PV01 Fotovoltaické panely na střeše (PV 01)



Podobné dokumenty
Obnovitelné zdroje energie Budovy a energie

Budovy a energie Obnovitelné zdroje energie

Střešní fotovoltaický systém

Fotovoltaické systémy

Energetika v ČR XVIII. Solární energie

Střešní instalace fotovoltaických systémů výroba v místě spotřeby. 29. listopadu 2012 Martin Šťastný

TV01 Lokální rekuperace tepla ze splaškové vody

Projekt osvětlení Téryho chaty elektřinou ze slunce

Návrh solárního ostrovního fotovoltaického systému pro ohřev teplé vody.

10. Energeticky úsporné stavby

Dobrá investice. do fotovoltaických solárních systémů zaručuje o 42 % vyšší zisk

Návrh energetických opatření a uplatnění OZE při rekonstrukci objektu Matematicko-fyzikální fakulty UK v Praze

Slunce # Energie budoucnosti

Technologie solárních panelů. M. Simandl (i4wifi a.s.)

Otázky pro samotestování. Téma1 Sluneční záření

solární systémy Copyright (c) 2009 Strojírny Bohdalice, a.s.. All rights reserved. STISKNI ENTER

Fotovoltaické. systémy na budovách

Manažerské rozhodování a investiční strategie. cz, Přehled prezentace

Bilance fotovoltaických instalací pro aktuální dotační tituly

Trimo EcoSolutions Trimo EcoSolar PV Integrovaný fotovoltaický systém

IBC SOLAR Podnik s tradicí

Návrh FV systémů. Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů

Otázky pro samotestování. Téma1 Sluneční záření

Nezávislost na dodavatelích tepla možnosti, příklady. Tomáš Matuška Ústav techniky prostředí Fakulta strojní, ČVUT v Praze

Stavební integrace. fotovoltaických systémů

VÝKONNÝ. na míru. SOLÁRNÍ ZDROJ elektrické energie. do extrémních podnebních podmínek. POUŠŤ HORY Džungle MOŘE

NÁVRHU Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice

Fotovoltaika - legislativa. Ing. Stanislav Bock 24. května 2011

V závislosti na intenzitě slunečního záření ohřívá vnitřní klima objektu řízeným průběhem teplovzdušného proudění

Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy

Dodejte vaší fasádě energii s architektonicky působivým panelem Liberta Solar, který je určený pro zabudované fotovoltaické panelové systémy.

EUROPEAN TRADESMAN PROJECT NOTES ON ELECTRICAL TESTS OF ELECTRICAL INSTALLATIONS. Obnovitelné zdroje energií v domácnostech

Pohled na energetickou bilanci rodinného domu

ZD01 TČ plynové vzduch-voda

Provozní podmínky fotovoltaických systémů

S plochou střechou je to jako s fotovoltaikou. Vše se točí kolem ideálního spojení ekonomiky a ekologie.

Návrh solárního fotovoltaického systému s přímou výrobou a akumulací do baterií.

Energetická bilance fotovoltaických instalací pro aktuální dotační tituly

Návrh solárního fotovoltaického systému s přímou výrobou a akumulací do baterií.

Návrh solárního fotovoltaického systému s přímou výrobou a akumulací do vody.

Možnosti snížení provozních nákladů bytových domů Ing. Petr Filip, Chytrý dům s.r.o.

Chytré bydlení TRIGEMA 11/2016 autor: Jan Vostoupal

Porovnání solárního fototermického a fotovoltaického ohřevu vody

VITOVOLT. Fotovoltaické systémy Vitovolt 100 Vitovolt 200

FOTOVOLTAICKÉ SYSTÉMY S VÝCHODO-ZÁPADNÍ ORIENTACÍ A POUZE JEDNÍM MPP TRACKEREM

Solární tepelné kolektory a jejich integrace do střech. Bořivoj Šourek, Tomáš Matuška Ústav techniky prostředí, Fakulta strojní ČVUT v Praze

IDENTIFIKAČNÍ ÚDAJE ZAKÁZKY ZHOTOVITEL: Thákurova 7, Praha 6, IČO: , DIČ:

Traxle Solar sro. Vladislav Poulek. Fotovoltaické panely pro extrémní klimatické podmínky.

