Seminární práce. Zuzana Michalová, DiS. Studijní obor: Radiologický asistent

Rozměr: px
Začít zobrazení ze stránky:

Download "Seminární práce. Zuzana Michalová, DiS. Studijní obor: Radiologický asistent"

Transkript

1 Univerzita Karlova v Praze 2. lékařská fakulta Klinika Nukleární Medicíny Seminární práce Přehled typů scintilačních kamer používaných na pracovištích nukleární medicíny Zuzana Michalová, DiS. Studijní obor: Radiologický asistent

2 OBSAH: 1. Úvod 3 2. Princip scintilační kamery Kolimátor Dělení kolimátorů dle energie záření Dělení kolimátorů dle rozlišení a citlivosti Dělení kolimátorů dle geometrického uspořádání otvorů Scintilační krystal Fotonásobič Zesilovač Analyzátor impulsů Způsoby záznamu obrazových dat Plynulý záznam Maticový záznam Intervalový záznam Typy zobrazovacích metod Statická scintigrafie Dynamická scintigrafie Emisní počítačová tomografie (ECT) SPECT PET Hybridní kamery SPECT & CT PET & CT Příklady prováděných vyšetření Použitá literatura

3 1. Úvod Nukleární medicína se dělí na dvě hlavní složky diagnostickou a terapeutickou. Diagnostická se dále dělí na in vivo (radiofarmaka se zářiči gama se aplikují do organismu) a in vitro (stanovení koncentrace různých látek v séru). Důležitým rysem nukleární medicíny jako diagnostické metody je zejména její neinvazivní charakter, který umožňuje použití jejích metod rovněž v pediatrii a zejména při sledování zdravotního stavu pacientů a efektu terapie mnoha onemocnění. Na rozdíl od radiodiagnostiky není zdrojem záření přístroj, ale samotný pacient nebo jeho vyšetřovaný orgán. Laborant tedy může pořídit libovolný počet snímků, aniž by se změnila radiační zátěž pacienta. Aby se pacient stal zdrojem záření, musí mu být aplikováno tzv. radiofarmakum. To tvoří chemické molekuly, které určují jeho chování v těle pacienta a radionuklid, který musí emitovat fotony ve velkém množství o energiích, které mohou být detekovány scintilační kamerou

4 2. Princip scintilační kamery Scintilační kamera je přístroj, který snímá fotony záření gama současně z celého zorného pole, převádí je na elektrické impulsy a pomocí nich pak na displeji vytváří scitigrafický obraz distribuce radiofarmaka v tomto zorném poli. Prakticky jediným druhem scintilačních kamer používaných nukleární medicíně jsou kamery Angerova typu (kromě PET kamery). Kamera se skládá ze tří základních částí: stínícího materiálu, vlastního detektoru a elektronické vyhodnocovací aparatury. Princip: ve vyšetřovaném orgánu máme tři lokalizovaná ložiska A, B a C se zvýšenou koncentrací radiofarmaka. Protože se záření z místa svého vzniku šíří všemi směry je stínění a tedy jeho kolimace důležitou součástí celé sestavy. Kolimátor tak vytvoří rovinnou projekci distribuce radiofarmaka do modře označené roviny na obr. Zde je umístěn tenký velkoplošný scintilační krystal. Každý foton záření gama, který projde kolimátorem vyvolá v krystalu scintilační záblesk velkého počtu fotonů (viditelného) světla. Scintilace v krystalu jsou snímány soustavou fotonásobičů převáděny na elektrické impulsy (fotonásobiče jsou opticky přilepeny na krystal na obr. jsou pro jednoduchost nakresleny jen dva F1 a F2). Nedojde-li k pohlcení fotonu ve stěně kolimátoru, vyvolá v místě A, B a C v krystalu scintilaci. Na fotonásobič F1, který je blízko místa A scintilace, dopadne z tohoto záblesku poměrně velký počet fotonů, takže impuls na jeho výstupu bude mít vysokou amplitudu, zatímco vzdálený fotonásobič F2 obdrží jen nepatrnou porci z těchto fotonů a jeho impuls bude velmi nízký. Pro foton z místa B nastane scintilace zhruba uprostřed mezi fotonásobiči F1 a F2, takže i amplituda jejich impulsů bude přibližně stejná. Situace pro foton z místa C (co se týče fotonásobičů F1a F2) je přesně opačná jako u fotonu z místa A. Porovnáním amplitud impulsů z jednotlivých fotonásobičů lze vypočítat polohu záblesku v krystalu, a tím i místo v těle pacienta, odkud byl foton gama vyzářen. Impulsy z jednotlivých fotonásobičů jsou vedeny na elektrický obvod komparátor, kde se provádí porovnávání amplitud impulsů a vytvářejí se výsledné souřadnicové impulsy X a Y ty již nesou přímou informaci o poloze scintilace v krystalu a tím i o poloze místa ve vyšetřovaném orgánu. Tyto impulsy X a Y se po zesílení vedou na vychylovací destičky osciloskopické obrazovky, kde určují polohu záblesku na stínítku takto vzniká analogový scintigrafický obraz (dnes už překonaný). Kromě toho se impulsy ze všech - 4 -

5 fotonásobičů vedou ještě na sumační obvod. Odtud se impulsy vedou na amplitudový analyzátor, jehož okénko se nastavuje tak, aby propustilo pouze impulsy odpovídající fotopíku totální absorpci záření gama v krystalu. Tyto impulsy se označují jak Z a jsou uniformní trigrovací impulsy tzn. teď byl zaznamenán správný foton a souřadnicové impulsy X a Y jsou platné, pak jsou odvedeny na mřížku osciloskopické obrazovky. U moderních přístrojů je osciloskopická obrazovka nahrazena speciálním obvodem analogově digitálním převodníkem ADC (Analog-to-Digital Converter). Vlastní proces konverze je spuštěn trigrovacím impulsem Z, který oznamuje, že byl detekován validní foton záření gama. Amplitudy souřadnicových impulsů X a Y potom ADC-konvertor převede na digitální (číselnou) informaci bitovou kombinaci a pošle je na odpovídající adresu buňky v počítači. V paměti počítače je vyčleněna určitá sekvence buněk pro zápis těchto digitalizovaných impulsů; tyto buňky jsou softwarově uspořádány do tzv. obrazové matice (64x64, 128x128, 256x256, 512x512 buněk). Každá buňka v obrazové matici topograficky odpovídá určitému místu v zobrazovaném vyšetřovaném orgánu. Před začátkem akvizice jsou obsahy všech buněk vynulované. Přijde-li z ADC-konvertoru digitalizovaný impuls na některou buňku, její obsah se zvýší o 1. Fotony záření gama, které jsou převedené na elektrické impulsy a digitalizované, postupně osazují buňky v obrazové matici paměti počítače, podle místa vyzáření, stále rostoucími hodnotami jejich obsahu. Obrazová - 5 -

6 matice z paměti počítače je pak elektronicky zobrazována (mapována) na obrazovku monitoru počítače. Díky tomu, že vývoj postupuje rychle kupředu, má každý fotonásobič svůj výstup na ADC-konvertor a výpočet souřadnic scintilací v krystalu neprobíhá v analogovém komparátoru, ale v digitálním mikroprocesoru, který již přímo osazuje příslušné adresy v obrazové matici počítače příslušnou numerickou informací Kolimátor Vzhledem k tomu, že se v místě měření vždy vyskytuje jak přírodní záření tak i záření z okolních zdrojů (neopomenutelnou složkou je tzv. radiační pozadí: radioaktivita materiálů detektoru, stěn budovy, půdy, hornin, vzduchu a kosmické záření) je úkolem kolimátoru vytvoření co nejdokonalejší rovinné projekce distribuce radioaktivity ve vyšetřovaném objektu. Aby bylo měření co nejpřesnější musíme odstínit všechny nežádoucí složky pozadí, při měření in vivo jsou tedy všechny citlivé součásti přístroje odstíněny olovem, navíc je třeba vymezit směr, ze kterého měřené záření přichází a potlačit jeho nežádoucí složky z jiných směrů. Proto tomuto záření postavíme do cesty olověnou desku, provrtanou velkým množstvím drobných rovnoběžných otvorů. Tímto kolimátorem mohou projít pouze ty fotony gama, které se pohybují přesně ve směru osy otvorů. Ostatní fotony, které jdou šikmo se pohltí na olověných přepážkách mezi otvory. Vzhledem k množství užívaných radiofarmak je pro každou energii zvláštní typ kolimátoru. Výměnou kolimátoru můžeme použít jednu gamakameru k několika typům vyšetření. Nejužívanějším typem jsou kolimátory s paralelními otvory

7 Dělení kolimátorů dle energie záření Kolimátory pro vysoké energie (HE - High Energy), mají robustní konstrukci s dostatečně tlustými přepážkami mezi otvory, aby byla zabezpečena dostatečná absorpce záření gama přicházejícího z šikmých směrů aby nedocházelo k prozařování přepážkami. (dnes se již neužívá detekci záření gama o energii 511 kev převzala speciální PET kamera) Kolimátory pro střední energie (ME - Medium Energy), nejčastěji používané pro 364 kev 131 I, jejich konstrukce je také poměrně robustní s tloušťkou přepážek mezi otvory asi 2-3 mm. Kolimátory pro nízké energie (LE - Low Energy), nejčastěji používané pro 140 kev 99m Tc, jsou poměrně subtilní konstrukce s velkým počtem drobných otvorů. Přepážky jsou tenké asi 0,2 0,5 mm

