Klepnutím lze upravit styl předlohy. nadpisů. Kamil Říha Faculty of Electrical Engineering and Communication Department of Telecommunications

Podobné dokumenty
Klepnutím lze upravit styl předlohy. nadpisů. nadpisů.

Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Teacher: Student:

The Over-Head Cam (OHC) Valve Train Computer Model

Využití hybridní metody vícekriteriálního rozhodování za nejistoty. Michal Koláček, Markéta Matulová

Compression of a Dictionary

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

WORKSHEET 1: LINEAR EQUATION 1

Introduction to MS Dynamics NAV

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů

Litosil - application

Klepnutím lze upravit styl předlohy. Klepnutím lze upravit styl předlohy. nadpisů. nadpisů. Aleš Křupka.

EXACT DS OFFICE. The best lens for office work

Vliv metody vyšetřování tvaru brusného kotouče na výslednou přesnost obrobku

GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA

Transportation Problem

Angličtina v matematických softwarech 2 Vypracovala: Mgr. Bronislava Kreuzingerová

Stojan pro vrtačku plošných spojů

Czech Republic. EDUCAnet. Střední odborná škola Pardubice, s.r.o.

Just write down your most recent and important education. Remember that sometimes less is more some people may be considered overqualified.

LOGOMANUÁL / LOGOMANUAL

Perception Motivated Hybrid Approach to Tone Mapping

USING VIDEO IN PRE-SET AND IN-SET TEACHER TRAINING

Radiova meteoricka detekc nı stanice RMDS01A

2. Entity, Architecture, Process

Klepnutím lze Introduction upravit styl předlohy. nadpisů.

Dynamic Development of Vocabulary Richness of Text. Miroslav Kubát & Radek Čech University of Ostrava Czech Republic

SEMI-PRODUCTS. 2. The basic classification of semi-products is: standardized semi-products non-standardized semi-products

Image Analysis and MATLAB. Jiří Militky

Aplikace matematiky. Dana Lauerová A note to the theory of periodic solutions of a parabolic equation

Friction drives have constant or variable drives (it means variators). Friction drives are used for the transfer of smaller outputs.

Dynamic programming. Optimal binary search tree

2 Axiomatic Definition of Object 2. 3 UML Unified Modelling Language Classes in UML Tools for System Design in UML 5

CHAIN TRANSMISSIONS AND WHEELS

Patch tracking based on comparing its pixels 1

Karta předmětu prezenční studium

Dynamic Signals. Ananda V. Mysore SJSU

DC circuits with a single source

TKGA3. Pera a klíny. Projekt "Podpora výuky v cizích jazycích na SPŠT"

2011 Jan Janoušek BI-PJP. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

VYSOKÁ ŠKOLA HOTELOVÁ V PRAZE 8, SPOL. S R. O.

CARBONACEOUS PARTICLES IN THE AIR MORAVIAN-SILESIAN REGION

Why PRIME? 20 years of Erasmus Programme Over 2 million students in total Annually

Standardní řada lisů Standard range of presses: x x x

SPECIFICATION FOR ALDER LED

Biosensors and Medical Devices Development at VSB Technical University of Ostrava

AIC ČESKÁ REPUBLIKA CZECH REPUBLIC

PAINTING SCHEMES CATALOGUE 2012

Geometry of image formation

DATA SHEET. BC516 PNP Darlington transistor. technický list DISCRETE SEMICONDUCTORS Apr 23. Product specification Supersedes data of 1997 Apr 16

Fourth School Year PISTON MACHINES AND PISTON COMPRESSORS

Czech Technical University in Prague DOCTORAL THESIS

Air Quality Improvement Plans 2019 update Analytical part. Ondřej Vlček, Jana Ďoubalová, Zdeňka Chromcová, Hana Škáchová

Bioinformatika a výpočetní biologie. KFC/BIN VII. Fylogenetická analýza

Signal Processing Laboratory 1 /18 SPLAB, BUT. Klepnutím lze upravit styl předlohy. nadpisů.

Database systems. Normal forms

Třída: VI. A6 Mgr. Pavla Hamříková VI. B6 RNDr. Karel Pohaněl Schváleno předmětovou komisí dne: Podpis: Šárka Richterková v. r.