Solární panely. VOŠ a SPŠ Jičín

CIHLOVÝ PASIVNÍ DŮM PRO BUDOUCNOST HELUZ

NECHTE VAŠÍ STŘECHU PRACOVAT PRO VÁS SOLÁRNÍ STŘECHA OD PREFY

SOLYNDRA. SOLYNDRA Solar Fotovoltaický systém pro ploché střechy. Nová forma fotovoltaiky.

NÍZKOENERGETICKÉ BYDLENÍ Snížení energetické náročnosti. Komfortní bydlení - nový standard

EJOT PVC EJObar a TPO EJObar Návod na montáž. Jednoduché řešení upevnění pro fóliové střechy z PVC a TPO.

ZÁVISLOSTI DOPADAJÍCÍ ENERGIE SLUNEČNÍHO ZÁŘENÍ NA PLOCHU

Základní typy článků:

Sluneční energie v ČR potenciál solárního tepla

LENSUN 50 Wp - flexibilní solární panel

Termodynamické panely = úspora energie

Fotovoltaika v ČR. Radim Sroka, Bronislav Bechník Czech RE Agency. Fotovoltaika současnost, vývoj a trendy, Envi A, Ostrava

STÁTNÍ FOND ROZVOJE BYDLENÍ

Konference k vyhlášení výsledků soutěže žáků a studentů (PŘÍTECH) 23. dubna 2015 od 10 hodin

Vliv střešních oken VELUX na potřebu energie na vytápění

ENERGETICKÁ NÁROČNOST BUDOV - ZMĚNY LEGISLATIVY

Výkonový poměr. Obsah. Faktor kvality FV systému

JAK FOTOVOLTAICKÁ ELEKTRÁRNA NA STŘEŠE RODINNÉHO DOMU SNÍŽÍ ÚČET ZA ELEKTŘINU?

EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO

ESTETICKÉ A TECHNICKÉ MOŽNOSTI PŘESTAVBY ZŠ KNĚŽMOST NA PASIVNÍ AŽ TÉMĚŘ NULOVOU BUDOVU S INTEGRACÍ FV SYSTÉMU DO ARCHITEKTURY

Historie. Fotovoltaické elektrárny

Obnovitelné zdroje energie Budovy a energie

Tel , TEL Technické parametry solárních vakuových kolektorů dewon VACU

Doporučené standardy nízko energetických budov a budov s téměř nulovou potřebou energie

Ústřední vytápění 2012/2013 ZIMNÍ SEMESTR. PŘEDNÁŠKA č. 1

Fotovoltaické systémy připojené k elektrické síti

Výstavba fotovoltaických elektráren společností Qnet CZ s.r.o.

aplikace metody EPC Typy energeticky úsporných opatření a výpočet Vladimíra Henelová ENVIROS, s.r.o. vladimira.henelova@enviros.

Metodika výpočtu kritérií solárních fotovoltaických systémů pro veřejné budovy

STÁTNÍ FOND ROZVOJE BYDLENÍ

10 důvodů proč zateplit

Pokrytí potřeby tepla na vytápění a ohřev TV (90-95% energie užité v domě)

Segarcea 2 x 499 KW. PREZENTACE PROJEKTU FOTOVOLTAICKÉHO PARKU O VELIKOSTI 2 X 499 Kwp V RUMUNSKU SEGARCEA. solidsun@seznam.

TRENDY V OPRAVÁCH A MODERNIZACÍCH PANELOVÝCH DOMŮ V OBDOBÍ

ENERSOL 2015 VZDĚLÁVACÍ PROJEKT NA TÉMATA OBNOVITELNÝCH ZDROJŮ ENERGIE, ÚSPORY ENERGIÍ A SNIŽOVÁNÍ EMISÍ V DOPRAVĚ STŘEDOČESKÝ KRAJ

Co jsou ostrovní elektrárny?

