentov druhého ročníka
NOVÉ GEOTERMÁLNE PROJEKTY NA SLOVENSKU Nitriansky kraj a okolie
NOVÉ GEOTERMÁLNE PROJEKTY NA SLOVENSKU Nitriansky kraj a okolie Ing. OTO HALÁS Győr 27.01.2010 Úvod Slovensko krajina s nadpriemernými geotermálnymi podmienkami Vysoký stupeň poznania a preskúmanosti geotermálnych
Vplyv spôsobu regulácie spaľovac. ovacích ch kotlov na. Jozef Jandačka, Marian Mikulík. Žilinská univerzita v Žilině
Vplyv spôsobu regulácie spaľovac ovacích ch kotlov na výkonové a emisné parametre Jozef Jandačka, Marian Mikulík Žilinská univerzita v Žilině Technologické trendy při vytápění pevnými palivy 21 Skalní
CENY DO VRECKA - DOMÁCNOSTI. keď sa nás spýtajú na ceny pre rok 2019
CENY DO VRECKA - DOMÁCNOSTI keď sa nás spýtajú na ceny pre rok 2019 3 HLAVNÉ ZLOŽKY KONCOVEJ CENY ELEKTRINY DPH (49%) TPS (45%) NJF (6%) 45% Dane a poplatky Koncové ceny elektriny pre domácnosti vzrastú
Metodické pokyny k pracovnímu listu č. 10 OBNOVITELNÉ ZDROJE ENERGIE VYUŽÍVANÉ ČLOVĚKEM 9. ročník
Metodické pokyny k pracovnímu listu č. 10 OBNOVITELNÉ ZDROJE ENERGIE VYUŽÍVANÉ ČLOVĚKEM 9. ročník DOPORUČENÝ ČAS NA VYPRACOVÁNÍ: 25 minut INFORMACE K TÉMATU: OBNOVITELNÉ ZDROJE ENERGIE Spalováním fosilních
SSOS_ZE_3.05 Přírodní zdroje
Číslo a název projektu Číslo a název šablony DUM číslo a název CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT SSOS_ZE_3.05
Kontinuálny proces modernizácie Žilinskej teplárenskej, a.s. Priemyselné emisie októbra 2017
Kontinuálny proces modernizácie Žilinskej teplárenskej, a.s. Priemyselné emisie 2017 10. októbra 2017 Žilinská teplárenská, a.s. Profil firmy: Žilinská teplárenská, akciová spoločnosť Žilina bola založená
Typ: A, AR Výkony/Rozmery
Typ: A 315/E 1 [23V 1N~ 5 Hz] Prevádzkový kondenzátor: 1 µ 7 6 5 3 1 8 V 23 V 15 V 125 V V 125 15 17 23 prietok 1 3 5 6 7 121 759,7 378,65,66,67 15 1383 1185 864,79,8,79,77 1935 1826 171 1547 1327,88,89,89,89,89
Integrácia obnoviteľných zdrojov do energetiky podniku
Integrácia obnoviteľných zdrojov do energetiky podniku 1. Vyjadrenia Eurokomisára M. Šefčoviča k vytvoreniu Európskej energetickej únie a OZE, 2. Ako postupovať pri integrácii OZE do energetiky podnikov.
Marian Mikulík. Možnosti lokálneho vykurovania a výroby elektrickej energie z biomasy
ZPŮSOBY ZUŠLECH LECHŤOVÁNÍ BIOMASY Marian Mikulík Žilinská univerzita v Žilině Seminář Možnosti lokálneho vykurovania a výroby elektrickej energie z biomasy Žilina, 22. máj 2007 Biomasa představuje p významný
Laboratórium využitia a propagácie solárnej energie
1 Pracovisko: Katedra environmentálneho inžinierstva Miestnosť: Ťažké laboratóriá č. m. 505 Zodpovedná osoba: prof. Ing. Maroš Soldán, PhD. Charakteristika: Laboratórium je špecializované na tradičné a
Provokačná myšlienka: Vieme ovplyvniť využitie zdrojov v našom živote?
