Fylosilikáty: tetraedry [SiO 4 ] 4- vázány do dvojrozměrných sítí

Podobné dokumenty
Systematická mineralogie

Přednáška č. 9. Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur.

Přednáška č. 10. Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur.

Optické vlastnosti horninotvorných minerálů I

Mikroskopie minerálů a hornin

Geologie-Minerály I.

Mineralogie I. Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty. Osnova přednášky:

Mineralogie I. Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty Osnova přednášky: 1. Strukturní a chemický základ pro klasifikaci

Geologie Horniny vyvřelé

135GEMZ Jan Valenta Katedra geotechniky K135 (5. patro budova B) Místnost B502

Určování hlavních horninotvorných minerálů

Mineralogie II. Prof. RNDr. Milan Novák, CSc. Mineralogický systém silikáty II. Osnova přednášky: 1. Cyklosilikáty 2. Inosilikáty pyroxeny 3.

Mineralogie I Prof. RNDr. Milan Novák, CSc.

SOROSILIKÁTY Málo významná skupina, mají nízký stupeň polymerizace, dva spojené tetraedry Si2O7, někdy jsou ve struktuře přítomny SiO4 i Si2O7.

Základní horninotvorné minerály

Optické vlastnosti horninotvorných minerálů IV

Úvod do praktické geologie I

Přírodopis 9. Přehled minerálů KŘEMIČITANY

Optické vlastnosti horninotvorných minerálů II

OXIDY A HYDROXIDY. Systém oxidů - starší učebnice (např. Slavík a kol. 1974) řadí oxidy podle rostoucího podílu kyslíku ve vzorci

Použití: méně významná ruda mědi, šperkařství.

Mineralogie. pro Univerzitu třetího věku VŠB-TUO, HGF. 4. Systematická mineralogie. Silikáty

Poznávání minerálů a hornin. Vulkanické horniny

Mineralogie 4. Přehled minerálů -oxidy

PETROLOGIE =PETROGRAFIE

Základy geologie pro geografy František Vacek

Geologie Horniny vyvřelé a přeměněné

Akcesorické minerály

Mineralogie systematická /soustavná/

Oxidy. Křemen. Křišťál bezbarvá odrůda křemene. Růženín růžová odrůda. křemene. Záhněda hnědá odrůda křemene. Ametyst fialová odrůda.

Testové otázky ke zkoušce z předmětu Mineralogie

Mikroskopie minerálů a hornin

Environmentální geomorfologie

Přehled hornin vyvřelých

Mineralogický systém skupina VIII - křemičitany

a) žula a gabro: zastoupení hlavních nerostů v horninách (pozorování pod lupou)

Metamorfóza, metamorfované horniny

Jan Valenta. Katedra geotechniky K135 (5. patro budova B) Místnost B502 Konzultační hodiny: Jinak kdykoliv po dohodě:

Kolekce 20 hornin Kat. číslo

NÁZEV NEFRIT JADEIT. houževnatý a pevný vlastnosti Obecné tvary, agregáty. kryptokrystalický, břidlicovitý, jen kusový, celistvý.

Metamorfované horniny

Struktura a textura hornin. Cvičení 1GEPE + 1GEO1

Mineralogie Křemžska. Pro Jihočeský Mineralogický Klub Jirka Zikeš Jihočeský mineralogický klub

Vyvřelé horniny. pracovní list. Mgr. Libuše VODOVÁ, Ph.D. Katedra biologie PdF MU.

PETROGRAFICKÝ ROZBOR VZORKU GRANODIORITU Z LOKALITY PROSETÍN I (vzorek č. ÚGN /85/)

Přednáška č. 8. Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur.