NOVÁ ENERGETICKÁ ŘEŠENÍ JAKO NEDÍLNÁ SOUČÁST CHYTRÝCH MĚST

YTONG ŘEŠENÍ PRO STĚNY A STŘECHY ING. LUCIE ŠNAJDROVÁ ING. RADEK SAZAMA ING. ARCH. ZDENĚK PODLAHA

člen Centra pasivního domu

SolarEdge. Systém pro distribuovaný sběr energie. Představení společnosti SolarEdge

SOLÁRNÍ ELEKTRÁRNY. BEZ KOMPROMISU.

TOSHIBA ESTIA UNIKÁTNÍ KVALITA TEPELNÝCH ČERPADEL VZDUCH-VODA

Fotovoltaické systémy pro výrobu elektrické energie

ETL-Ekotherm a.s. TECHNOLOGICKÁ ZAŘÍZENÍ PRO KOTELNY A PŘEDÁVACÍ STANICE TEPELNÁ ČERPADLA VÝSTAVBA SOLÁRNÍCH FOTOVOLTAICKÝCH ELEKTRÁREN

Porovnání energetické náročnosti pasivního domu, nízkoenergetického domu a energeticky úsporného domu

EGE, spol. s r.o. je tradiční český výrobce speciálních zařízení pro energetický průmysl, zejména zapouzdřených vodičů, zhášecích tlumivek a

Solární teplo pro rodinný dům - otázky / odpovědi

SCHEMA OBJEKTU POPIS OBJEKTU. Obr. 3: Pohled na rodinný dům

ČVUT v Praze. Fakulta stavební Thákurova 7, Praha 6 kamil.stanek@fsv.cvut.cz BUDOVY PŘEHLED TECHNOLOGIE

Výpočet potřeby tepla na vytápění

Energeticky pasivní dům v Opatovicích u Hranic na Moravě. pasivní dům v Hradci Králové

NOVÁ ZELENÁ ÚSPORÁM (NZU) PROJEKT NA DOTACI Bc. Aleš Makový

Transkript:

ID název opatření katalog úsporných opatření PV01 Fotovoltaické panely na střeše (PV 01) Obecné zařazení: Obnovitelné zdroje energie Popis: Získávání elektrické energie přímo ze slunečního záření je z hlediska životního prostředí čistý a šetrný způsob její výroby. V případě ČR je větší využití sluneční energie zatím na počátku svého rozvoje. V průběhu poslední dekády minulého století se v ČR omezilo na ostrovní systémy pro nezávislé napájení objektů a zařízení v lokalitách bez připojení na rozvodnou síť. Fotovoltaické panely jsou často umísťovány na pevné konstrukci s daným sklonem a orientací ke světovým stranám. Výhodou je nižší cena nosné konstrukce, nevýhodou nižší energetický přínos. Pro celoroční provoz je nejlepší sklon 35 (±10 ). Obrázek 1: Fotovoltaické panely na střeše objektu. Zdroj: www.solartec.cz SWOT analýza: Silné stránky dostupnost na celé planetě; neprodukuje emise; spolehlivost (neporuchovost); bezhlučnost; výkon systému na míru; Příležitosti zvýšení účinnosti panelů; využití nevhodných lokalit pro lidi (pouště, neurodné půdy,..); využití širšího světelného spektra; Slabé stránky produkce elektrické energie jen během dne; vliv lokality a klimatických podmínek; investiční náklady; energetická náročnost výroby solárních panelů; nedostatek volného křemíku na trhu; Hrozby legislativa (např. snížené výkupní ceny el.energie); vyčerpání zásob křemíku na výrobu; počasí; výrazné znečištění atmosféry snižuje účinnost; Základní technické parametry: Protože výkon èlánku závisí na okamžitém sluneèním záøení, udává se jejich výkon jako tzv. Špièkový, tedy pøi dopadajícím záøení s intenzitou 100 W/m 2 pøi definovaném spektru. Èlánek s úèinností 17% má pøi ploše 1m 2 špièkový výkon 170 W p 1