8 Dělení kolimátorů dle rozlišení a citlivosti Toto rozdělení se týká jen kolimátorů pro nízké energie (u robustních kolimátorů HE a ME nemůžeme vzhledem k tlustým přepážkám mezi otvory dosáhnout ani dobrého rozlišení, ani vysoké citlivosti) Kolimátory s vysokou účinností citlivostí (HS - High Sensitivity) mají krátké a větší otvory, z čehož vyplývá, že přepážky jsou tenčí. To vše, aby kolimátorem procházelo co nejvíce záření gama z většího prostorového úhlu pro každý otvor. Zvýšené množství záření však zhoršuje rozlišovací schopnost zobrazení, která se navíc poměrně rychle zhoršuje se vzdáleností od čela kolimátoru. Z tohoto důvodu je HS kolimátory používají jen velmi zřídka. Kolimátory s vysokým rozlišením (HR - High Resolution) mají delší a drobnější otvory (asi 1-2 mm) s tenkými přepážkami (asi 0,2 0,4 mm), takže každý otvor snímá záření z poměrně malého prostorového úhlu. Vyšší rozlišení však vede k poněkud nižší detekční účinnosti. Kolimátory s ultra vysokým rozlišením (UHR Ultra High Resolution) mají dlouhé a velmi drobné otvory (asi 1 mm) a dostatečně tenké přepážky (asi 0,1 0,2 mm), to zaručuje velmi vysokou rozlišovací schopnost, která se navíc jen pomaleji zhoršuje se vzdáleností od čela kolimátoru. Tohoto výsledku se však dosahuje za cenu výrazně snížené citlivosti (detekční účinnosti), což značně omezuje použitelnost tohoto kolimátoru. Univerzální kolimátory s vhodným kompromisem mezi rozlišením a citlivostí (LEAP Low Energy All Purpose). Řada pracovišť však akceptuje spíše vyšší rozlišovací schopnost při poněkud zvýšené době akvizice či poněkud vyšší použité radioaktivitě

9 Dělení kolimátorů dle geometrického uspořádání otvorů Kolimátory konvergentní a divergentní se sbíhajícími nebo rozbíhajícími se otvory směřujícími do určitého bodu (ohniska), umožňují zvětšení nebo zmenšení obrazu promítnutého na scintilační krystal kamery. Tyto kolimátory se užívaly v minulosti, kdy se např. plíce nevešly do zorného pole kamery (divergentní kolimátor), nebo při zobrazování srdce, aby se využilo celé zorné pole kamery (konvergentní kolimátor). Kolimátor Pinole (jednoděrový kolimátor) je nejjednodušším druhem kolátoru na principu dírkové komory, využívající přímočaré šíření fotonů. Jeho detekční účinnost je velmi malá. Jeho pozoruhodnou vlastností je velikost obrazu (měřítko zobrazení) velmi silně závisí na vzdálenosti zobrazovaného objektu od otvoru kolimátoru. Je-li vzdálenost zobrazovaného orgánu od otvoru menší než vzdálenost otvoru od krystal kamery, poskytuje Pinole zvětšené zobrazení, čehož se s výhodou využívá při zobrazení štítné žlázy. Kolimátor Fan Beam je konvergentní jen v jednom směru, zatímco v druhém směru jsou otvory paralelní ohnisko je přímka. Tyto kolimátory se mohou využít u scintigrafie SPECT při zobrazení mozku a myokardu. Mají realitně vysokou citlivost a zároveň dobré rozlišení i ve větších vzdálenostech od čela (právě při vyšetření myokardu a mozku nemůžeme vzhledem ke geometrickým proporcím při rotaci přiblížit detektor kamery dostatečně blízko)

10 2.2. Scintilační krystal Scintilační detektory ionizujícího záření jsou založeny na vlastnosti některých látek reagovat světelnými záblesky (scintilacemi) na pohlcení kvant ionizujícího záření. Světelné fotony jsou pak přeměněny na tok elektronů v zařízení zvaném fotonásobič, na jehož výstupu registrujeme elektrický impuls. Nejstarším používaným scintilátorem je sirník zinečnatý aktivovaný stříbrem ZnS(Ag). Pro účely detekce záření gama se však nejčastěji používá jodid sodný aktivovaný thaliem NaI(Tl), ve formě monokrystalu o průměru až 50 cm a tloušťce 6-12 mm. Scintilátor emituje modrozelené světlo vlnové délky 415 nm. Nejúčinněji jsou zaznamenávány fotony záření gama s energií do 100 kev, ale ještě při energii 150 kev je v krystalu o tloušťce 10nm absorbováno kolem 90 % fotonů dopadajících na krystal. Krystla NaI(Tl) je použitelný pro energie zhruba do 500 kev, s rostoucí energií fotonů však rychle klesá detekční účinnost. NaI(Tl) krystaly jsou silně hygroskopické, musí tedy být hermeticky uzavřeny v hliníkovém obalu. Také jsou velmi křehké a musí se proto s nimi zacházet opatrně. Teplota v místnosti se nesmí rychle měnit, aby nedošlo k rozlomení krystalu a tím ke zničení přístroje Fotonásobič Vzhledem k vysokému indexu lomu krystalu je nutné zajistit dobrý optický kontakt mezi krystalem a fotonásobičem. K tomu slouží světlovod z průhledného plastického materiálu se stejným indexem lomu jako má krystal. Fotonásobič je velmi citlivý elektronický prvek sloužící k detekci velmi nízkých světelných toků - záblesků scintilátorů. Uvnitř světlotěsně uzavřeného pracovního prostoru fotonásobiče je fotokatoda, ze které při dopadu světelného kvanta vyletí elektron. Ten je soustavou elektrod (dynod) urychlován k dalším elektrodám (dynodám) a na každé z nich uvolní další sekundární elektrony. Vzniká stále silnější proud elektronů, který vyvolá v měřicích obvodech fotonásobiče elektrický impuls. Ten je dále veden do předzesilovače. Amplituda tohoto impulsu je úměrná počtu světelných fotonů dopadajících na fotokatodu a počet světelných fotonů je zase úměrný energii fotonů gama interagujících s hmotou scintilačního krystalu

11 Počet fotonásobičů je až 90 i více. Čím větší je počet fotonásobičů, tím lepší je prostorové rozlišení gamakamery jako celku. Obvykle jsou hexagonálního tvaru o průměru 3 cm. Výstup z fotonásobičů slouží ke generování X,Y souřadnic místa interakce gama fotonu s hmotou scintilačního krystalu prostřednictvím pozičního obvodu. Impulsy jsou dále tvarovány v předzesilovači a zesíleny v zesilovači, tříděny v analyzátoru impulsů a nakonec registrovány v čítači Zesilovač Zesilovač zvětšuje signál přicházející z předzesilovače a propouští ho dále do analyzátorů impulsů ke třídění v závislosti na jeho amplitudě Analyzátor impulsů Je to zařízení, které vybírá pouze impulsy předem zvolené velikosti a propouští je dále do registrační aparatury (čítač, počítač). Jde tedy o přístroj umožňující přesné měření porovnání amplitud impulsů, které pak vytvářejí výsledné souřadnicové impulsy X a Y (ty již nesou přímou informaci o poloze scintilace v krystalu a tím i o poloze místa v organismu z něhož byl příslušný foton gama vyzářen)

12 3. Způsoby záznamu obrazových dat Obrazová data ze scintilační kamery lze zaznamenat v analogové nebo digitální formě. Analogové obrazy jsou podobně jako rentgenové snímky zobrazovány na film pomocí speciálních multiformátových kamer (film zčerná v každém místě, ve kterém došlo k absorpci fotonu a intenzita zčernání je úměrná množství absorbovaných fotonů). U digitálního obrazu jsou data z detektoru gamakamery nejprve digitalizována v analogově digitálním převodníku a pak se ukládají do paměti počítače ve formě plynulého, maticového nebo intervalového záznamu. analogový obraz překrytý maticí 6x6 digitální obraz 3.1. Plynulý záznam (list mode) Jde o průběžné ukládání jednotlivých impulsů do paměti počítače za sebou tak, jak během vyšetření přicházejí ze scintilační kamery. V nejjednodušším uspořádání se ukládají souřadnice zaznamenávaných impulsů a časové značky elektronických hodin. Po ukončení záznamu je nutno obraz nebo časovou sekvenci obrazů z uložených dat rekonstruovat. Výhodou je možnost sestavení obrazů do libovolně velkých obrazových matic s různým počtem prvků a možnost volby libovolných časových intervalů. Tento způsob se používá při speciálních vyšetřeních a při zavádění nových metod, kdy se teprve hledá optimální načasování snímků a ladí podrobnosti snímacího postupu