Výuková pomůcka pro cvičení ze geologie pro lesnické a zemědělské obory. Úvod do mineralogie

Hlavní činitelé přeměny hornin. 1. stupeň za teploty 200 C a tlaku 200 Mpa. 2.stupeň za teploty 400 C a tlaku 450 Mpa

MAGMATICKÉ HORNINY - VYVŘELINY

Druhy magmatu. Alkalické ( Na, K, Ca, Al, SiO 2 )

Cyklus přednášek z mineralogie pro Jihočeský mineralogický klub. Jihočeský Mineralogický Klub

Přednáška č. 9. Petrografie úvod, základní pojmy. Petrografie vyvřelé (magmatické) horniny

Monazit. (Ce,La,Th)PO 4

VZNIK SOPKY, ZÁKLADNÍ POJMY

Nabídka vzorků hornin a minerálů pro účely školní výuky

METAMORFOVANÉ HORNINY

Silikáty. cca 1050 minerálů, tj. 26 % známých minerálů (údaj k r. 2002)

Chemické složení Země

Mineralogie. 2. Vlastnosti minerálů. pro Univerzitu třetího věku VŠB-TUO, HGF. Ing. Jiří Mališ, Ph.D. tel. 4171, kanc.

Fyzikální krystalografie, makrodiagnostické fyzikální vlastnosti minerálů.

MINERÁLY. Environmentáln. lní geologie sylabus 2 Ladislav Strnad HORNINOTVORNÉ MINERÁLY

Přírodopis 9. Přehled minerálů UHLIČITANY, SÍRANY, FOSFOREČNANY. Mgr. Jan Souček Základní škola Meziměstí. 15. hodina

MINERÁLY II Minerály II

HORNINY. Lucie Coufalová

Půdotvorné faktory, pedogeneze v přirozených lesích. Pavel Šamonil

Tělesa vyvřelých hornin. Magma a vyvřelé horniny

- krystalické nebo sklovité horniny vzniklé ochlazením chladnutím, tuhnutím a krystalizací silikátové taveniny - magmatu

Poznávání minerálů a hornin. Cvičení 2 Fyzikální vlastnosti minerálů

Stavba a složení Země, úvod do endogenní geologie

Anotace: Materiál je určen k výuce přírodopisu v 9. ročníku ZŠ. Seznamuje žáky s fyzikálními vlastnostmi nerostů. Materiál je plně funkční pouze s

Platforma pro spolupráci v oblasti formování krajiny

Malý atlas minerálů. jméno minerálu chemické složení zařazení v systému minerálů. achát

Optické vlastnosti horninotvorných minerálů III

ALLANIT-(Ce) A MINERÁLY PRVKŮ VZÁCNÝCH ZEMIN VZNIKLÉ JEHO ALTERACÍ VE VLASTĚJOVICÍCH

MINERÁLY (NEROSTY) PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

Minerály jejich fyzikální a chemické vlastnosti. Horniny magmatické, sedimentární, metamorfované

ZÁKLADY GEOLOGIE. Úvod přednáška 1. RNDr. Aleš Vaněk, Ph.D. č. dveří: 234, FAPPZ

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/

Alexandra Kloužková 1 Martina Mrázová 2 Martina Kohoutková 2 Vladimír Šatava 2

Petrografické charakteristiky vybraných magmatických hornin

Přednáška č. 6. Systematická mineralogie. Vybrané minerály z třídy: Sulfidů, halogenidů a karbonátů

Jak jsme na tom se znalostmi z geologie?

HORNINA: Agregáty (seskupení) různých minerálů, popř. organické hmoty, od minerálů se liší svojí látkovou a strukturní heterogenitou

Přednáška č. 4. Reálné krystaly přirozený vývin krystalových tvarů (habitus minerálů, zákonité a nahodilé krystalové srůsty).

Geopark I. Úvodní tabule

Vliv metody přepočtu chemických analýz amfibolů na jejich klasifikaci

ZÁKLADNÍ ŠKOLA SADSKÁ. Jana Dobrá VY_32_Inovace_ Minerály (nerosty) a horniny Člověk a jeho svět 4. ročník

Přírodopis 9. Přehled minerálů SIRNÍKY

Mineralogie. pro Univerzitu třetího věku VŠB-TUO, HGF. 3. Systematická mineralogie. Prvky až fosfáty

TYPY HORNIN A JEJICH CHEMISMUS

Materiál slouží pro práci ve skupinách. Jde o pracovní list, žáci při práci mohou používat atlas hornin a nerostů. Autor

NAKLÁDÁNÍ S NEBEZPEČNÝM ODPADEM ZE STAVEB, PROBLEMATIKA AZBESTU V KAMENIVU

Krystaly v přírodě (vzhled reálných krystalů)