Foster Bohemia s.r.o. Laboratoř měření imisí Immission Measurement Laboratory. Mezi Rolemi 54/10, Praha 5, Jinonice, Česká republika

Výuka odborného předmětu z elektrotechniky na SPŠ Strojní a Elektrotechnické

On large rigid sets of monounary algebras. D. Jakubíková-Studenovská P. J. Šafárik University, Košice, Slovakia

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost

II/2 Inovace a zkvalitnění výuky cizích jazyků na středních školách

A Note on Generation of Sequences of Pseudorandom Numbers with Prescribed Autocorrelation Coefficients

Lukáš Brodský Praha Osnova. Objektový přístup Verze 4, 5, 6 / 7 Developer7 -funkčnost, nové vlastnosti HW

MC Tlumiče (řízení pohybu) MC Damper

MAIN APPLICATIONS AIRCRAFT INDUSTRY POWER INDUSTRY TRANSPORTATION INDUSTRY MINING AND CHEMICAL INDUSTRY GENERAL INDUSTRY

TELEGYNEKOLOGIE TELEGYNECOLOGY

Automatika na dávkování chemie automatic dosing

The Czech education system, school

pánská peněženka / men s wallet size: 13,5 x 11 cm pánská peněženka / men s wallet size: 15 x 9,5 cm

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Project Life-Cycle Data Management

VŠEOBECNÁ TÉMATA PRO SOU Mgr. Dita Hejlová

ITICA. SAP Školení přehled Seznam kurzů

Caroline Glendinning Jenni Brooks Kate Gridley. Social Policy Research Unit University of York

Britské společenství národů. Historie Spojeného království Velké Británie a Severního Irska ročník gymnázia (vyšší stupeň)

Case Study Czech Republic Use of context data for different evaluation activities

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

USER'S MANUAL FAN MOTOR DRIVER FMD-02

Inovace řízení a plánování činností s ohledem na požadavky ISO 9001

místo, kde se rodí nápady

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost

CZ.1.07/1.5.00/

CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA

Extrakce nezávislé komponenty

Digitální učební materiál

Risk management in the rhythm of BLUES. Více času a peněz pro podnikatele

Drags imun. Innovations

PixLa PIXEL LABYRINTH PIXEL LABYRINTH PIXEL LABYRINTH PIXEL LABYRINTH PIXEL LABYRINTH PIXEL LABYRINTH PIXEL LABYRINTH PIXEL LABYRINTH PIXEL LABYRINTH

Elektronický tonometr

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Postup objednávky Microsoft Action Pack Subscription

PRAVIDLA ZPRACOVÁNÍ STANDARDNÍCH ELEKTRONICKÝCH ZAHRANIČNÍCH PLATEBNÍCH PŘÍKAZŮ STANDARD ELECTRONIC FOREIGN PAYMENT ORDERS PROCESSING RULES

SEZNAM PŘÍLOH. Příloha 1 Dotazník Tartu, Estonsko (anglická verze) Příloha 2 Dotazník Praha, ČR (česká verze)... 91

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Petr Bednář managing director

The tension belt serves as a tension unit. After emptying the belt is cleaned with a scraper.

Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Inovace a individualizace výuky

Karta předmětu prezenční studium

SIMATIC S7-1500(T) SIMOTION konfigurace systému Motion Control. Engineered with TIA Portal. Unrestricted Siemens AG 2017

Transkript:

1 /18 SPLAB, BUT Klepnutím lze upravit styl předlohy http://spl.utko.feec.vutbr.cz Kamil Říha Faculty of Electrical Engineering and Communication Department of Telecommunications Czech Republic European Union

2 /18 /52 SPLAB, BUT Klepnutím Group of Biomedical lze upravit Signal styl Processing předlohy Biomedical sensors design and signal processing Signal processing for computer tomography and magnetic resonance 3D data Ultrasound images and video sequences processing Medical hardware designing (specialized microprocessor controlled equipment) Diagnosis of nervous system disorders from speech