13 3.2. Maticový záznam (frame mode) Tento způsob záznamu je nejpoužívanější. Spočívá v přímém ukládání impulsů do obrazových prvků předem zvolené matice (nejčastěji 64x64 a 128x128 polí, ale jsou i 256x256 a 512x512). Snímání obrazu se ukončí po předem zvolené době nebo po nastřádání předem zvoleného počtu impulsů. Výhodou maticového záznamu je rychlé přímé vytváření obrazu, jehož průběh můžeme sledovat na obrazovce; a menší nároky na kapacitu paměti počítače. Nevýhodou je, že rozměr obrazové matice a interval záznamu nelze dodatečně měnit Intervalový záznam (gate mode) (hradlovaný) Umožňuje předejít rozmazání obrazu vlivem periodických pohybů zobrazovaných orgánů (dýchací pohyby, činnost srdce). Principem je synchronizace snímání s pohybem a záznam obrazů v jednotlivých fázích pohybu. Nejčastěji se tento způsob používá při rovnovážné radionuklidové ventrikulografii a vyšetření perfuze myokardu. Doba jednoho tepu je rozdělena na zvolený počet intervalů stejné délky (např. při tepové frekvenci 60/min. a rozdělení tepového intervalu 1s na 20 částí je délka 1 snímacího intervalu 50 ms). V paměti počítače jsou připraveny prázdné obrazy v počtu odpovídajícím počtu intervalů. Do těchto obrazů se opakovaně zaznamenávají impulsy přícházejících z kamery v příslušných intervalech. Záznam je synchronizován s EKG. Během jednoho intervalu se v obrazové matici zaznamená jen velmi malý počet impulsů, který by k vytvoření obrazu nestačil. Po záznamu impulsů z mnoha set cyklů však vzniknou kvalitní snímky jednotlivých fází srdečního cyklu

14 4. Typy zobrazovacích metod Scintigrafické metody dělíme na statické a dynamické podle toho, zda zachycují rozložení radiofarmaka v jednom nebo více časových intervalech, a dále na planární a tomografické podle toho, zda zobrazují jednu projekci nebo obraz řezu, tenké vrstvy, rekonstruovaný z mnoha projekcí. Tomografické metody poskytují převážně statické obrazy, planární zobrazení poskytované běžnými scintilačními kamerami může být statické nebo dynamické Statická scintigrafie Při statických vyšetřeních se po určitou dobu snímá jeden obraz. Je možné sledovat rozložení radiofarmaka ve vyšetřované oblasti. Vyšetření se prování několik minut až hodin po aplikaci. Tato doba je zvolena např. tak, aby se označená látka nahromadila v dostatečném množství ve všech buňkách s normální funkcí. Na snímku potom místa s menším počtem impulsů mohou odpovídat hyperfunkci (interpretace záleží na druhu použitého indikátoru), jindy se indikátor hromadí pouze v patologickém ložisku (např. při pozitivní scintigrafii nádorů) Dynamická scintigrafie Při dynamickém záznamu dat sledujeme různě rychlé časové změny distribuce radiofarmaka v těle (např. krevní průtok). Podle rychlosti funkčních nebo metabolických dějů musíme předvolit počet obrazů (framů) a dobu trvání jednoho obrazu. Protože se rozložení radiofarmaka může měnit velmi rychle a délka trvání záznamu dat jednoho obrazu je omezená, musíme použít kolimátory s vysokou citlivostí, abychom dosáhli dostatečnou informační hustotu. Záznam lze hodnotit vizuálně, kvantitativně nebo výpočtem křivek z oblastí zájmu, ze kterých se odvozují diagnostické parametry vyšetřované funkce

15 4.3. Emisní počítačová tomografie (ECT) Tomografie je zobrazení řezu. Řezem je míněna tenká vrstva, plochý výřez z třírozměrného objektu ve zvolené rovině. Planární scintigrafické obrazy mají z tohoto hlediska závažné úskalí, jde o překrývání struktur uložených v různých hloubkách. Jednou z hlavních předností je podstatně vyšší kontrast zobrazení lézí (až 10-krát), které na transverzálních řezech nejsou překrývány zářením z tkáňového pozadí. Tomografické vyšetření můžeme provádět pomocí dvou typů radionuklidů. Použijeme-li zdroj gama záření, pak hovoříme o jednofotonové emisní tomografii (Single Proton Emission Computed Tomography), použijeme-li zdroj pozitronového záření, hovoříme o pozitronové emisní tomografii (Positron Emission Tomography) SPECT Tomografické gamakamery mají principiálně stejný detektor jako planární kamery, avšak konstrukce gantry umožňuje pohyb detektoru kolem těla pacienta. Minimální úhel rotace je 180 v malých úhlových krocích. Dráha detektoru kolem pacienta může být kruhová, ale i eliptická. Moderní kamery jsou vybaveny zařízením, které automaticky udržuje optimální vzdálenost detektoru od povrchu těla pacienta (body contouring). Tomografické kamery mohou mít jeden, dva nebo tři detektory. Tomografické vyšetření probíhá ve dvou fázích: nejprve se provede záznam projekcí a potom rekonstrukce obrazu (ze série planárních scintigrafických obrazů snímaných pod různými úhly se počítačově rekonstruuje obraz distribuce radioaktivity v myšleném příčném řezu)

16 Během snímání se zaznamenává řada projekcí, které se liší úhlem pohledu na zobrazovanou vrstvu. Postupuje se v krocích po jednom nebo několika málo stupních kolem dokola, přes 180 nebo celých 360. Jednotlivé projekce řádky se postupně ukládají do paměti počítače jako řádky pomocného obrazu, který se označuje jako sinogram, a který představuje kompletní sadu projekcí pro rekonstrukci jedné vrstvy. Rekonstrukční metoda využívající zpětné projekce je ze všech rekonstrukčních postupů nejjednodušší. Rozlišuje se na zpětná projekce jednoduchá a filtrovaná. Při jednoduché zpětné projekci je informace obsažená v jednom pixelu každého obrazu přenesena do všech pixelů v paměti počítače nacházejících se v přímce kolmé k rovině detektoru. Výsledkem je hvězdicovitý obraz léze, který sice správně ukazuje její lokalizaci, ale je bohužel rozmazán. V současnosti je nejpoužívanější algoritmus filtrované zpětné projekce, jež odstraní hvězdicovitý artefakt, čímž se obraz léze více přiblíží skutečnosti PET Pozitronová emisní tomografie je založena na principu koincidenční detekce dvou anihilačních fotonů vzniklých ve tkáni při interakci pozitronu s elektronem. Tyto dva fotony, které vznikají ve stejný okamžik, mají stejnou energii 511 kev a jsou emitovány v prostorovém úhlu 180. V současných systémech je velké množství detektorů (až tisíce) uspořádaných do kruhu. Každý detektor je spojen s protilehlým ve stejném kruhu koincidenčním obvodem, což znamená, že zachytí jen fotony dopadající na oba protilehlé detektory současně, tedy právě jen ten případ, kdy došlo k anihilaci. Počet kruhů je až šestnáct a jsou uspořádány v řadách, což umožňuje současné snímání několika transaxiálních řezů. Zorné pole je vymezené šířkou kruhů detektorů. Data jsou střádána v paměti počítače způsobem frame mode. Rekonstrukce obrazů je prováděna stejným způsobem jako u metody SPECT. Detektor scintilační kamery PET nemá klasický kolimátor neboť kolimace je realizována elektronicky. Vzhledem k poměrně vysoké energii anihilačního záření gama 511 kev se ve scintilačních krystalech místo obvyklého NaI(Tl) používá materiál BGO (germaniová sůl bismutu), který má větší hustotu a vyšší detekční účinnost

17 Obnažená PET kamera. 4.4 Hybridní kamery Hlavním cílem je spojit anatomii s fyziologií, aby bylo možno lépe vyjasnit lokalizaci, charakter a původ patologických ložisek a abnormalit přiřadit ložiska zobrazená na scintigramu anatomickým strukturám v organismu. Velkým problémem je to, že obrazy z různých modalit byly snímány v různou dobu, při různém měřítku zobrazení a s odlišnou geometrickou konfigurací pacienta vzhledem k zobrazovacímu zařízení. Proto je snaha kombinovat některé zobrazovací metody do jednoho přístroje

18 SPECT & CT Pro pracoviště, která nemají vlastní cyklotron, je toto zařízení jedinou možností jak dosáhnout kombinace funkčního vyšetření a standardního CT PET & CT Toto zařízení kombinuje výhody zobrazování metodou PET a CT. Pacient podstoupí nejprve vyšetření PET a poté jednoduše popojede hlouběji k CT scanneru. Obrázky z obou metod je možné sloučit a překrýt, což je další výhodou a předpokladem pro určení správné diagnózy. Hybridní kamera PET + CT Kombinovaný PET/CT axiální snímek v oblasti hrudníku. Na snímku je jasně vidět patologická funkce tumoru v plicích