PRVKY. Kovy skupiny mědi Cu, Ag, Au

Horniny a minerály II. část. Přehled nejdůležitějších minerálů

horniny jsou seskupením minerálů nebo organických zbytků, příp. přírodními vulkanickými skly, které vznikají rozličnými geologickými procesy

Magmatické (vyvřelé) horniny

Zdroj: 1.název: Stavební hmoty autor: Luboš svoboda a kolektiv nakladatelství: Jaga group, s.r.o., Bratislava 2007 ISBN

GRANITICKÉ PEGMATITY 3 Krystalizace z magmatu

Základy petrografie, magmatismus, úložné tvary usazených hornin, metamorfismus

Transkript:

Přednáška č. 7 Silikáty - základní klasifikace na základě struktur. Systematický přehled nejdůležitějších minerálů ze skupiny silikátů. Přehled technického použití vybraných minerálů a jejich výskyt.

Fylosilikáty: tetraedry [SiO 4 ] 4- vázány do dvojrozměrných sítí Většina fylosilikátů má destičkovitý nebo lístkovitý habitus s dokonalou štěpností, což je dáno přítomností nekonečných sítí ve struktuře, jejichž součástí jsou i Si tetraedry. Jednotlivé sítě jsou pak mezi sebou vázány do vrstev poměrně slabými silami. Ve fylosilikátech se mohou vrstvy kombinovat různým způsobem. Klad jednotlivých vrstev může být různý, takže vzniká prostor pro vznik různých polytypů. Vazba mezi vrstevnými komplexy sítí může být různá - jedná se buď o slabé elektrostatické síly spojené přítomností (OH) skupin, nebo může být mezi komplexy sítí umístěn tzv. mezivrstevní kation (zpravidla Na, K, Ca). Tím počet možných kombinací uspořádání struktur opět narůstá. Identifikace fylosilikátů na základě běžných fyzikálních vlastností nebo i chemismu je zpravidla velmi obtížná a je proto třeba využít RTG difrakčních technik. Pomocí nich je možno snadno zjistit mezivrstevní vzdálenost - tedy velikost základního motivu ve směru osy c. Tato vzdálenost (bazálních strukturních rovin) se u běžných fylosilikátů pohybuje od 7 do 21. 10-10 m.

Skupina serpentinu Do této skupiny patří několik minerálů, z nichž nejběžnější jsou chrysotil a antigorit. Mezivrstevní vzdálenost bývá 7-7,4. 10-10 m. Chemický vzorec: Mg 6 Si 4 O 10 (OH) 8 Forma výskytu: Antigorit tvoří destičkovité krystaly a šupinkovité agregáty, chrysotil tvoří celistvé nebo vláknité agregáty, často je ve formě azbestu. Fyzikální vlastnosti: T kolem 4, H = 2,5-2,6; barva obou žlutavá, zelenavá, hnědozelená, lesk skelný nebo perleťový, antigorit je dokonale štěpný podle báze. Složení a struktura: Antigorit - vrstvy ve tvaru vlnitého plechu. Chrysotil - vrstvy stočené do válců nebo trubiček (makroskopicky pak vlákna). Vznik a výskyt: Oba minerály jsou produktem přeměny olivínu a tvoří z více jak 90% serpentinity (metamorfovaná ultrabazika). Naleziště: Borek u Golčova Jeníkova, Hrubšice, Věžná (hadce) Použití: chrysotil se využívá jako azbest Diagnostické znaky: lístkovité nebo vláknité agregáty, barva

Jílové minerály Obecné označení minerálů, které tvoří podstatnou část jílů (významě jsou zastoupeny i v půdách) a jsou i zodpovědné za jejich typické vlastnosti - plasticitu, bobtnavost a sorpční schopnosti. Existuje jich celá řada s různými typy struktur a jednotlivé strukturní typy se navzájem kombinují za vzniku tzv. smíšených struktur. KAOLINIT Al 4 Si 4 O 10 (OH) 8 Forma výskytu: Tvoří tenké pseudohexagonální destičky a šupinky, agregáty jsou zpravidla celistvé nebo zemité. Fyzikální vlastnosti: T = 1-2; H = 2,6; barva bílá, žlutá, hnědavá, ve vlhku je plastický. Složení a struktura: Bývá zpravidla poměrně čistý, mívá hlavně mechanické nečistoty. Vznik a výskyt: Vzniká zvětráváním živců v kyselém prostředí. Je běžný na pegmatitech, v kyselých granitoidech a při intenzivním zvětrávání tvoří rozsáhlá ložiska. Naleziště: Horní Bříza, Lažánky u Veverské Bytíšky, Karlovarsko Použití: surovina keramického průmyslu!!! Diagnostické znaky: plasticita