3 /18 /52 SPLAB, BUT Klepnutím lze Overview upravit styl předlohy common carotid artery (CCA ) in ultrasound scans Ultrasound B-mode image processing Preprocessing (de-noising, stabilization) Tracking objects in a sequence Data post-processing (analysis) Artery localization in longitudinal scan in transversal (perpendicular) scan

4 /18 /52 SPLAB, BUT The common carotid artery (CCA) Klepnutím lze upravit styl předlohy Common carotid artery (carotis communis) is an artery that supplies the head and neck with oxygenated blood CCA ascends within the neck and it bifurcates into two branches External carotid artery (ECA) Supplying the exterior of the head and face Internal carotid artery (ICA) Supplying the parts within the cranial and orbital cavities Magnetic Resonance Angiography Arteries of the neck

5 /18 /52 SPLAB, BUT Klepnutím The common lze upravit carotid styl artery předlohy (CCA) Source of important information Doctors can use it to evaluate the patients health Can be measured noninvasively by using ultrasound imaging Superficial imaging linear array transducer Transverse x longitudinal sections linear array transducer Transverse section Longitudinal section CCA

6 /18 /52 SPLAB, BUT Klepnutím Processing lze upravit Chain styl předlohy A. Pre-processing B. Processing C. Post-processing Noise reduction Noise in US images Noise reduction with adaptive filters Noise reduction with wavelet transformation Motion compensation original method based on Optical flow analysis and vector field processing (pulsative movement suppression)

7 /18 /52 SPLAB, BUT Klepnutím Motion lze upravit compensation styl předlohy Why? Doctors want to examine a certain region in video-sequence This region is moving in recorded video-sequence Because of free-hand examination probe movement Unwanted translational movement in sonographic videosequences Effort to eliminate such translation movement Stabilization of examined region = motion compensation 7

8 /18 /52 SPLAB, BUT Klepnutím Free-hand lze upravit scanning styl předlohy Main idea: translate image in inverse direction against the unwanted movement Before motion compensation After motion compensation 8

9 /18 /52 SPLAB, BUT Klepnutím B. Medical lze upravit image processing styl předlohy A. Pre-processing B. Processing C. Post-processing Artery section area tracking in a video-sequence 9

10 /18 /52 SPLAB, BUT Klepnutím Artery section lze upravit area styl tracking předlohy Main goal: to develop a method for the tracking of an artery section area in its perpendicular or longitudinal cut in the ultrasound scan. Typical perpendicular cut of an artery in sonographic image: The area inside the artery depends on blood pressure level. Systolic pressure level = maximal, diastolic pressure level = minimal artery section area. Videosequence contains the cardiac cycle data. 10

11 /18 /52 SPLAB, BUT Good features to track Klepnutím lze upravit styl předlohy denoting The main goal of this stage is to denote the features being at the artery edge. Firstly, the Hessian is computed for every pixel in the area of interest: H f x, y = 2 f x 2 2 f yx 2 f xy 2 f then some neighbourhood S(p) of every coordinate in resulting second derivative functions is counted in: M x, y = S p S p 2 f x 2 2 f yx y 2 2 f xy finally the good feature is detected based on eigenvalues of the matrix M. S p S p 2 f y 2 11

12 /18 /52 SPLAB, BUT Good features to track Klepnutím lze upravit styl předlohy denoting In practice. initial ring defined by hand 12

13 /18 /52 SPLAB, BUT Good features to track Klepnutím lze upravit styl předlohy denoting In practise. detected features 13

14 /18 /52 SPLAB, BUT Klepnutím Optical Flow lze upravit tracking styl procedure předlohy Optical flow determination by Lucas-Kanade method: E x u + E y v + E t = 0 where E x, y, t is the video sequence (or more likely the coordinates of features) and E x = E x, E y = E y, E t = E t then the over determined equation E x1 E x2 E xn E y1 E y2 E yn u v = E t1 E t2 E tn dx dy and u =, v = dt dt is solved in the least squares sense 14