Aktivita: OD ZDROJA K TEPLU Autor: Mgr. Hana Chlebanová, Gymnázium, Varšavská cesta 1, Žilina Cesta na kurikulum: Biológia PREDMET ROČNÍK TEMATICKÝ CELOK 4. ročník SŠ Usadené horniny Organické usadené
Príprava, výstavba a prevádzka energetického zdroja na báze plynových KGJ
Príprava, výstavba a prevádzka energetického zdroja na báze plynových KGJ Autor : Ing. Peter Ferjanček Konferencia Energetický audit v praxi Hotel Slovan, Tatranská Lomnica, november 2011 História História
Obnovitelné zdroje energie
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 2 1 je hmota organického původu (rostlinného
Možnosti zosúladenia progresívnych systémov nízkoteplotného vykurovania a netradičných zdrojov energií prípadová štúdia Košice
Možnosti zosúladenia progresívnych systémov nízkoteplotného vykurovania a netradičných zdrojov energií prípadová štúdia Košice doc. Ing. Zuzana VRANAYOVÁ, PhD. Ing. František VRANAY, PhD. Ing. Anna Sedláková,
Sada s veternou turbínou
Sada s veternou turbínou 1 Používateľský manuál/ Návod na obsluhu Čo je v balení? A Náboj turbíny B Lopatky turbíny/ vrtuľa C Generátor D Prevody (60T, 40T (x2), 20T) E Chvostová plocha F Otáčacie ložisko
Perspektívy rozvoja OZE v SR do roku Ing. Jozef Múdry MHV SR
Perspektívy rozvoja OZE v SR do roku 2020 Ing. Jozef Múdry MHV SR OZE a energetická bezpečnosť plynová kríza v roku 2009 ukázala vysokú závislosť predovšetkým tepelného sektora SR na dodávkach zemného
Energetický potenciál disponibilnej biomasy lesa
Energetický potenciál disponibilnej biomasy lesa Ing. Lieskovský Martin Katedra lesnej ťažby a mechanizácie TU vo Zvolene Obsah prednášky Biomasa pre energetické účely Spôsoby energetického využitia biomasy
Úvod do problematiky. Možnosti energetického využití biomasy
Úvod do problematiky Možnosti energetického využití biomasy Cíle Uvést studenta do problematiky energetického využití biomasy Klíčová slova Biomasa, energie, obnovitelný zdroj 1. Úvod Biomasa představuje
Dosiahnutie rekordnej výroby kusov hotových výrobkov. 2016
SK O nás História Alfa-Plam vlastní najmodernejšiu technológiu, výrobné haly a sklady ktoré umožňujú ročnú výrobu viac než 10.000 kusov výrobkov. Moderné stroje od európskych a svetových výrobcov sú základom
2 z á z kla l dn d é n é pr p in i c n í c p í y p y p r p em e e m n e y n y s l s n l e n č e n č e n j e j en e e n r e gie i
Fotovoltaická elektráreň 54 kw Tepláreň Košice, a. s. Teplárenská 3 042 92 Košice 2 základné princípy premeny slnečnej energie na elektrickú 1. Solárne fotovoltaické systémy - pracujú na princípe priamej
European Union European Regional Development Fund. Regionálny seminár WASTE TO ENERGY. 3. máj 2012, Bratislava. Roman Achimský, OLO a.s.
European Regional Development Fund WASTE TO ENERGY Roman Achimský, OLO a.s. Bratislava Regionálny seminár 3. máj 2012, Bratislava Pôvodná spaľovňa odpadu bola uvedená do prevádzky v roku 1977 v bez súčasnej
2. Spaľovanie tuhých palív, kvapalných palív a plynných palív okrem spaľovania v plynových turbínach a stacionárnych piestových spaľovacích motoroch
IV. VÄČŠIE STREDNÉ SPAĽOVACIE ZARIADENIA 1. Členenie väčších stredných spaľovacích zariadení vo vzťahu k uplatňovaniu emisných limitov Podľa dátumu vydaného povolenia sa väčšie stredné spaľovacie zariadenia
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
Energetika se zabývá získáváním, přeměnou a distribucí všech forem energie. Energii nevytváříme, pouze transformujeme z jedné formy na druhou.