MASTEK Mg 3 Si 4 O 10 (OH) 2 Forma výskytu: Tabulkovité, jemně zrnité až celistvé agregáty. Fyzikální vlastnosti: T = 1; H = 2,7-2,8; barva bílá, světle zelená, lesk mastný nebo perleťový. Dokonalá štěpnost podle (001). Složení a struktura: Může obsahovat malé množství Al, Ti a Fe. Vznik a výskyt: Produkt hydrotermální alterace ultrabazik a serpentinitů, kdy vzniká z olivínu a pyroxenu. Objevuje se v pegmatitech a na některých hydrotermálních žilách. Je podstatnou složkou mastkových břidlic. Naleziště: Smrčina a Zadní Hutisko u Sobotína (krupníky), Drahonín (pegmatit) Použití: Používá se jako přísada např. do papíru nebo keramiky Diagnostické znaky: tvrdost

Skupina slíd Slídy jsou fylosilikáty 2:1 s mezivrstevním kationtem, krystalizující v monoklinické symetrii. Mezi jednotlivými koncovými členy je možná omezená iontová substituce. MUSKOVIT KAl 2 (AlSi 3 O 10 )(OH) 2 Forma výskytu: Krystaly jsou tabulkovité nebo šupinkovité, dvojčata podle (001). Fyzikální vlastnosti: T = 2-2,5; H = 2,76-2,88; bývá bezbarvý, světle šedý nebo nazelenalý, perleťový lesk. Šupinky jsou pružné, štěpnost dokonalá podle báze. Složení a struktura: Zpravidla zastupuje vždy malé množství Fe, Mg a Ti, v pozici mezivrstevního kationtu může částečně zastupovat Na, Li nebo Ca. Mezivrstevní vzdálenost bývá kolem 10.10-10 m. Vznik a výskyt: Je důležitým horninotvorným minerálem v kyselých granitoidech (žula, pegmatit), metamorfitech (fylit, svor) i sedimentech (slepence). Naleziště: Otov, Bory, Maršíkov (pegmatity), Přibyslavice u Čáslavi (žuly), svory v Jeseníkách Použití: v elektrotechnice Diagnostické znaky: barva, štěpnost

BIOTIT K(Mg,Fe) 3 (AlSi 3 O 10 )(OH) 2 Forma výskytu: Tabulkovité krystaly s pseudohexagonálním průřezem, dvojčatné srůsty podle (001). Agregáty lupenité nebo masívní. Fyzikální vlastnosti: T = 2,5-3; H = 2,8-3,2; barva tmavě hnědá až černá, lesk perleťový, dokonalá bazální štěpnost. Vznik a výskyt: Běžný minerál vyvřelých hornin (granodiorit, diorit, syenit, pegmatity) a běžný i v metamorfovaných horninách (svor, rula). Zvětráváním se mění na chlority nebo smektity (jílové minerály). Naleziště: Bory, Věžná (pegmatity), Blansko (granodiority), Diagnostické znaky: barva, štěpnost

LEPIDOLIT K(Li,Al) 3 (AlSi 3 O 10 )(OH) 2 Forma výskytu: Zpravidla šupinkaté až jemnozrnné agregáty. Fyzikální vlastnosti: T = 2,5-4; H = 2,8-2,9, barva bílá, červená, zelená nebo fialová, lesk perleťový, dokonalá bazální štěpnost. Složení: Komplikované, do struktury vstupují prvky jako Na, Rb, Cs, F, Cl. Vznik a výskyt: Výhradně vázán na speciální typy Li pegmatitů. Naleziště: Rožná (typová lokalita), Dobrá Voda, Nová Ves (pegmatity) Použití: surovina Li Diagnostické znaky: barva, parageneze