15 /18 /52 SPLAB, BUT Optical Flow: tracking procedure Klepnutím lze upravit styl předlohy Solving of this equation gives us the motion vector (u,v), which implicitly means the coordinate of the feature in next frame and consequently in the whole videosequence. Now we have to compute the area of the artery as an ellipse fitted to feature points (in the sense of least square method) in every frame: The area of the ellipse is a searched value (in dependency on time) computed simply as: ellipse area = π major axis minor axis 15

16 /18 /52 SPLAB, BUT Klepnutím experimental lze upravit results styl předlohy Final output: cardiac cycle curve the inner part of artery cross-section, expressed in terms of the number of pixels located within the artery circle, in dependence on time. The time is derived from the FPS of a given video-sequence (32 FPS). 16

17 /18 /52 SPLAB, BUT Klepnutím Experimental lze upravit results styl předlohy.demonstration. 17

18 /18 /52 SPLAB, BUT Klepnutím Experimental lze upravit results styl předlohy Different methods of analysation are possible (based on principle of fetures tracking) Point-to-Point measurement Very simple distance measurement Multipoint-to-multipoint measurement More precise distance measurement Measurement of a distance between two splines Measure a distance in many points between two curves perpendicularly to axis General shape measurement Analyze general shape and measure inner size perpendicularly to axis These methods are implemented in application called sonoskop Including the circular artery section area analysis, all the methods can be used for medical examination The methods are not strictly for examination of arteries They can be also used for heart examination, universal methods in industry etc. 18

19 /18 /52 SPLAB, BUT Multipoint-to-Multipoint Klepnutím lze upravit styl předlohy measurement 19

20 /18 /52 SPLAB, BUT Measurement of a Distance Between Klepnutím lze upravit styl předlohy Two Splines 20

21 /18 /52 SPLAB, BUT Klepnutím General lze shape upravit measurement styl předlohy 21

22 /18 /52 SPLAB, BUT Klepnutím Post-processing lze upravit styl předlohy A. Pre-processing B. Processing C. Post-processing Normalization of different output curves produced by methods with different initialisation step (processing the same video sequence). There is also a possibility to process the curves as a standard 1D signal (e.g. 1D median filtering). 22

23 /18 /52 SPLAB, BUT Klepnutím Cardiac lze cycle upravit computation styl předlohy significant features for are fitted by ellipse and tracked through the video sequence Automatic initialization: Hand initialization: 23

24 /18 /52 SPLAB, BUT S [pxl 2 ] Klepnutím Cardiac lze cycle upravit computation styl předlohy the cardiac cycles (ellipse areas in dependence on time) are obtained by each method 5000 4500 4000 3500 3000 2500 S 1 S 2 When we want to compare both results, we have to normalize these curves considering the acquisition physical principle. 2000 t 24

25 /18 /52 SPLAB, BUT S - S avg [pxl 2 ] Klepnutím Postprocessing lze upravit styl předlohy after the DC component removal 500 n 300 S avg = 1 n i=1 s i 100-100 t -300-500 25

26 /18 /52 SPLAB, BUT S [pxl 2 ] Klepnutím Postprocessing lze upravit styl předlohy after the window-based DC component removal 400 there are differences because absolute values of S 2 (gray) are smaller than corresponding values of S 1 (black) S avg_w i = 1 w w 2 i= w 2 s i+w 200 0 t -200-400 S i = s i S avg_w i 26

27 /18 /52 SPLAB, BUT Klepnutím Postprocessing lze upravit styl předlohy the movement of points localised on the artery border is independent on the radius of detected area - the radius change is constant, independent on the circle size area of i-th circle: s i = πr 2 i radius of i-th circle: r i = s i π 2 1 r i = s i π S avg_w π 27

28 /18 /52 SPLAB, BUT r [pxl] Klepnutím Postprocessing lze upravit styl předlohy after the calculation of radius change 1,5 1 r i = s i π S avg_w π 0,5 0-0,5-1 -1,5 t [sec] 28

29 /18 /52 SPLAB, BUT Klepnutím lze upravit styl předlohy A. Pre-processing Partial Conclusion B. Processing C. Post-processing Basic chain for ultrasound medical video sequences processing methods and results have been presented Mainly for carotis communis analysis Automatic detection is needed for the method initialisation 29