běžná účinnost Monokrystalický 14-17 % 25% Polykrystalický 13-16 % 20% Amorfní 5-7 % 12% Tabulka 1: Účinnosti fotovoltaických panelů. Fotovoltaické panely se vyrábìjí v základních rozmìrech: Vnější rozměry panelů [mm] 1638 x 982 x 40 1318 x 994 x 46 1600 x 800 1680 x 1060 Tabulka 2: základní rozměry fotovoltaických panelů. 1482 x 992 x 40 1425 x 990 x 45 1575 x 826 x 58 1638 x 982 x 40 Ekonomika: Na základě geometrie konkrétní budovy se určí vhodný počet fotovoltaických panelů a množství vyrobené energie. Na tomto základě se kalkuluje pro konkrétní budovu celkové investiční náklady, celkovou cenu vyrobené energie, prostou návratnost a provozní náklady. Výše investice je kalkulována na základě cen technologie. Uvažovanými komponentami jsou panely Suntech STP200-18Ub ( 16 454 Kč), výkonu odpovídající měnič Kaco Power ( od 32 000 pro 1500 W do 967 000 pro 110 000 W, detailně viz parametry výpočetního modelu) a nosná konstrukce (600 Kč na 1 kus). Dále do výpočtu vstupuje odhad cen stavebních prací a ostatních služeb (revize, udělení licence, připojení k síti, doprava). Solární akumulátory nejsou uvažovanou součástí opatření. Provozní náklady: Životnost, provozní náklady a reinvestice jsou založeny na expertním odhadu. Provozní náklady se skládají z pojištění (0,4 procenta z ceny technologie) a rezervy (0,1 procenta z ceny technologie). Emise CO 2 : Emise potøebné na výrobu energie kterou vyrobí fotovoltaické panely jsou ve výsledku odeèteny od celkových emisí objektu. Podklady, citace: - Zdroje cen: http://www.solarni-panely.cz/e-shop/fotovoltaicke-elektrarny/ www.eshop.neosolar.cz http://www.poagroxxl.com/stridace/ Ceny jsou přebrány z relevantní českých internetových obchodů uvedené včetně DPH. Konkrétní jednotkové ceny jsou uvedené přímo v modelu jako fixní proměnné. - Předešlé výpočty ekowatt - Osobní konzultace Petr Kalčev, EkoWatt 2

ID název opatření katalog úsporných opatření PV02 Fotovoltaická krytina - thin-film (PV 02) Obecné zařazení: Obnovitelné zdroje energie Popis: Získávání elektrické energie přímo ze slunečního záření je z hlediska životního prostředí čistý a šetrný způsob její výroby. V případě ČR je větší využití sluneční energie zatím na počátku svého rozvoje. V průběhu poslední dekády minulého století se v ČR omezilo na ostrovní systémy pro nezávislé napájení objektů a zařízení v lokalitách bez připojení na rozvodnou síť. Stávající krytinu (hydroizolaci) plochých střech lze nahradit speciální krytinou, v níž je integrovaný pás (pásy) fotovotaiky z amorfního tenkovrstvého křemíku (thin-film). Základem systému je hydroizolační fólie na bázi EVA/PVC. Solární modul je navařen na horním povrchu fólie a tvoří s ní jeden celek. Jednotlivé moduly jsou spojeny vodiči, které probíhají na střeše pod spodní stranou fólie a jsou svedeny pod střešní konstrukci do sběrné sítě. Pásy je nutno instalovat vcelku. Nelze je tedy použít na střechu, kde jsou časté větrací otvory, komínky, dešťové vpustě a další prvky. Okraje střechy, prostupy vzduchotechniky, komíny, lávky apod. se řeší speciálními tvarovkami, se svařovanými spoji. SWOT analýza: Obrázek 1: Insatalace fotovoltaické krytiny thinfilm. Silné stránky dostupnost na celé planetě; neprodukuje emise; spolehlivost (neporuchovost); bezhlučnost; výkon systému na míru; větší energetický zisk; nízká hmotnost (do 5 kg/ m²); není třeba nosná konstrukce; Příležitosti zvýšení účinnosti panelů; Slabé stránky produkce elektrické energie jen během dne; vliv lokality a klimatických podmínek; investiční náklady; energetická náročnost výroby solárních panelů; nedostatek volného křemíku na trhu; náchylnost k poruchám; menší účinnost než klasické fotovoltaické panely; nemožnost dosáhnutí optimálního sklonu panelů ( 35 45 ); možnost poškození při instalaci antén, bleskosvodů apod; vyšší nároky na čištění od spadaného listí a prachu Hrozby legislativa (např. snížené výkupní ceny 3