Skupina chloritů Chemický vzorec: (Mg,Fe) 3 (Si,Al) 4 O 10 (OH) 2. (Mg,Fe) 3 (OH) 6 Forma výskytu: Tabulkovité krystaly nebo masivní, lupenité příp. zemité agregáty. Fyzikální vlastnosti: T = 2-2,5; H = 2,6-3,3, barva zpravidla v odstínech zelené, hnědé až černé, lesk matný, štěpnost podle báze dokonalá. Složení: Složení jednotlivých krajních členů je velmi rozmanité, obecně převažují chlority s Mg, Fe a Al, vzácnější jsou chlority s prvky jako Mn, Cr, Ni. Vznik a výskyt: Chlorit je běžný minerál zelených břidlic, běžný v magmatických horninách, kde vzniká přeměnou biotitu, pyroxenů a amfibolů. Je běžný na alpských žilách. Naleziště: Mirošov, Markovice (alpská paragenze), ložiska ve šternbersko - hornobenešovském pruhu Použití: minoritní ruda Fe Diagnostické znaky: barva, agregace

Tektosilikáty - prostorově propojené tetraedry SiO 4 Více než polovina minerálů tvořících zemskou kůru. Ve struktuře každý kyslík propojuje dva tetraedry a poměr Si:O = 1:2. Struktura je pevná a stabilní. Pokud jsou ve struktuře pouze tetraedry SiO 4 je elektricky neutrální a jedná se o minerál ze skupiny SiO 2. Ostatní tektosilikáty mají ve struktuře i jiné ionty, nejčastěji Na, Ca, Mg nebo Fe. Část Si +4 iontů musí být nahrazena jiným iontem, zpravidla Al +3. Vznikne nedostatek kladného náboje, který je vyrovnán vstupem výše uvedených kationtů do struktury.

Skupina SiO 2 Struktura sestavena pouze z tetraedrů SiO 4 a nejsou přítomny žádné další ionty. Existuje minimálně 9 způsobů, jak mohou být tetraedry v prostoru uspořádány - to odpovídá existenci jednotlivých polymorfů SiO 2 V běžných podmínkách se vyskytují tři základní polymorfy (podle vzrůstající symetrie): nízký tridymit, nízký křemen a nízký cristobalit. Všechny mohou přecházet transformací z jednoho na druhý. Zároveň může každý polymorf přecházet reversibilním procesem na vysokoteplotní formu vyšší křemen - nad 573 C vyšší tridimit nad 870 C vyšší cristobalit nad 1470 C Existují i vysokoteplotní a vysokotlaké polymorfní modifikace SiO 2 - stišovit (rutilová struktura) a coesit.

KŘEMEN SiO 2 Symetrie: hexagonální, nízký křemen oddělení trigonálně trapezoedrické a vyšší křemen oddělení hexagonálně trapezoedrické Forma výskytu: Krystalových tvarů byla popsána celá řada. Dvojčatné srůsty se řídí podle tří zákonů: dauphinéský zákon (alpský) je srůstání pravého křemene s pravým nebo levého s levým podle osy c. brazilský zákon je srůstání levého a pravého křemene podle roviny (11-20). japonský zákon je srůst podle roviny (11-22). Agregáty bývají kusové, zrnité, vláknité nebo stébelnaté s radiálně paprsčitou stavbou. Levý a pravý křemen Srůst křemene dauphinéský (vlevo) a brazilský (vpravo)

KŘEMEN SiO 2 Křemen, Banská Štiavnica (zdroj Herčko. 1982) Fyzikální vlastnosti: T = 7, H = 2,65; barva křemene bývá různá a vyčleňují se tyto barevné variety: Japonský srůst křemene (4 cm), Arkansas (zdroj Lapis)

KŘEMEN SiO 2 Křemen, Banská Štiavnica (zdroj Herčko. 1982) Fyzikální vlastnosti: T = 7, H = 2,65; barva křemene bývá různá a vyčleňují se tyto barevné variety: ametyst - fialový křemen citrín - žlutý křemen záhněda - hnědý nebo kouřový křemen morion - černý křemen mléčný křemen - bílý křemen zakalený vzduchovými bublinkami křišťál - čirý křemen růženín - růžový křemen železitý křemen - červený křemen zabarvený šupinkami hematitu