VŠB TU Ostrava Energetika se zabývá získáváním, přeměnou a distribucí všech forem energie. Energii nevytváříme, pouze transformujeme z jedné formy na druhou. VŠB TU Ostrava 2 VŠB TU Ostrava 3 Dle zdroje:
Alternativní zdroje energie
Autor: Ivo Vymětal Pracovní list 1 Přeměny energie 1. Podle vzoru doplň zdroje a druhy energie, které se uplatní v popsaných dějích. Využij seznamu: Žárovka napájená z tepelné elektrárny. Slunce Rostliny
Vitajte v AquaCity Poprad
Vitajte v AquaCity Poprad Súčasné environmentálne rezorty ponúkajú luxus, hodnotu a chránia Zem AquaCity ukazujeme cestu Jan Telensky Vizionár a väčšinový majiteľ AquaCity Poprad bolo otvorené v júli 2004
Tepelné čerpadlo pre bytové domy MACH ZR-E (Ohrev TÚV mimo vykurovacej sezóny)
Tepelné čerpadlo pre bytové domy MACH ZR-E (Ohrev TÚV mimo vykurovacej sezóny) Základné informácie: Prevádzka min. 5 mesiacov v roku Elektrická sazba pre vykurovanie Elektrická sazba v nízkom tarife Zdrojom
Obnoviteľné zdroje energie
Bioenergetika Obnoviteľné zdroje energie Krajiny patriace do EÚ majú spoločný zámer zvyšovať podiel obnoviteľných zdrojov energie (OZE) na celkovej energetickej spotrebe. EU si vytýčila cieľ, aby sa do
Tradičné a obnoviteľné zdroje energie
Tradičné a obnoviteľné zdroje energie Jednotlivé zdroje energie na Zemi možno rozdeliť do dvoch základných skupín: a) tradičné zdroje energie, b) obnoviteľné zdroje energie. Tradičné zdroje energie predstavujú
Návod na obsluhu a inštaláciu. Akumulačné nádrže. NADO 300/20v6 NADO 500/25v6 NADO 750/35v6 NADO 1000/45v6
Návod na obsluhu a inštaláciu Akumulačné nádrže 300/20v6 500/25v6 750/35v6 1000/45v6 Družstevní závody Dražice strojírna s.r.o. Dražice 69 29471 Benátky nad Jizerou Tel.: 326 370911,370965, fax: 326 370980
výtlačná trubka tesnenie hriadeľa zostava hriadeľa s ochrannou trubkou hlava čerpadla
Všeobecne Odstredivé čerpadlá typovej rady VTP v blokovom prevedení (BBF) odpovedajú dvojrúrovému systému čerpadiel. U tejto typovej rady sa jedná v podstate o jednostupňové odstredivé čerpadlo s vertikálnym
Bioenergy4Business podpora využívania pevnej biomasy na výrobu tepla
Bioenergy4Business podpora využívania pevnej biomasy na výrobu tepla Michal Németh Apríl, 2016, CONECO Bratislava Bioenergy4Business Hlavné zameranie projektu Hlavným cieľom projektu je zvýšenie využív
Přírodní zdroje a energie
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Přírodní zdroje a energie Energie - je fyzikální veličina, která bývá charakterizována jako schopnost hmoty
Přehled technologii pro energetické využití biomasy
Přehled technologii pro energetické využití biomasy Tadeáš Ochodek Seminář BIOMASA JAKO ZDROJ ENERGIE 6. - 7.6. 2006, Hotel Montér, Ostravice Z principiálního hlediska lze rozlišit několik způsobů získávání
ZDROJE A PŘEMĚNY. JAN PREHRADNÝ, EVŽEN LOSA Katedra jaderných reaktorů FJFI ČVUT v Praze