využití nevhodných lokalit pro lidi (pouště, neurodné půdy,..); využití širšího světelného spektra; el.energie); vyčerpání zásob křemíku na výrobu; počasí; výrazné znečištění atmosféry snižuje účinnost; Základní technologické parametry: Amorfní tenkovrstvé fotovoltaické moduly mají asi poloviční teplotní koeficient fotoelektrického napětí a fungují tedy mnohem lépe na rozpálených střechách domů oproti krystalickým křemíkovým článkům. Současně mají také nižší účinnost ( cca 5%). Orientačně lze uvažovat s plochou 25 až 50 m2/kwp podle typu krytiny. Ekonomika: Výpočetní algoritmus na základě geometrie konkrétní budovy určí vhodný počet fotovoltaických panelů a množství vyrobené energie. Na tomto základě kalkuluje pro konkrétní budovu celkové investiční náklady, celkovou cenu vyrobené energie, prostou návratnost a provozní náklady. Investiční náklady: Výše investice je kalkulována na základě cen technologie (uvažovanými komponentami jsou panely EVALON V - Solar 408 Wp (43 273 Kč), výkonu odpovídající měnič Kaco Power, upevnění (1 350 Kč na 1 kus), odhadu cen stavebních prací a ostatních služeb (revize, udělení licence, připojení k síti, doprava). Solární akumulátory nejsou uvažovanou součástí opatření. Provozní náklady: Životnost, provozní náklady a reinvestice jsou založeny na expertním odhadu. Provozní náklady se skládají z pojištění (0,4 procenta z ceny technologie) a rezervy (0,1 procenta z ceny technologie). Emise CO 2 : Emise potøebné na výrobu energie kterou vyrobí fotovoltaické panely jsou ve výsledku odeèteny od celkových emisí objektu. Podklady, citace: - Zdroje cen: http://www.solarni-panely.cz/e-shop/fotovoltaicke-elektrarny/ www.eshop.neosolar.cz http://www.poagroxxl.com/stridace/ Ceny jsou přebrány z relevantní českých internetových obchodů uvedené včetně DPH. Konkrétní jednotkové ceny jsou uvedené přímo v modelu jako fixní proměnné. - Předešlé výpočty ekowatt - Osobní konzultace Petr Kalčev, EkoWatt 4

ID název opatření katalog úsporných opatření PV03 Fotovoltaické panely na zábradlí lodžií Obecné zařazení: Obnovitelné zdroje energie Popis: Získávání elektrické energie přímo ze slunečního záření je z hlediska životního prostředí čistý a šetrný způsob její výroby. V případě ČR je větší využití sluneční energie zatím na počátku svého rozvoje. V průběhu poslední dekády minulého století se v ČR omezilo na ostrovní systémy pro nezávislé napájení objektů a zařízení v lokalitách bez připojení na rozvodnou síť. Instalace fotovoltaiky na balkónu může architekturu domu zajímavě oživit. Výhodou je relativně snadná montáž. Nevýhodou je nevhodný sklon, svisle umístěné panely mají cca o 30% nižší energetický výnos oproti panelům se sklonem 35 až 50. Jiným omezením je pochopitelně orientace domu, v ČR Obrázek 1: Fotovoltaické zábradlí lodžií a balkonů. se nejčastěji setkáme s orientací balkónu na východ a západ. Zde je opět nutno počítat s poklesem produkce, o 15 až 20% oproti svislé ploše orientované přímo na jih. Výhodou je poměrně dobré ochlazování panelů. Je zde ovšem i vyšší riziko poškození panelů uživateli balkónů. SWOT analýza: Silné stránky dostupnost na celé planetě; neprodukuje emise; spolehlivost (neporuchovost); bezhlučnost; výkon systému na míru; větší energetický zisk; reprezentativní vzhled; zajímavý architektonický prvek; snadná montáž; dobré chlazení panelů; Příležitosti zvýšení účinnosti panelů; využití nevhodných lokalit pro lidi (pouště, neurodné půdy,..); využití širšího světelného spektra; Slabé stránky produkce elektrické energie jen během dne; vliv lokality a klimatických podmínek; investiční náklady; energetická náročnost výroby solárních panelů; nedostatek volného křemíku na trhu; náchylnost k poruchám; nevhodný sklon; nevhodná orientace balkonů a lodžií; riziko poškození ze strany uživatelů; Hrozby legislativa (např. snížené výkupní ceny el.energie); vyčerpání zásob křemíku na výrobu; počasí; výrazné znečištění atmosféry snižuje účinnost; 5