19 5. Příklady prováděných vyšetření Rovnovážná hrdlovaná ventrikulografie Pacient leží na zádech, detektor je skloněn v úhlu laterolaterálně a kaudálně a připojíme elektrody EKG, které slouží jako zdroj hradlovacího signálu. Srdeční cyklus je rozdělen do obrazů. Doba po kterou se příslušný oddíl plní impulsy, závisí na srdeční frekvenci. Nasnímáme srdečních cyklů; 6 milionů impulsů RAF erytrocyty značené 99m Tc. Prvoprůtoková angiokardiogra fie Pacient leží pod detektorem, ten je skloněn v úhlu pro snímání v pravé přední šikmé projekci. Snímání realizujeme v list modu, vyjímečně ve frame modu po dobu 20 až 30 s, s dobou trvání jednotlivých vytvořených nebo zrekonstruovaných obrazů 50 až 100 ms, případně 250 ms pro detekci zkratů. Počítač startujeme bezprostředně před spláchnutím bolu fyziologickým roztokem. RAF 99m Tc MIBI, DTPA, erytrocyty, pertechnetát. Klidová a zátěžová perfuzní scintigrafie srdce Planární vyšetření pomocí planární kamery s nízkoenergetickým paralelním kolimátorem se středním rozlišením. Snímáme ve 3 základních projekcích levá přední šikmá 30 a a přední. Doba snímání je u každé projekce 10 min. SPECT kamera s nízkoenergetickým paralelním kolimátorem s vysokým rozlišením nebo nízkoenergetickým fan beam kolimátorem. Úhel rotace je 180 od 45 pravá přední šikmá až do 45 levá přední šikmá projekce. Pomocí EKG elektrod můžeme provádět i hradlovaný SPECT. RAF 99m Tc - MIBI nebo 201 Tl - chlorid. Průkaz viability myokardu RAF 18 F-FDG detekce pomocí PET či hybridních SPECT systémů s kolimátory pro energie 511 kev nebo kamera s koincidenčním zapojením detektorů sekund na 1 obraz o úhlu 6 z celkových

20 Vyšetření regionálního metabolismu mozku Pomocí 18 F-FDG na PET kameře. Nebo 99m Tc HMPAO, snímky za 5 10 minut po aplikaci RAF, kolimátor s vysokým rozlišením; 5 6 milionů impulsů na obraz, 2 detektory; nimut. Průkaz ložiskového narušení hematoen cefalické bariéry Statická scintigrafie mozku (planární nebo SPECT) s kolimátorem s vysokým rozlišením. 60 min. po aplikaci RAF je zahájeno snímání ve 4 základních projekcích (přední, zadní, levé a převé boční). Vyšší rozlišení přináší metoda SPECT. RAF 99m Tc DTPA nebo pertechnetát 99m - TcO 4 - procházejí přes hematoencef. bar. 99 m Tc HMPO prochází přes hematoencef. bar. Scintigrafie likvorových prostor (cysternografie) Po lumbální punkci podání RAF. Snímání planární kamerou ve 3 základních projekcích (pravá a levá boční a přední); tisíc impulsů na obraz za 2, 4, 24, a 48 hod. po podání RAF. RAF 111 In - DTPA. Vyšetření slinných žláz Dynamická studie přední projekce, 2 obrazy za minutu minut. Hodnocení pomocí histogramu. Statická studie (následuje po dynamické studii) v přední a bočních projekcích, 300tisíc impulsů na obraz. Hodnocení akumulace RAF z analogových či digitálních obrazů. Dynamická studie 2.část dáme pacientovi do úst kyselý nonbón (citrónovou šťá vu) a vyvoláme salivaci. RAF pertechnetát 99m TcO - 4. Dynamická scintigrafie jícnu a detekce gastroezofageálního reflexu Po perorálním podání sledujeme průchod aktivního sousta jícnem do žaludku. Data ukládáme do paměti počítače jako obrazy aktivity po 1 sekundě po dobu 7 minut. RAF koloid Síry značený 99m Tc

21 Statická scintigrafie jater Provedení za 15 min. po aplikaci RAF v přední, zadní a pravé boční projekci. Planární scintilační kamera s kolimátorem s vysokým rozlišením; tisíc impulsů za 1 obraz. Při podezření na léze uložené v hloubi parenchymu je vhodné provést SPECT. RAF koloid Síry značená 99m Tc. Statická scintigrafie sleziny Provedení minut po podání RAF. Planární scintilační kamera s velkým zorným polem a s kolimátorem s vysokým rozlišením; přední, levá bočná a zadní projekce; tis. Impulsů na obraz. RAF denaturované erytrocyty značené 99m Tc. Dnes už málo časté vyšetření nahrazeno US a CT. Statická scintigrafie ledvin Provedení 2 hodiny po podání RAF zahajujeme snímání planárních snímků / SPECT scintilační kamerou s kolimátorem s vysokým rozlišením ve 4 projekcích (přední, zadní, oba šikmé), tisíc impulsů na 1 obraz. RAF 99m Tc - DMSA. Perfuzní statická scintigrafie plic Provedení planární scintigrafickou kamerou s kolimátorem s vysokým rozlišením v přední, zadní, pravé a levé zadní šikmé projekci; tisíc impulsů na obraz. RAF 99m Tc MAA nebo 99m Tc mikrospheres. Statická scintigrafie skeletu Celotělové obrazy 2-3 hod po podání RAF. Při tomto způsobu záznamu dat je pacient posunován na vyšetřovacím stole nad a pod detektorem (přední a zadní projekce) od hlavy k patě, takže získáme obraz distribuce radioaktivity v celém jeho těle. Rychlost pohybu pacienta se opět řídí registrovanou četností ( tisíc impulsů na obraz) tak, aby informační hustota obrazu byla dostatečná. Protože se distribuce radiofarmaka v čase nemění, můžeme střádat data delší dobu. Z tohoto

22 důvodu používáme při statickém záznamu dat nízkoenergetické kolimátory s vysokým rozlišením; Při vyšetření kloubů u malých dětí je vhodný kolimátor pin hole. RAF 99m Tc - MDP. Třífázová scintigrafie skeletu Angiografická fáze flow okamžitě po podání RAF, snímky v intervalu 2-3 vteřin po dobu 3-5 min. Fáze prokrvení Blood pool bezprostředně navazuje na a.f. 10 obrázků po 30 sekundách; tisíc impulsů. Pozdní fáze = statická scintigrafie skeletu. RAF značené 99m Tc. Scintigrafie štítné žlázy Provedení minut po aplikaci RAF scintilační kamerou s pin hole kolimátorem, 1 3 obrazy; tisíc impulsů na obraz. RAF pertechnetát ( 99m TcO - 4 ) nebo 123 I, 131 I. Scintigrafie příštítných tělísek Dvou fázová scintigrafie za 20 minut a za 2 hod. po aplikaci RAF. Na scintilační kameře s kolimátorem s vysokým rozlišením; tisíc impulsů na obraz. RAF 99m Tc - MIBI

23 6. Použitá literatura 1) Nukleární medicína Kolektiv autorů Gentiana Jilemnice ) Nukleární Medicína I. doc. MUDr. Miroslav Mysliveček, PhD.; prof.ing. Václav Hušák, CSc.; MUDr. Pavel Koranda Vydavatelství Univerzity Palackého Olomouc ) Radioisotopová scintigrafie RNDr. Vojtěch Ullmann 4) Nukleární medicína scripta htm. pro studenty 2.ročníku 3. LF UK v Praze 5) webové stránky ČVUT Fakulta jaderná a fyzikálně inženýrská

Test z fyzikálních fyzikálních základ ů nukleární medicíny

Test z fyzikálních fyzikálních základ ů nukleární medicíny Test z fyzikálních základů nukleární medicíny 1. Nukleární medicína se zabývá a) diagnostikou pomocí otevřených zářičů a terapií pomocí uzavřených zářičů aplikovaných in vivo a in vitro b) diagnostikou

Více

Přednášky z lékařské přístrojové techniky

Přednášky z lékařské přístrojové techniky Přednášky z lékařské přístrojové techniky Masarykova univerzita v Brně Biofyzikální centrum Radionuklidové zobrazovací a jiné diagnostické metody Úvodem Můžeme definovat tyto hlavní oblasti diagnostického

Více

Nukleární medicína je obor zabývající se diagnostikou a léčbou pomocí otevřených radioaktivních zářičů, aplikovaných do vnitřního prostředí

Nukleární medicína je obor zabývající se diagnostikou a léčbou pomocí otevřených radioaktivních zářičů, aplikovaných do vnitřního prostředí Nukleární medicína je obor zabývající se diagnostikou a léčbou pomocí otevřených radioaktivních zářičů, aplikovaných do vnitřního prostředí organismu. zobrazovací (in vivo) diagnostika laboratorní (in

Více

Otázky ke zkoušce z DIA 2012/13

Otázky ke zkoušce z DIA 2012/13 Otázky ke zkoušce z DIA 2012/13 Obecná část 1. Rentgenové záření charakteristika, princip rentgenky 2. Skiagrafie princip, indikace, postavení v diagnostickém algoritmu, radiační zátěž 3. Skiaskopické

Více

M ASARYKŮ V ONKOLOGICKÝ ÚSTAV Žlutý kopec 7, Brno

M ASARYKŮ V ONKOLOGICKÝ ÚSTAV Žlutý kopec 7, Brno PET. PET / CT, PET Centrum, Cyklotron Pozitronová emisní tomografie ( PET ) je neinvazivní vyšetřovací metoda nukleární medicíny založená na detekci záření z radiofarmaka podaného pacientovi.nejčastěji

Více

Vybrané funkční metody mapování mozku: PET a SPECT (SISCOM)

Vybrané funkční metody mapování mozku: PET a SPECT (SISCOM) Vybrané funkční metody mapování mozku: PET a SPECT (SISCOM) MUDr. Ondřej Volný 1 MUDr. Petra Cimflová 2 prof. MUDr. Martin Bareš PhD 1 1 I. neurologická klinika FN u sv. Anny a LF Masarykovy univerzity

Více

Pozitronová emisní tomografie.