KŘEMEN SiO 2 Lesk je skelný, lom lasturnatý. Vzhledem k polaritě osy c jeví piezoelektrické vlastnosti. Křemen existuje také v mikrokrystalických varietách, z nichž nejznámější jsou chalcedon, achát a jaspis. Složení a struktura: Chemicky bývá čistý. Při teplotě 573 C přechází křemen (nižší) na křemen (vyšší) pouhým posunutím atomů ve struktuře bez porušení vazeb. Vznik a výskyt: Nejběžnější minerál magmatických hornin (granity, pegmatity, křemenné diority), metamorfovaných hornin (fylity, svory) i sedimentárních hornin (slepence, pískovce). Běžný je v greisenech, na hydrotermálních žilách, na alpských žilách nebo v rozsypech. Naleziště: Dolní Bory (záhnědy v pegmatitech), Andělské domky u Žulové (křišťály), Mirošov, Krásné u Šumperka (alpská parageneze), Banská Štiavnica (drůzovitý křemen na hydrotermálních žilách) a řada dalších lokalit. Použití: využíván v průmyslu pro své optické a piezoelektrické vlastnosti, ve šperkařství Diagnostické znaky: tvrdost, krystalové tvary, nedostatek štěpnosti.

OPÁL SiO 2. nh 2 O Symetrie: amorfní Forma výskytu: Hroznovité, kulovité nebo hlízovité agregáty, povlaky, žilky. Fyzikální vlastnosti: T = 5-6; H = 2-2,2; barva zpravidla šedá nebo bílá, existuje ale i řada nejrůzněji zbarvených odrůd (dřevitý opál, drahý opál a jiné). Složení a struktura: Zpravidla obsahuje 3-12% vody. Vznik a výskyt: Je to nízkoteplotní minerál, který vzniká i v povrchových podmínkách. Vzniká jako sekundární produkt v dutinách a trhlinách řady hornin, nachází se v reziduech hadců nebo je součástí schránek některých živočichů. Naleziště: Kozákov, Nová Paka (dutiny bazaltů), Křemže, Věžná (rezidua hadců)

Skupina živců Složení minerálů této skupiny lze vyjádřit pomocí trojúhelníkového diagramu ortoklas (KAlSi 3 O 8 ) - albit (NaAlSi 3 O 8 ) - anortit (CaAl 2 Si 2 O 8 ) Členy v řadě albit - ortoklas se označují jako alkalické živce, členy řady albit - anortit jako plagioklasy. Mimo tyto řady existuje ještě barnatý živec celsian (BaAl 2 Si 2 O 8 ). Živce jsou charakterizovány svým složením (podíl koncových členů Or, Ab a An), i svým strukturním stavem. Distribuce atomů Al v tetraedrických pozicích je totiž silně závislá na teplotě krystalizace a teplotní historii každého živce. Živce utuhlé velmi rychle mají vysoký stupeň neuspořádanosti Al - Si (označují se jako vysoké - high), živce krystalizující zvolna se vyznačují vysokým stupněm uspořádání (označení nízké - low).

Nomenklatura plagioklasů a vysokoteplotních alkalických živců (podle Dear, 1963)

Skupina živců Struktura živců je založena na prostorové síti SiO 4 tetraedrů, která jsou v některých pozicích nahrazovány tetraedry AlO 4 Tím je umožněn vstup dalších prvků do struktury (Na, K, Ca, Ba). Neomezenou izomorfní mísitelnost najdeme pouze v řadě plagioklasové, řada albit - ortoklas je neomezeně mísitelná pouze za vyšších teplot. Při postupném vzniku živců z taveniny dochází k tzv. exsoluci (odmíšení) a vzniku pertitů (resp. antipertitů). Mísitelnost mezi ortoklasem a anortitem je velmi omezená. Naopak izomorfie v plagioklasové řadě je dokonalá a je podle složení vyčleněna řada odrůd. Obecný vzorec plagioklasů je pak uváděn jako: Na 1-x Ca x (Si 3-x Al 1+x O 8 ).