ZDROJE A PŘEMĚNY ENERGIE JAN PREHRADNÝ, EVŽEN LOSA Katedra jaderných reaktorů FJFI ČVUT v Praze Formy energie Energie rozdělení podle působící síly omechanická energie Kinetická (Pohybová) Potenciální
Ústav zemědělské, potravinářské a environmentální techniky. Ing. Zdeněk Konrád Energie vody. druhy, zařízení, využití
Ústav zemědělské, potravinářské a environmentální techniky Ing. Zdeněk Konrád 17.4.2008 Energie vody druhy, zařízení, využití Kapitola 1 strana 2 Voda jako zdroj mechanické energie atmosférické srážky
PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/ PŘEDMĚT VYUŽITÍ ELEKTRICKÉ ENERGIE
PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/02.0010 PŘEDMĚT VYUŽITÍ ELEKTRICKÉ ENERGIE Obor: Ročník: Zpracoval: Elektrikář - silnoproud Třetí Bc. Miroslav Navrátil PROJEKT ŘEMESLO
Solárna fotovoltaická sada
Solárna fotovoltaická sada 1 Používateľský manuál/ Návod na obsluhu Obsah 1 Obsah 2 Čo je v boxe 3 Napájanie fotovoltaických článkov 4 Pripájanie modulov k fotovoltaickým článkom 5 Meranie výstupov digitálnym
Ing. Juraj Novák MH SR
Ing. Juraj Novák MH SR Smernica 2009/28/ES o podpore využívania energie zobnoviteľných zdrojov energie 14 % OZE na hrubej konečnej energetickej spotrebe 10 % OZE v doprave Národný akčný plán pre energiu
-autoservis, to zanemená, že máme skúsenosti s motormi s konštrukciou a opravami osobných a nákladných vozidiel
since 1991 Firma Tibor Holčík Autoklinika člen skupiny ALL4CAR. Bola založená v roku 1999 a patrí do servisnej siete Bosch Car Service. V teste kvality vykonávanom každé tri roky spomedzi 120 Bosch Car
Potenciál l kombinovanej výroby elektriny a tepla v Slovenskej republike. Dr. Ing. Jozef Šoltés, CSc.
Potenciál l kombinovanej výroby elektriny a tepla v Slovenskej republike Dr. Ing. Jozef Šoltés, CSc. 1 Obsah 1 Smernica Európskeho parlamentu a Rady 2004/8/ES 2 Príprava zákona o podpore kombinovanej výroby
Termodynamické panely na ohrev vody
Termodynamické panely na ohrev vody najefektívnejší a najstabilnejší alternatívny zdroj na trhu Termodynamické panely sú na našom trhu novou, ale vo svete už osvedčenou a stále viac využívanou technológiou.
VYSOKOÚČINNÁ KOMBINOVANÁ VÝROBA ELEKTRINY A TEPLA
VYSOKOÚČINNÁ KOMBINOVANÁ VÝROBA ELEKTRINY A TEPLA DEFINÍCIA VYSOKO ÚČINNÁ VÝROBA ELEKTRINY A TEPLA TECHNOLÓGIA A POTENCIÁL PRE VYSOKOÚČINNÚ KOMBINOVANÚ VÝROBU ELEKTRINY A TEPLA OBNOVITEĽNÉ ZDROJE ENERGIE
Bioplynová stanica Poľnohospodárskeho družstva Ludrová
Bioplynová stanica Poľnohospodárskeho družstva Ludrová Meno prednášajúceho: Ing. Miroslav Štefček Pozícia: predseda PD Ludrová predseda@pdludrova.sk www.pdludrova.sk Ciele pre vybudovanie Bioplynovej stanice
Energetické zdroje budoucnosti
Energetické zdroje budoucnosti Energie a společnost Jakýkoliv živý organismus potřebuje dodávku energie (potrava) Lidská společnost dále potřebuje značné množství energie k zabezpečení svých aktivit Doprava
Pozitívny vplyv OZE na energetickú efektívnosť budov. Ing. Vladimír Leitner, Ing. Igor Iliaš ENAS Energoaudit a služby, s.r.o.