Pozitronová emisní tomografie. Pozitronová emisní tomografie. Pozitronová emisní tomografie (PET) s využitím 18F-2-D-fluor-2- deoxy-glukózy (FDG), je jedna z metod nukleární medicíny, která umožňuje funkční zobrazení tkání organismu,

Více

Nukleární medicína: atestační otázky pro lékaře

Nukleární medicína: atestační otázky pro lékaře Nukleární medicína: atestační otázky pro lékaře I. Klinická část 1. Nukleární kardiologie A Perfuzní SPECT myokardu, procedurální doporučení EANM. Radiofarmaka. Metodika. Zátěžové testy kontraindikace

Více

Identifikace typu záření

Identifikace typu záření Identifikace typu záření U radioaktivního záření rozeznáváme několik druhů, jejichž vlastnosti se diametrálně liší. Jednotlivé druhy rozeznáváme podle druhu emitovaného záření. Tyto druhy radioaktivity

Více

Metody nukleární medicíny. Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová technika

Metody nukleární medicíny. Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová technika Metody nukleární medicíny Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová technika Nukleární medicína Zobrazení metodami nukleární medicíny (rovněž označované jako skenování) patří mezi diagnostické

Více

Aplikace jaderné fyziky

Aplikace jaderné fyziky Aplikace jaderné fyziky Ing. Carlos Granja, Ph.D. Ustav technické a experimentální fyziky ČVUT v Praze XI 2004 1 Aplikace jaderné fyziky lékařské aplikace (zobrazování, radioterapie) výroba radioisotopů

Více

Činnost oboru nukleární medicíny v roce Activity of section of nuclear medicine in the year 2012

Činnost oboru nukleární medicíny v roce Activity of section of nuclear medicine in the year 2012 Aktuální informace Ústavu zdravotnických informací a statistiky České republiky Praha 3. 8. 213 38 Souhrn Činnost oboru nukleární medicíny v roce 212 Activity of section of nuclear medicine in the year

Více

Nukleární medicína. 6. Nukleární medicína v neurologii A

Nukleární medicína. 6. Nukleární medicína v neurologii A Nukleární medicína 1. Nukleární kardiologie A Princip metody vyšetření perfuze myokardu. Radiofarmaka. Příprava nemocného, pravidla fyzické a farmakologické zátěže. Nežádoucí účinky farmakologické zátěže.

Více

Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace)

Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace) Referát z atomové a jaderné fyziky Detekce ionizujícího záření (principy, technická realizace) Měřicí a výpočetní technika Šimek Pavel 5.7. 2002 Při všech aplikacích ionizujícího záření je informace o

Více

PRVNÍ ZKUŠENOSTI S KAMEROU VYBAVENOU (CdZnTe) POLOVODIČOVÝMI DETEKTORY. Jiří Terš Radioizotopové pracoviště IKEM, Praha

PRVNÍ ZKUŠENOSTI S KAMEROU VYBAVENOU (CdZnTe) POLOVODIČOVÝMI DETEKTORY. Jiří Terš Radioizotopové pracoviště IKEM, Praha PRVNÍ ZKUŠENOSTI S KAMEROU VYBAVENOU (CdZnTe) POLOVODIČOVÝMI DETEKTORY Jiří Terš Radioizotopové pracoviště IKEM, Praha VYUŽITÍ Exkluzivně pro SPECT srdce Teoretická možnost akvizice 123I (159 kev)+99mtc

Více

Obrazové parametry. H.Mírka, J. Ferda, KZM LFUK a FN Plzeň. Z jedné sady hrubých dat je možno vytvořit mnoho obrazů různé kvality

Obrazové parametry. H.Mírka, J. Ferda, KZM LFUK a FN Plzeň. Z jedné sady hrubých dat je možno vytvořit mnoho obrazů různé kvality Obrazové parametry H.Mírka, J. Ferda, KZM LFUK a FN Plzeň Z jedné sady hrubých dat je možno vytvořit mnoho obrazů různé kvality Obrazové parametry. výpočet obrazu z hrubých dat. je možno je opakovaně měnit

Více

Atestační otázky z oboru nukleární medicína

Atestační otázky z oboru nukleární medicína Publikováno z 2. lékařská fakulta Univerzity Karlovy (https://www.lf2.cuni.cz) LF2 > Atestační otázky z oboru nukleární medicína Atestační otázky z oboru nukleární medicína 1. Nukleární kardiologie A Princip

Více

Česká společnost fyziků v medicíně, o. s. www.csfm.cz

Česká společnost fyziků v medicíně, o. s. www.csfm.cz Pravidla procesu hodnocení místních radiologických standardů a jejich souladu s národními radiologickými standardy pro nukleární medicínu 1. Úvod Požadavky na klinické audity jsou stanoveny v hlavě V díl

Více

ZOBRAZOVACÍ VYŠETŘOVACÍ METODY MAGNETICKÁ REZONANCE RADIONUKLIDOVÁ

ZOBRAZOVACÍ VYŠETŘOVACÍ METODY MAGNETICKÁ REZONANCE RADIONUKLIDOVÁ ZOBRAZOVACÍ VYŠETŘOVACÍ METODY MAGNETICKÁ REZONANCE RADIONUKLIDOVÁ Markéta Vojtová MAGNETICKÁ REZONANCE MR 1 Nejmodernější a nejsložitější vyšetřovací metoda Umožňuje zobrazit patologické změny Probíhá

Více

Ultrasonografická diagnostika v medicíně. Daniel Smutek 3. interní klinika 1.LF UK a VFN

Ultrasonografická diagnostika v medicíně. Daniel Smutek 3. interní klinika 1.LF UK a VFN Ultrasonografická diagnostika v medicíně Daniel Smutek 3. interní klinika 1.LF UK a VFN frekvence 2-15 MHz rychlost šíření vzduch: 330 m.s -1 kost: 1080 m.s -1 měkké tkáně: průměrně 1540 m.s -1 tuk: 1450

Více

SPECIALIZAČ NÍ NÁPLŇ TECHNICKÁ SPOLUPRÁCE V OBORECH NUKLEÁRNÍ MEDICÍNY, RADIODIAGNOSTIKY A RADIOTERAPIE

SPECIALIZAČ NÍ NÁPLŇ TECHNICKÁ SPOLUPRÁCE V OBORECH NUKLEÁRNÍ MEDICÍNY, RADIODIAGNOSTIKY A RADIOTERAPIE SPECIALIZAČ NÍ NÁPLŇ v oboru TECHNICKÁ SPOLUPRÁCE V OBORECH NUKLEÁRNÍ MEDICÍNY, RADIODIAGNOSTIKY A RADIOTERAPIE FYZIKA A PŘÍSTROJOVÁ TECHNIKA V NUKLEÁRNÍ MEDICÍNĚ 1. Cíl specializační přípravy Cílem specializační

Více

RIA instrumentace. Jana Číhalová OKB FN Brno

RIA instrumentace. Jana Číhalová OKB FN Brno RIA instrumentace Jana Číhalová OKB FN Brno jcihalova@email.cz 1 RIA instrumentace Radioizotopové metody Radioindikátorové značenky- 125 I Detekce ionizujícího záření Popis přístrojů v klin.laboratořích

Více

Fludeoxythymidine ( 18 F) 1 8 GBq k datu a hodině kalibrace voda na injekci, chlorid sodný 9 mg/ml

Fludeoxythymidine ( 18 F) 1 8 GBq k datu a hodině kalibrace voda na injekci, chlorid sodný 9 mg/ml Příbalová informace Informace pro použití, čtěte pozorně! Název přípravku 3 -[ 18 F]FLT, INJ Kvalitativní i kvantitativní složení 1 lahvička obsahuje: Léčivá látka: Pomocné látky: Léková forma Injekční

Více

c-3 gsso&s Č C S ľ. OLi LOV ú! IS K A SOCIALISTICKÁ R j P U D U K ň 1X3) (51) Ili»t. Cl.» G 01 T 5/12 (22) Přihlášeno ÍL J.U 70 12J) (PV 0552-76)

c-3 gsso&s Č C S ľ. OLi LOV ú! IS K A SOCIALISTICKÁ R j P U D U K ň 1X3) (51) Ili»t. Cl.» G 01 T 5/12 (22) Přihlášeno ÍL J.U 70 12J) (PV 0552-76) c-3 gsso&s Č C S ľ. OLi LOV ú! IS K A SOCIALISTICKÁ R j P U D U K ň 1X3) POPÍŠ VYNÁLEZU 186037 Ul) (BI) (51) Ili»t. Cl.» G 01 T 5/12 (22) Přihlášeno ÍL J.U 70 12J) (PV 0552-76) ÚŘAD PRO VYNÁLEZY A OBJEVY

Více

MUDr. O(o Lang, Ph.D. Klinika nukleární medicíny UK 3. LF Praha Materiál pro kardiology před atestací

MUDr. O(o Lang, Ph.D. Klinika nukleární medicíny UK 3. LF Praha Materiál pro kardiology před atestací Metody nukleární kardiologie MUDr. O(o Lang, Ph.D. Klinika nukleární medicíny UK 3. LF Praha Materiál pro kardiology před atestací Základní princip vyšetření v NM Podání radioak:vního indikátoru do těla

Více

Základy výpočetní tomografie

Základy výpočetní tomografie Základy výpočetní tomografie Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová technika Základní principy výpočetní tomografie Výpočetní tomografie - CT (Computed Tomography) CT je obecné označení