30 /18 /52 SPLAB, BUT Artery localization in longitudinal scan Klepnutím lze upravit styl předlohy Input: image of longitudinal section of CCA Output: localized CCA in image 30

31 /18 /52 SPLAB, BUT Klepnutím DETECTION lze upravit PROBLEMS styl předlohy Artery localization State of the art in artery localization (longitudinal section, US) Manual Automatic (not robust problems with non-horizontally arteries, curved arteries) non-horizontally arteries curved arteries 31

32 /18 /52 SPLAB, BUT Klepnutím PROPOSED METHOD lze upravit FOR ARTERY styl LOCALIZATION předlohy Classification Post-processing Sampling, feature extraction SVM classifier Artery points selection RANSAC method px features [1,1] [1.0,5.3,3.1, ] [5,2] [1.1,3.3,1.1, ] [7,2] [0.0,2.3,7.8, ] [10,1] [2.5,5.85,2.1, ] 32

33 /18 /52 SPLAB, BUT SAMPLING, FEATURE EXTRACTION Klepnutím lze upravit styl předlohy Classification Post-processing Sampling, feature extraction SVM classifier Artery points selection RANSAC method Sampling sampling Point 1 Point 2 Point 3 Point 4 33

34 /18 /52 SPLAB, BUT Klepnutím Extraction lze of local upravit image styl features předlohy Subsequent classification is based on local image features Local image features = parameters obtained form the pixels and their neighborhood Examples of local image features Mean value Standard deviation Max, median, min values Derivatives (Sobel, Laplacian) Haar features etc. Examples of rectangular neighborhoods 34

35 /18 /52 SPLAB, BUT Extraction of local image features Klepnutím lze upravit styl předlohy Local features computed in certain neighborhood (rectangular, circular, etc.) of sampled pixels and formatted into the table Sampled input image Point 1 Point 2 Point 3 Point 4 compute features Local features for particular points Feature 1 Feature 2 Point 1 10.851 128.553 Point 2 11.524 155.984 Point 3 9.881 105.632 Point 4 13.235 156.667 e.g. mean value e.g. standard deviation 35

36 /18 /52 SPLAB, BUT SVM CLASSIFIER Klepnutím lze upravit styl předlohy Classification Post-processing Sampling, feature extraction SVM classifier Artery points selection RANSAC method Classification is performed on the basis of local features Two class classifying of pixels artery pixels (depicted as white pixels) other pixels (depicted as black pixels) SVM classifier Support vector machine classification We test two implementations Classical implementation Extended implementation (radial basis function mapping) 36

37 /18 /52 SPLAB, BUT SELECTION OF POINTS Klepnutím lze upravit styl předlohy Classification Post-processing Sampling, feature extraction SVM classifier Artery points selection RANSAC method In further processing only pixels classified as artery pixels are considered Why there are misclassified points? You can see, that there are some misclassified pixels Similarity of tissue, poor accuracy of classifier, bad choice of features 37

38 /18 /52 SPLAB, BUT RANSAC ALGORITHM Klepnutím lze upravit styl předlohy Classification Post-processing Sampling, feature extraction SVM classifier Artery points selection RANSAC method RANSAC algorithm suppresses points that were misclassified as artery pixels Misclassified points form small clusters, or they are isolated points RANSAC algorithm find the best linear model of artery 38

39 /18 /52 SPLAB, BUT PROPOSED METHOD FOR ARTERY LOCALIZATION Klepnutím lze upravit styl předlohy IMPROVEMENT FOR CURVED ARTERIES Classification Post-processing Sampling, feature extraction SVM classifier Artery points selection Proposed RANSAC based method px features px features label [1,1] [1.0,5.3,3.1, ] [5,2] [1.1,3.3,1.1, ] [7,2] [0.0,2.3,7.8, ] [10,1] [2.5,5.85,2.1, ] [1,1] [1.0,5.3,3.1, ] 0 [5,2] [1.1,3.3,1.1, ] 0 [7,2] [0.0,2.3,7.8, ] 1 [10,1] [2.5,5.85,2.1, ] 1 39