Pozitívny vplyv OZE na energetickú efektívnosť budov Ing. Vladimír Leitner, Ing. Igor Iliaš ENAS Energoaudit a služby, s.r.o. Banská Bystrica ENERGETICKÁ HOSPODÁRNOSŤ BUDOV Skúsenosti z energetickej certifikácie
EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663
EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:
Možnosti financovania využitia OZE
short term has no future Možnosti financovania využitia OZE ENEF 2008 - Energetická efektívnosť a zelená energia Ladislav Tolmáči 23. október 2008 Dexia banka Slovensko 1993 2000 2001 2003 2006 Člen Dexia
Spôsoby navrhovania solárnych systémov pre bytové domy. Ing. Alfréd Gottas
Spôsoby navrhovania solárnych systémov pre bytové domy Ing. Alfréd Gottas gottas@thermosolar.sk Skúsenosti z praxe a cieľ prezentácie Skúsenosti z praxe: Nerealistické očakávaniami investorov alebo projektantov,
pevné, přivádí-li vodu do oběžného kola na celém obvodě, nazývá se rozváděcí kolo,
1 VODNÍ TURBÍNY Zařízení měnící energii vody v energii pohybovou a následně v mechanickou práci. Hlavními částmi turbín jsou : rozváděcí ústrojí oběžné kolo. pevné, přivádí-li vodu do oběžného kola na
PRÍLOHY. k návrhu SMERNICE EURÓPSKEHO PARLAMENTU A RADY
EURÓPSKA KOMISIA V Bruseli 18.12.2013 COM(2013) 919 final ANNEXES 1 to 4 PRÍLOHY k návrhu SMERNICE EURÓPSKEHO PARLAMENTU A RADY o obmedzení emisií určitých znečisťujúcich látok do ovzdušia zo stredne veľkých
WQS. WQS Ponorné kalové èerpadlo
WQS WQS Ponorné kalové èerpadlo ÚÈEL ový rad ponorných kalových èerpadiel WQS sa pouíva hlavne na èerpanie odpadových vôd a kalov v mestských zariadeniach, priemyselných závodoch, hoteloch, nemocniciach,
MTU Onsite Energy PLYNOVÉ ENERGETICKÉ SYSTÉMY. Úsporná a udržateľná výroba energie, tepla, chladu pomocou bioplynu. Lubos Chynoransky Cüneyt Kaymak
MTU Onsite Energy PLYNOVÉ ENERGETICKÉ SYSTÉMY Úsporná a udržateľná výroba energie, tepla, chladu pomocou bioplynu Lubos Chynoransky Cüneyt Kaymak vedúci oddelenia predaja Bratislava, November 2016 MTU
PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ ENERGIE
PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ ENERGIE 2010 Ing. Andrea Sikorová, Ph.D. 1 Problémy životního prostředí - energie V této kapitole se dozvíte: Čím se zabývá energetika. Jaké jsou trvalé a vyčerpatelné zdroje
Aktivizujúce úlohy k téme sacharidy
Aktivizujúce úlohy k téme sacharidy Poznámky pre učiteľa Téma: Sacharidy Ciele: - charakterizovať vlastnosti, štruktúru, zloženie, využitie a výskyt sacharidov - popísať základné vlastnosti D-glukózy a
Tipy na šetrenie elektrickej energie Použitie časového spínača Časť I Kuchynský bojler
Tipy na šetrenie elektrickej energie Použitie časového spínača Časť I Kuchynský bojler V oboch nami monitorovaných objektoch sa kuchyne zásobujú teplou vodou z 10-litrového zásobníka s elektrickým ohrevom,
Vývoj v oblasti využití biomasy v Jihomoravském kraji
Vývoj v oblasti využití biomasy v Jihomoravském kraji Odbor životního prostředí KrÚ JMK Ing. Aleš Pantůček 1. Analýza území Jihomoravský kraj je svoji rozlohou čtvrtý největší kraj v ČR, z hlediska počtu
Jednoduché stroje Prevody na prenos síl a pohybu
Stroje a mechanizmy Jednoduché stroje Prevody na prenos síl a pohybu História jednoduchých strojov dôvodom na ich vznik bola snaha ľudí uľahčiť si svoju namáhavú prácu postupne pomocou nástrojov a rôznych
DÁLKOVÉ VYTÁPĚNÍ =DISTRICT HEATING, = SZT SYSTÉM ZÁSOBOVÁNÍ TEPLEM = CZT CENTRALIZOVANÉ ZÁSOBOVÁNÍ TEPLEM
DÁLKOVÉ VYTÁPĚNÍ =DISTRICT HEATING, = SZT SYSTÉM ZÁSOBOVÁNÍ TEPLEM = CZT CENTRALIZOVANÉ ZÁSOBOVÁNÍ TEPLEM 184 Zdroj tepla Distribuční soustava Předávací stanice Otopná soustava Dálkové vytápění Zdroj tepla