MIKROKLIN KAlSi 3 O 8 Forma výskytu: Běžně dvojčatí podle albitového (dvojčatná rovina (010)) a periklinového (dvojčatná osa [010]) zákona a vytváří se tak mikroklinové mřížkování. Zpravidla tvoří štěpné masy a nepravidelná zrna. Fyzikální vlastnosti: T = 6; H = 2,54-2,57; barva bílá nebo světlé odstíny žluté a zelené, také bezbarvý, lesk skelný. Štěpnost dokonalá podle (001) a dobrá (010), svírají úhel téměř 90. Složení a struktura: Běžná je nepatrná přítomnost Na. Se zvyšující se teplotou (high - vysoký mikroklin) vzrůstá neuspořádanost Al - Si a struktura se může transformovat až na sanidin. Vznik a výskyt: Běžný horninotvorný minerál žul, rul, zelených břidlic a pegmatitů. Naleziště: Vernéřov, Otov, Meclov (pegmatity), Měděnec (ortoruly) Použití: keramický průmysl Diagnostické znaky: mikroklinové mřížkování, štěpnost

ORTOKLAS KAlSi 3 O 8 Forma výskytu: Krystaly mají krátce sloupcovitý nebo tabulkovitý habitus, velmi často bývá zdvojčatělý. Podle karlovarského zákona jsou to penetrační prorostlice podle osy c, u bavenského zákona podle plochy (021) nebo podle manebašského zákona podle roviny (001). Zpravidla tvoří štěpné agregáty a zrna v horninách. Fyzikální vlastnosti: T = 6; H = 2,57; je bezbarvý nebo světle béžový, šedý, načervenalý, lesk skelný, štěpnost podle (001) a (010) dokonalá. Složení a struktura: Běžná je přítomnost Na. Je středněteplotním živcem s částečným uspořádáním Al - Si. Vznik a výskyt: Jeden z nejdůležitějších horninotvorných minerálů magmatických hornin (žuly, syenity, aplity, pegmatity) a metamorfitů (ruly). Méně častý je na hydrotermálních a alpských žilách.

ORTOKLAS KAlSi 3 O 8 Krystaly ortoklasu (zdroj Ježek, 1932) Naleziště: Dolní Bory, Meclov, Otov (pegmatity), třebíčský masív (syenity), Karlovy Vary, Loket (dvojčata v žulách) Použití: keramický průmysl Diagnostické znaky: barva, štěpnost Karlovarské dvojče ortoklasu levé a pravé (zdroj Ježek, 1932)

SANIDIN KAlSi 3 O 8 Forma výskytu: Krystaly mají tabulkovitý habitus s převládajícími plochami (010). Časté jsou srůsty podle karlovarského, manebašského a bavenského zákona. Fyzikální vlastnosti: T = 6; H = 2,56-2,62; bezbarvý, šedý, lesk skelný. Štěpnost podle (010) a (001) dokonalá. Složení a struktura: Vysokoteplotní živec, který je za teplot vzniku mísitelný s vysokým albitem. Vyznačuje se vysokým stupněm neuspořádanosti Al - Si. Vznik a výskyt: Typický minerál výlevných hornin (trachity, ryolity) a kontaktně metamorfovaných hornin. Naleziště: Heřmanov u Teplé (trachyt), Vyhně u Banské Štiavnice (ryolit) Diagnostické znaky: vyrostlice v efuzívech

Plagioklasová řada albit (NaAlSi 3 O 8 ) - anortit (CaAl 2 Si 2 O 8 ) složení jednotlivých členů podle přítomnost anortitové složky: albit - An 0-10, oligoklas - An 10-30, andezín - An 30-50, labradorit - An 50-70, bytownit - An 70-90 a anortit - An 90-100. Forma výskytu: Krystaly zdvojčatělé podle karlovarského, manebašského, bavenského, periklinového nebo albitového zákona, agregáty štěpné masy nebo zrna. Fyzikální vlastnosti: T = 6; H = 2,62-2,76; barva světle šedá, světle okrová nebo bývají bezbarvé, štěpnost podle (001) a (010) dokonalá. Většina fyzikálních vlastností souvisí s chemickým složením. Složení a struktura: V rámci izomorfní řady různé poměry Na:Ca, běžně bývá nepatrně K. Stupeň uspořádání Al : Si je vysoký. Vznik a výskyt: Běžné horninotvorné minerály vyvřelých (gabro, bazalt, diorit) a metamorfovaných (amfibolit, rula) hornin. Naleziště: téměř všude Použití: keramický průmysl Diagnostické znaky: štěpnost, zdvojčatění (jen mikroskopicky)