40 /18 /52 SPLAB, BUT Klepnutím CLASSIFICATION lze upravit STEP styl předlohy Classification Post-processing Sampling, feature extraction SVM classifier Artery points selection Proposed RANSAC based method Classification + Artery points selection SVM (Support Vector Machine) classifier Two category classification (Artery pixels X Other pixels) Feature set for classifier - local image features In further processing only Artery pixels Select only pixels classified as Artery pixels Highlighted artery pixels Due to the classifier inaccuracy misclassified pixels Post-processing 40

41 /18 /52 SPLAB, BUT Klepnutím POST-PROCESSING lze upravit styl STEP předlohy Classification Post-processing Sampling, feature extraction SVM classifier Artery points selection Proposed RANSAC based method Suppress misclassified pixels Problem of data containing outliers RANSAC algorithm 41

42 /18 /52 SPLAB, BUT Klepnutím PROPOSED lze RANSAC-BASED upravit styl METHOD předlohy Classification Post-processing Sampling, feature extraction SVM classifier Artery points selection Proposed RANSAC based method RANSAC Standard linear model is inapplicable artery can be curved Proposed modification of standard RANSAC algorithm Non-linear mathematical model - explicit polynomial curve (second order) y = p 2 x 2 + p 1 x + p 0. 42

43 /18 /52 SPLAB, BUT Artery Klepnutím detection lze upravit in transversal styl předlohy scan Detection of artery in ultrasound image of perpendicular cut The area inside is correlated with blood pressure level Artery section area can be modelled with ellipse shape Videosequence contains the cardiac cycle data Systolic pressure level = maximal artery section area diastolic pressure level = minimal artery section area Sample ultrasound image Artery section 43

44 /18 /52 SPLAB, BUT Artery detection in transversal scan Klepnutím lze upravit styl předlohy Circular pattern localization Exact radius determination The aim: Detection of artery Methods: Optical flow estimation Average image calculation Median filtration, thresholding Hough transform The aim: Precise localization Methods: Analysis of average intensity inside the ring 44

45 /18 /52 SPLAB, BUT Circular pattern localization Klepnutím lze upravit styl předlohy 1) Input: source frames in video-sequence 45

46 /18 /52 SPLAB, BUT Circular pattern localization Klepnutím lze upravit styl předlohy 2) Scalar field of average optical flow (average value of the movement) in the video sequence 46

47 /18 /52 SPLAB, BUT Circular pattern localization Klepnutím lze upravit styl předlohy 3) After the dilation step 47

48 /18 /52 SPLAB, BUT Circular pattern localization Klepnutím lze upravit styl předlohy 4) After thresholding 48

49 /18 /52 SPLAB, BUT Circular pattern localization Klepnutím lze upravit styl předlohy 5) After the median filtering step 49

50 /18 /52 SPLAB, BUT Circular pattern localization Klepnutím lze upravit styl předlohy 6) Hough Transform: detected circle (position of artery) 50

51 /18 /52 SPLAB, BUT Circular pattern localization Klepnutím lze upravit styl předlohy Detected circle maximum in accumulation array (Hough space) Multiple circles more peaks in accumulator Bayes classifier is used to choose the most probable circle The feature vector for the classifier consists of statistic values acquired from the pixel intensity localised inside the manually denoted circles from the training data set (average value and standard deviation) and for a circle of smaller radius and a circle from binary image 51

52 /18 /52 SPLAB, BUT Klepnutím lze Future upravit work styl předlohy real time and long-time tracking (problems with re-initialization of the tracked object) Using of genetic programming approach for the higher reliability of the algorithm Automatic detection and tracking of more complex objects (heard ventricle) 52

53 /18 SPLAB, BUT Klepnutím lze upravit styl předlohy http://spl.utko.feec.vutbr.cz Acknowledgement: This work was also prepared with the support of the MSMT project no. 2B06111: The Research of Algorithms for Processing of Digital Images and Image Sequences and the MSMT project The Research of Algorithms for Processing of Digital Images and Image Sequences, code: ME10123. Some functions from the OpenCV library (Open Source Computer Vision) were used for the implementation of algorithms. Czech Republic European Union