Více

POPIS VYNALEZU K AUTORSKÉMU OSVĚDČENÍ. obr Z ČESKOSLOVENSKA SOCIALISTICKÁ ( 19 ) G 01 F 23/28. (22) Přihlášeno 18 09 84 (21) PV 6988-84

POPIS VYNALEZU K AUTORSKÉMU OSVĚDČENÍ. obr Z ČESKOSLOVENSKA SOCIALISTICKÁ ( 19 ) G 01 F 23/28. (22) Přihlášeno 18 09 84 (21) PV 6988-84 ČESKOSLOVENSKA SOCIALISTICKÁ R E P U B L I K A ( 19 ) POPIS VYNALEZU K AUTORSKÉMU OSVĚDČENÍ 250928 (И) (BI) (22) Přihlášeno 18 09 84 (21) PV 6988-84 (51) Int. Cl. 4 G 01 F 23/28 ÚftAD PRO VYNÁLEZY A OBJEVY

Více

K AUTORSKÉMU OSVĚDČENÍ

K AUTORSKÉMU OSVĚDČENÍ ČESKOSLOVENSKÁ SOCIALISTICKÁ R E P U B L I K A ( 19 ) POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ (Ы) (23) Výstavní priorita (22) Přihlášeno 03 11 82 (21) pv 7798-82 229 332 ('i) (Bl) (51) Int. Cľ G 01 N 1/20,

Více

Fluorescence (luminiscence)

Fluorescence (luminiscence) Fluorescence (luminiscence) Patří mezi luminiscenční metody fotoluminiscence. Luminiscence efekt, kdy excitované molekuly či atomy vyzařují světlo při přechodu z excitovaného do základního stavu. Podle

Více

M I K R O S K O P I E

M I K R O S K O P I E Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066

Více

Okruhy k Státním závěrečným zkouškám na Fakultě zdravotnických věd UP pro akademický rok 2014/2015

Okruhy k Státním závěrečným zkouškám na Fakultě zdravotnických věd UP pro akademický rok 2014/2015 Pracoviště: Ústav radiologických metod Studijní obor: Radiologický asistent Diagnostické zobrazovací postupy 1. Vznik a vlastnosti rentgenového záření, vznik a tvorba rentgenového obrazu, radiační ochrana

Více

Počítačová tomografie (1)

Počítačová tomografie (1) Počítačová tomografie (1) velký počet měření průchodů rtg paprsků tělem - projekční data matematické metody pro rekonstrukci CT obrazů z projekčních dat Počítačová tomografie (2) generace CT 1. generace

Více

Skenovací parametry. H.Mírka, J. Ferda, KZM LFUK a FN Plzeň

Skenovací parametry. H.Mírka, J. Ferda, KZM LFUK a FN Plzeň Skenovací parametry H.Mírka, J. Ferda, KZM LFUK a FN Plzeň Skenovací parametry Expozice Kolimace Faktor stoupání Perioda rotace Akvizice. ovlivňují způsob akvizice. závisí na nich kvalita hrubých dat.

Více

Vyšetření je možno provádět jen na písemný požadavek ošetřujícího lékaře.

Vyšetření je možno provádět jen na písemný požadavek ošetřujícího lékaře. Scintigrafie Vyšetření, při kterém je podáno malé množství radioaktivní látky většinou do žíly, někdy ústy. Tato látka vysílá z vyšetřovaného orgánu záření, které je pomocí scintilační kamery zachyceno

Více

Ultrazvukové diagnostické přístroje. X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz

Ultrazvukové diagnostické přístroje. X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Ultrazvukové diagnostické přístroje X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Ultrazvuková diagnostika v medicíně Ultrazvuková diagnostika diagnostická zobrazovací

Více

CT-prostorové rozlišení a citlivost z

CT-prostorové rozlišení a citlivost z CT-prostorové rozlišení a citlivost z Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová fyzika Prostorové rozlišení a citlivost z Prostorové rozlišení význam vyjádření rozlišení měření rozlišení

Více

VYŠETŘENÍ NERVOVÉHO SYSTÉMU. seminář z patologické fyziologie

VYŠETŘENÍ NERVOVÉHO SYSTÉMU. seminář z patologické fyziologie VYŠETŘENÍ NERVOVÉHO SYSTÉMU seminář z patologické fyziologie Osnova Morfologické vyšetřovací metody (zobrazovací diagnostika) 1 Počítačová (výpočetní) tomografie 2 Pozitronová emisní tomografie (PET) 3

Více

Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm.

Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. 1. Podstata světla Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. Vznik elektromagnetických vln (záření): 1. při pohybu elektricky nabitých částic s nenulovým zrychlením

Více

Okruhy k Státním závěrečným zkouškám na Fakultě zdravotnických věd UP pro akademický rok 2015/2016

Okruhy k Státním závěrečným zkouškám na Fakultě zdravotnických věd UP pro akademický rok 2015/2016 Pracoviště: Ústav radiologických metod Studijní obor: Radiologický asistent Diagnostické zobrazovací postupy 1. Vznik a vlastnosti rentgenového záření, vznik a tvorba rentgenového obrazu, radiační ochrana

Více

Analýza časového vývoje 3D dat v nukleární medicíně

Analýza časového vývoje 3D dat v nukleární medicíně Diplomová práce Analýza časového vývoje 3D dat v nukleární medicíně Jan Kratochvíla Prezentováno Seminář lékařských aplikací 12. prosince 2008 Vedoucí: Mgr. Jiří Boldyš, PhD., ÚTIA AV ČR Konzultant: Ing.

Více

Měření absorbce záření gama

Měření absorbce záření gama Měření absorbce záření gama Úkol : 1. Změřte záření gama přirozeného pozadí. 2. Změřte záření gama vyzářené gamazářičem. 3. Změřte záření gama vyzářené gamazářičem přes absorbátor. 4. Naměřené závislosti

Více

RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI. v oboru RADIOLOGICKÁ FYZIKA V NUKLEÁRNÍ MEDICÍNĚ

RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI. v oboru RADIOLOGICKÁ FYZIKA V NUKLEÁRNÍ MEDICÍNĚ RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI v oboru RADIOLOGICKÁ FYZIKA V NUKLEÁRNÍ MEDICÍNĚ 1. Cíl specializačního vzdělávání Cílem vzdělávacího programu pro specializační vzdělávání

Více

Identifikace typu záření

Identifikace typu záření Identifikace typu záření U radioaktivního záření rozeznáváme několik druhů, jejichž vlastnosti se diametrálně liší. Jednotlivé druhy rozeznáváme podle druhu emitovaného záření. Tyto druhy radioaktivity

Více

Optika pro mikroskopii materiálů I

Optika pro mikroskopii materiálů I Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických

Více

Univerzita Karlova, 1. Lékařská fakulta Kateřinská 32, Praha 2. Bakalářská práce Viera Bártová

Univerzita Karlova, 1. Lékařská fakulta Kateřinská 32, Praha 2. Bakalářská práce Viera Bártová Univerzita Karlova, 1. Lékařská fakulta Kateřinská 32, 121 08 Praha 2 Bakalářská práce 2007 Viera Bártová Univerzita Karlova, 1. Lékařská fakulta Kateřinská 32, 121 08 Praha 2 Vliv akvizičních parametrů

Více

NUKLEÁRNÍ MEDICÍNA. Úvod Fyzikální a technické základy. Ing. Jaroslav Zimák, CSc.

NUKLEÁRNÍ MEDICÍNA. Úvod Fyzikální a technické základy. Ing. Jaroslav Zimák, CSc. NUKLEÁRNÍ MEDICÍNA Úvod Fyzikální a technické základy Ing. Jaroslav Zimák, CSc. Klinický radiologický adoogc fyzik KNME S laskavým svolením RNDr. Vojtěcha Ullmana použity některé obrázky z jeho prezentace

Více

Optoelektronické senzory. Optron Optický senzor Detektor spektrální koherence Senzory se CCD prvky Foveon systém

Optoelektronické senzory. Optron Optický senzor Detektor spektrální koherence Senzory se CCD prvky Foveon systém Optoelektronické senzory Optron Optický senzor Detektor spektrální koherence Senzory se CCD prvky Foveon systém Optron obsahuje generátor světla (LED) a detektor optické prostředí změna prostředí změna

Více

1. Zadání Pracovní úkol Pomůcky

1. Zadání Pracovní úkol Pomůcky 1. 1. Pracovní úkol 1. Zadání 1. Ověřte měřením, že směry výletu anihilačních fotonů vznikajících po β + rozpadu jader 22 Na svírají úhel 180. 2. Určete pološířku úhlového rozdělení. 3. Vysvětlete tvar

Více

Hybridní metody v nukleární medicíně

Hybridní metody v nukleární medicíně Hybridní metody v nukleární medicíně Historie první anatometabolické zobrazování záznam pohybového scintigrafu + prostý RTG snímek (70.léta 20.stol.) Angerova scintilační kamera a rozvoj tomografického

Více

Nanostruktury a zobrazovací metody v medicíně

Nanostruktury a zobrazovací metody v medicíně Nanostruktury a zobrazovací metody v medicíně Nanostruktury Alespoň jeden rozměr v řádu nanometrů Atomy Molekuly Organely Buňky,... Nanostruktury v lidském organismu Molekula CD3 (součást TCR) Orientačně

Více

Výukové texty. pro předmět. Měřící technika (KKS/MT) na téma

Výukové texty. pro předmět. Měřící technika (KKS/MT) na téma Výukové texty pro předmět Měřící technika (KKS/MT) na téma Tvorba grafické vizualizace principu měření ionizujícího záření a bezpečnostní náležitosti Autor: Doc. Ing. Josef Formánek, Ph.D. Tvorba grafické

Více

Obrazové snímače a televizní kamery

Obrazové snímače a televizní kamery Obrazové snímače a televizní kamery Prof. Ing. Václav Říčný, CSc. Současná televizní technika a videotechnika kurz U3V Program semináře a cvičení Snímače obrazových signálů akumulační a neakumulační. Monolitické

Více

Obrazové snímače a televizní kamery

Obrazové snímače a televizní kamery Obrazové snímače a televizní kamery Prof. Ing. Václav Říčný, CSc. Současná televizní technika a videotechnika kurz U3V Program semináře a cvičení Snímače obrazových signálů akumulační a neakumulační. Monolitické

Více

CO VÁS ČEKÁ NA KLINICE NUKLEÁRNÍ MEDICÍNY?