NEFELÍN (Na,K)AlSiO 4 Symetrie: hexagonální Forma výskytu: Krystaly prizmatické, častěji masívní a zrnité agregáty. Fyzikální vlastnosti: T = 5,5-6; H = 2,6-2,65; barva bílá, žlutá, šedá, zelenavá nebo bezbarvý, lesk skelný až mastný, štěpnost podle báze a prizmatu nedokonalá. Složení : Poměr K : Na je různý, neomezená mísitelnost existuje až nad teplotou 1000 C. Vznik a výskyt: Typický minerál alkalických hornin (nefelinity, syenity), může vznikat i metasomatickými pochody. Naleziště: Vinařická hora u Kladna, Podhorní vrch u Mariánských lázní Použití: keramický průmysl Diagnostické znaky: tvar krystalů, asociace minerálů

ANALCIM NaAlSi 2 O 6. H 2 O Forma výskytu: Krystaly kubické nebo zrnité agregáty. Fyzikální vlastnosti: T = 5-5,5; H = 2,27; bývá bezbarvý, bílý, narůžovělý, lesk skelný, neštěpný. Složení a struktura: Za Na může zastupovat malé množství K nebo Ca, část Si může být ještě nahrazena Al. Ve směru trojčetných os jsou velké dutiny obsazené molekulami vody. Analcim je někdy řazen k zeolitům, ale jeho chemismus a struktura odpovídají spíše skupině zástupců živců (leucit, nefelin). Vznik a výskyt: Je pozdním nerostem alkalických plutonitů (syenity, těšínity) a vulkanitů (fonolity, trachyty). Jako sekundární výplň trhlin a dutin se uplatňuje v řadě výlevných hornin. Vzácně vzniká v sedimentech, pěkné krystaly bývají na alpských žilách. Naleziště: Košťál u Třebenic, Hončova Hůrka u Příbora (primární výskyt v magmatitech), Kozákov, Morcinov u Lomnice nad Popelkou (dutiny v bazaltech), Markovice (alpská parageneze). Diagnostické znaky: tvar krystalů, parageneze minerálů

Skupina zeolitů Rozsáhlá skupina vodnatých silikátů s podobným složením a stejným typem geneze. V prostorové základní strukturní kostře jsou uloženy vedle atomů K, Na, Ca i molekuly vody. Kromě toho struktura obsahuje velké dutiny nebo kanály, ze kterých po zahřátí uniká vázaná voda a po ochlazení se může opět vrátit do svých původních pozic. Kromě vody je tento typ struktury schopen absorbovat i další ionty různých velikostí. Této důležité vlastnosti zeolitových struktur se hojně využívá v průmyslu, kde se zeolity používají jako iontoměniče. Zeolity jsou zpravidla dobře krystalované minerály běžné v dutinách a na puklinách bazických vyvřelých hornin nebo v nízce metamorfovaných horninách. K nejběžnějším zeolitům se řadí natrolit, chabazit a heulandit.

NATROLIT Na 2 Al 2 Si 3 O 10. 2H 2 O Forma výskytu: Dlouze sloupcovité nebo jehličkovité krystaly, agregáty celistvé, snopkovité, radiálně paprsčité. Fyzikální vlastnosti: T = 5-5,5; H = 2,25; barva bílá, šedá, načervenalá nebo je bezbarvý, lesk skelný, dokonale štěpný podle (110). Složení a struktura: Nepatrné příměsi K nebo Ca. Patří do skupiny vláknitých zeolitů. Vznik a výskyt: Převážně se vyskytuje v dutinách bazických i alkalických efuzivních hornin, ale je znám i z některých pegmatitů, alpské parageneze nebo hadců. Naleziště: Mariánská hora v Ústí nad Labem, Zálezly, Soutěsky u Děčína (bazická efuzíva), Markovice (alpská parageneze), Věžná (desilikovaný pegmatit) Diagnostické znaky: vláknité krystaly

Děkuji za pozornost.