CO VÁS ČEKÁ NA KLINICE NUKLEÁRNÍ MEDICÍNY? CO VÁS ČEKÁ NA KLINICE NUKLEÁRNÍ MEDICÍNY? Ing. Petra Mičolová Radiofarmaceutická skupina, KJCH, FJFI, ČVUT Radiofarmaceutická laboratoř, KNME, FN Motol České vysoké učení technické v Praze Fakulta jaderná

Více

UZ ovládání přístroje, tipy a triky. Bohatá Š. Radiologická klinika FN Brno a LF MU Brno

UZ ovládání přístroje, tipy a triky. Bohatá Š. Radiologická klinika FN Brno a LF MU Brno UZ ovládání přístroje, tipy a triky Bohatá Š. Radiologická klinika FN Brno a LF MU Brno Optimální provedení UZ Sonda vhodného typu a frekvence Vhodný vyšetřovací program Pokud automatická kompenzace hloubkového

Více

Návrh rozsahu přejímacích zkoušek a zkoušek dlouhodobé stability. skiagrafických radiodiagnostických rtg zařízení s digitalizací obrazu.

Návrh rozsahu přejímacích zkoušek a zkoušek dlouhodobé stability. skiagrafických radiodiagnostických rtg zařízení s digitalizací obrazu. Návrh rozsahu přejímacích zkoušek a zkoušek dlouhodobé stability skiagrafických radiodiagnostických rtg zařízení s digitalizací obrazu. 2007 Objednatel: Zhotovitel: Státní úřad pro jadernou bezpečnost

Více

Přehled vyšetření prováděných na Klinice nukleární medicíny FNKV - příprava na vyšetření, orientační doba trvání. průměrná doba trvání vyšetření

Přehled vyšetření prováděných na Klinice nukleární medicíny FNKV - příprava na vyšetření, orientační doba trvání. průměrná doba trvání vyšetření Přehled prováděných na Klinice nukleární medicíny FNKV - na, orientační. typ od vyšetřovací látky () k pobytu U r o g e n i t á l n í s y s t é m Scintigrafie ledvin dynamická 20-40 minut, cca 2 hodiny

Více

Stanovení radiační zátěže z vyšetření tlustého střeva pomocí 67. Ga-citrátu. Mihalová P., Vrba T., Buncová M. XXXIII. Dni radiačnej ochrany, Vyhne

Stanovení radiační zátěže z vyšetření tlustého střeva pomocí 67. Ga-citrátu. Mihalová P., Vrba T., Buncová M. XXXIII. Dni radiačnej ochrany, Vyhne Stanovení radiační zátěže z vyšetření tlustého střeva pomocí 67 Ga-citrátu Mihalová P., Vrba T., Buncová M. Obsah prezentace Algoritmus vyšetření Odhad radiační zátěže pro jednotlivé diagnózy Výpočet z

Více

Rekonstrukce obrazu. Jiří Ferda, Hynek Mírka. Klinika zobrazovacích metod LFUK a FN v Plzni

Rekonstrukce obrazu. Jiří Ferda, Hynek Mírka. Klinika zobrazovacích metod LFUK a FN v Plzni Rekonstrukce obrazu Jiří Ferda, Hynek Mírka Klinika zobrazovacích metod LFUK a FN v Plzni Hrubá data Raw data Data získaná detektorovou soustavou Výchozí soubor pro výpočet atenuace a rekonstrukci obrazů

Více

Slezská nemocnice v Opavě, příspěvková organizace, Olomoucká 470/86, Předměstí, 746 01 Opava. Obnova přístrojové techniky ve zdravotnických zařízeních

Slezská nemocnice v Opavě, příspěvková organizace, Olomoucká 470/86, Předměstí, 746 01 Opava. Obnova přístrojové techniky ve zdravotnických zařízeních Slezská nemocnice v Opavě, příspěvková organizace, Olomoucká 470/86, Předměstí, 746 01 Opava je partnerem projektu realizovaného Moravskoslezským krajem Obnova přístrojové techniky ve zdravotnických zařízeních

Více

průměrná doba trvání vyšetření 20-40 minut, dle potřeby ev. následují dvouminutové kontroly 1 1,5 hodiny

průměrná doba trvání vyšetření 20-40 minut, dle potřeby ev. následují dvouminutové kontroly 1 1,5 hodiny typ od vyšetřovací látky () k pobytu U r o g e n i t á l n í s y s t é m Scintigrafie ledvin dynamická 20-40 minut, dle potřeby ev. následují dvouminutové kontroly cca 2 hodiny Scintigrafie ledvin dynamická

Více

Ultrazvukové diagnostické přístroje. X31LET Lékařskátechnika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz

Ultrazvukové diagnostické přístroje. X31LET Lékařskátechnika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Ultrazvukové diagnostické přístroje X31LET Lékařskátechnika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Ultrazvukové diagnostické přístroje 1. Ultrazvuková diagnostika v medicíně 2. Fyzikální

Více

PET / CT. J.Vi. Vižďa. FN Hradec Králov. lové

PET / CT. J.Vi. Vižďa. FN Hradec Králov. lové Diagnostické možnosti PET / CT J.Vi Vižďa Oddělen lení nukleárn rní medicíny FN Hradec Králov lové Pozitronová emisní tomografie (PET) Nejmodernější funkčnízobrazování (molecularimaging) PET scanner: registrace

Více

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 - Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické

Více

Problematika určování SUV z PET/CT obrazů (při použití 18F-FDG)

Problematika určování SUV z PET/CT obrazů (při použití 18F-FDG) Problematika určování SUV z PET/CT obrazů (při použití 18F-FDG) Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc email: ptacekj@fnol.cz ICQ#: 22496995 Konference radiologických

Více

Speciální spektrometrické metody. Zpracování signálu ve spektroskopii

Speciální spektrometrické metody. Zpracování signálu ve spektroskopii Speciální spektrometrické metody Zpracování signálu ve spektroskopii detekce slabých signálů synchronní detekce (Lock-in) čítaní fotonů měření časového průběhu signálů metoda fázového posuvu časově korelované

Více

12. OCHRANA PŘED IONIZUJÍCÍM ZÁŘENÍM

12. OCHRANA PŘED IONIZUJÍCÍM ZÁŘENÍM 12. OCHRANA PŘED IONIZUJÍCÍM ZÁŘENÍM Při práci se zdroji záření spočívá v zeslabení dávky záření na hodnotu, při níž je riziko ozáření sníženo na zanedbatelnou hodnotu: udržování patřičné vzdálenosti od

Více

Činnost oboru nukleární medicíny v roce Activity of section of nuclear medicine in the year 2011

Činnost oboru nukleární medicíny v roce Activity of section of nuclear medicine in the year 2011 Aktuální informace Ústavu zdravotnických informací a statistiky České republiky Praha 23. 8. 2012 38 Souhrn Činnost oboru nukleární medicíny v roce 2011 Activity of section of nuclear medicine in the year

Více

Nebezpečí ionizujícího záření

Nebezpečí ionizujícího záření Nebezpečí ionizujícího záření Radioaktivita versus Ionizující záření Radioaktivita je schopnost jader prvků samovolně se rozpadnout na jádra menší stabilnější. Rozeznáváme pak radioaktivitu přírodní (viz.

Více

MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis

MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis Ivana Krestýnová, Josef Zicha Abstrakt: Absolutní vlhkost je hmotnost

Více

12. OCHRANA PŘED IONIZUJÍCÍM ZÁŘENÍM

12. OCHRANA PŘED IONIZUJÍCÍM ZÁŘENÍM 12. OCHRANA PŘED IONIZUJÍCÍM ZÁŘENÍM Při práci se zdroji záření spočívá v zeslabení dávky záření na hodnotu, při níž je riziko ozáření sníženo na zanedbatelnou hodnotu: udržování patřičné vzdálenosti od

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1 Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1 Ing. Jakub Ulmann Zobrazování optickými soustavami 1. Optické

Více

Techniky detekce a určení velikosti souvislých trhlin

Techniky detekce a určení velikosti souvislých trhlin Techniky detekce a určení velikosti souvislých trhlin Přehled Byl-li podle obecných norem nebo regulačních směrnic detekovány souvislé trhliny na vnitřním povrchu, musí být následně přesně stanoven rozměr.

Více

ZDRAVOTNICTVÍ ČR: Stručný přehled činnosti oboru nukleární medicína za období NZIS REPORT č. K/23 (09/2016)

ZDRAVOTNICTVÍ ČR: Stručný přehled činnosti oboru nukleární medicína za období NZIS REPORT č. K/23 (09/2016) NÁRODNÍ ZDRAVOTNICKÝ INFORMAČNÍ SYSTÉM AMBULANTNÍ PÉČE ZDRAVOTNICTVÍ ČR: Stručný přehled činnosti oboru nukleární medicína za období 2007 2015 NZIS REPORT č. K/23 (09/2016) Stručný přehled činnosti oboru

Více

Grafika na počítači. Bc. Veronika Tomsová

Grafika na počítači. Bc. Veronika Tomsová Grafika na počítači Bc. Veronika Tomsová Proces zpracování obrazu Proces zpracování obrazu 1. Snímání obrazu 2. Digitalizace obrazu převod spojitého signálu na matici čísel reprezentující obraz 3. Předzpracování

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok

Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok 2014-15 Stavba hmoty Elementární částice; Kvantové jevy, vlnové vlastnosti částic; Ionizace, excitace; Struktura el. obalu atomu; Spektrum

Více

Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký. Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený

Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký. Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený Jan Olbrecht Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený Jaký typ lomu nastane při průchodu světla z opticky

Více

Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm

Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2014/2015 tm-ch-spec. 1.p 2014 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a

Více

Společná laboratoř optiky. Skupina nelineární a kvantové optiky. Představení vypisovaných témat. bakalářských prací. prosinec 2011

Společná laboratoř optiky. Skupina nelineární a kvantové optiky. Představení vypisovaných témat. bakalářských prací. prosinec 2011 Společná laboratoř optiky Skupina nelineární a kvantové optiky Představení vypisovaných témat bakalářských prací prosinec 2011 O naší skupině... Zařazení: UP PřF Společná laboratoř optiky skupina nelin.

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT

Více

Nukleární medicína v novém

Nukleární medicína v novém Nukleární medicína v novém Krajská zdravotní, a.s. - Nemocnice Chomutov, o.z. Zpracovali: MUDr. Aleš Chodacki, náměstek zdravotní péče KZ a primář Oddělení nukleární medicíny MNUL a NCV a Středisko komunikace

Více

UNIVERZITA PARDUBICE FAKULTA ZDRAVOTNICKÝCH STUDIÍ

UNIVERZITA PARDUBICE FAKULTA ZDRAVOTNICKÝCH STUDIÍ UNIVERZITA PARDUBICE FAKULTA ZDRAVOTNICKÝCH STUDIÍ BAKALÁŘSKÁ PRÁCE 2015 HELENA MARTINKOVÁ Univerzita Pardubice Fakulta zdravotnických studií Radionuklidové metody v diagnostice a určení terapeutické odpovědi

Více

MUDr. Otto Lang, Ph.D. Klinika nukleární medicíny UK 3. LF Praha Tematický kurz před atestací v kardiologii

MUDr. Otto Lang, Ph.D. Klinika nukleární medicíny UK 3. LF Praha Tematický kurz před atestací v kardiologii Metody nukleární kardiologie u ICHS MUDr. Otto Lang, Ph.D. Klinika nukleární medicíny UK 3. LF Praha Tematický kurz před atestací v kardiologii 22. 2. 2014 Základní princip vyšetření v NM Podání radioaktivního

Více

Písemná zpráva zadavatele. Hybridní SPECT/CT gama kamera pro oddělení nukleární medicíny Nemocnice Znojmo

Písemná zpráva zadavatele. Hybridní SPECT/CT gama kamera pro oddělení nukleární medicíny Nemocnice Znojmo Písemná zpráva zadavatele zpracovaná podle ust. 85 zákona č. 137/2006 Sb., o veřejných zakázkách, ve znění pozdějších předpisů Veřejná zakázka na dodávky zadávaná podle 21 odst. 1 písm. a) zákona č. 137/2006

Více

Aktualizovaná databáze dynamické scintigrafie ledvin

Aktualizovaná databáze dynamické scintigrafie ledvin Aktualizovaná databáze dynamické scintigrafie ledvin Martin Šámal, Jiří Valoušek Ústav nukleární medicíny 1. LF UK a VFN v Praze M.G.P. s.r.o. Zlín www.dynamicrenalstudy.org 1 Nálezy dynamické scintigrafie

Více

Zobrazování. Zdeněk Tošner

Zobrazování. Zdeněk Tošner Zobrazování Zdeněk Tošner Ultrazvuk Zobrazování pomocí magnetické rezonance Rentgen a počítačová tomografie (CT) Ultrazvuk Akustické vlnění 20 khz 1 GHz materiálová defektoskopie sonar sonografie (v lékařství

Více

1. Polotóny, tisk šedých úrovní

1. Polotóny, tisk šedých úrovní 1. Polotóny, tisk šedých úrovní Studijní cíl Tento blok kurzu je věnován problematice principu tisku polotónů a šedých úrovní v oblasti počítačové grafiky. Doba nutná k nastudování 2 hodiny 1.1 Základní

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Zrcadla Zobrazení zrcadlem Zrcadla jistě všichni znáte z každodenního života ráno se do něj v koupelně díváte,

Více

Dosah γ záření ve vzduchu

Dosah γ záření ve vzduchu Dosah γ záření ve vzduchu Intenzita bodového zdroje γ záření se mění podobně jako intenzita bodového zdroje světla. Ve dvojnásobné vzdálenosti, paprsek pokrývá dvakrát větší oblast povrchu, což znamená,

Více

Planmeca ProMax. zobrazovací možnosti panoramatického rentgenu

Planmeca ProMax. zobrazovací možnosti panoramatického rentgenu Planmeca ProMax zobrazovací možnosti panoramatického rentgenu U panoramatického rentgenu nové generace Planmeca ProMax neexistuje žádné mechanické omezení geometrie zobrazení. Nastavit lze libovolné požadované

Více

Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení

Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Vojtěch Přikryl Ročník 1 Předmět IFY Kroužek 35 ID 143762 Spolupracoval Měřeno dne Odevzdáno dne Daniel Radoš 7.3.2012 21.3.2012 Příprava

Více

Pozitronová Emisní Tomografie PET. 18.12.2007 Jiří Kvita, MFF UK

Pozitronová Emisní Tomografie PET. 18.12.2007 Jiří Kvita, MFF UK Pozitronová Emisní Tomografie PET 1 PET Positron Emission Tomography Krásný příklad kombinace fyziky, chemie, biologie, medicíny a počítačové rekonstrukce obrazu. Fyzika: princip, detektor. Chemie: příprava

Více

ZKUŠENOSTI S POUŽITÍM MĚŘIČE AKTIVITY ATOMLAB 500

ZKUŠENOSTI S POUŽITÍM MĚŘIČE AKTIVITY ATOMLAB 500 ZKUŠENOSTI S POUŽITÍM MĚŘIČE AKTIVITY ATOMLAB 500 Jiří Štěpán KNM FN Brno a LF MU 33. Pracovní dny sekce radiofarmacie, 1. - 3. 6. 2011 - Rožnov pod Radhoštěm Charakteristiky důležité pro praktické použití

Více

Zákon odrazu. Úhel odrazu je roven úhlu dopadu, přičemž odražené paprsky zůstávají v rovině dopadu.

Zákon odrazu. Úhel odrazu je roven úhlu dopadu, přičemž odražené paprsky zůstávají v rovině dopadu. 1. ZÁKON ODRAZU SVĚTLA, ODRAZ SVĚTLA, ZOBRAZENÍ ZRCADLY, Dívejme se skleněnou deskou, za kterou je tmavší pozadí. Vidíme v ní vlastní obličej a současně vidíme předměty za deskou. Obojí však slaběji než

Více

Souhrn údajů o přípravku

Souhrn údajů o přípravku Souhrn údajů o přípravku 1. Název přípravku [ 18 F]fluorid sodný, injekce 1 10 GBq/lahvička 2. Kvalitativní a kvantitativní složení Natrii fluoridi( 18 F) 1 10 GBq k datu a hodině kalibrace/lahvička. Fluor-18

Více

Měření průtoku kapaliny s využitím digitální kamery

Měření průtoku kapaliny s využitím digitální kamery Měření průtoku kapaliny s využitím digitální kamery Mareš, J., Vacek, M. Koudela, D. Vysoká škola chemicko-technologická Praha, Ústav počítačové a řídicí techniky, Technická 5, 166 28, Praha 6 e-mail:

Více

Marek Mechl. Radiologická klinika FN Brno-Bohunice

Marek Mechl. Radiologická klinika FN Brno-Bohunice Marek Mechl Radiologická klinika FN Brno-Bohunice rentgenový snímek kontrastní RTG metody CT MR Anatomie - obratle 33 ks tělo a oblouk - 2 pedikly - 2 laminy - 4 kloubní výběžky -22 příčnép výběžky - 1

Více

Měření doby úhlových korelací (ACAR)

Měření doby úhlových korelací (ACAR) Měření doby úhlových korelací (ACAR) long slit geometrie detektor scintilační detektor Pb stínění Pb stínění í zdroj e + + vzorek Měření doby úhlových korelací (ACAR) vodivostní e - core e - Měření Dopplerovského

Více