Základní technické parametry: Protože výkon èlánku závisí na okamžitém sluneèním záøení, udává se jejich výkon jako tzv. Špièkový, tedy pøi dopadajícím záøení s intenzitou 100 W/m 2 pøi definovaném spektru. Èlánek s úèinností 17% má pøi ploše 1m 2 špièkový výkon 170 W p. V pøípadech, kdy se panely montují ve svislé poloze je tøeba uvažovat s dalším snížením jejich výkonu. běžná účinnost Monokrystalický 14-17 % 25% Polykrystalický 13-16 % 20% Amorfní 5-7 % 12% Tabulka 1: Účinnosti fotovoltaických panelů. Fotovoltaické panely se vyrábìjí v základních rozmìrech: Vnější rozměry panelů [mm] 1638 x 982 x 40 1318 x 994 x 46 1600 x 800 1680 x 1060 Tabulka 2: základní rozměry fotovoltaických panelů. 1482 x 992 x 40 1425 x 990 x 45 1575 x 826 x 58 1638 x 982 x 40 Ekonomika: Výše investice je kalkulována na základě cen technologie (uvažovanými komponentami jsou panely SG 65 (5 995 Kč), výkonu odpovídající měnič Kaco Power, nosná konstrukce (252 Kč na 1 kus)), odhadu cen stavebních prací a ostatních služeb (revize, udělení licence, připojení k síti, doprava). Solární akumulátory nejsou uvažovanou součástí opatření. Provozní náklady: Životnost, provozní náklady a reinvestice jsou založeny na expertním odhadu. Provozní náklady se skládají z pojištění (0,4 procenta z ceny technologie) a rezervy (0,1 procenta z ceny technologie). Emise CO 2 : Emise potøebné na výrobu energie kterou vyrobí fotovoltaické panely jsou ve výsledku odeèteny od celkových emisí objektu. Popis metodiky: Výpočetní algoritmus na základě geometrie konkrétní budovy určí vhodný počet fotovoltaických panelů a množství vyrobené energie. Na tomto základě kalkuluje pro konkrétní budovu celkové investiční náklady, celkovou cenu vyrobené energie, prostou návratnost a provozní náklady. Podklady, citace: - Zdroje cen: http://www.solarni-panely.cz/e-shop/fotovoltaicke-elektrarny/ www.eshop.neosolar.cz http://www.poagroxxl.com/stridace/ 6

Ceny jsou přebrány z relevantní českých internetových obchodů uvedené včetně DPH. Konkrétní jednotkové ceny jsou uvedené přímo v modelu jako fixní proměnné. - Předešlé výpočty ekowatt - Osobní konzultace Petr Kalčev, EkoWatt 7

ID název opatření katalog úsporných opatření PV04 Fotovoltaické markýzy Obecné zařazení: Obnovitelné zdroje energie Popis: Získávání elektrické energie přímo ze slunečního záření je z hlediska životního prostředí čistý a šetrný způsob její výroby. V případě ČR je větší využití sluneční energie zatím na počátku svého rozvoje. V průběhu poslední dekády minulého století se v ČR omezilo na ostrovní systémy pro nezávislé napájení objektů a zařízení v lokalitách bez připojení na rozvodnou síť. U oken s jižní orientací jsou letní solární zisky obvykle vnímány jako nepříjemné, teplota v bytě roste. Instalace markýzy může zvýšit komfort bydlení. Zajímavým řešením je v tomto případě fotovoltaika integrovaná do skla. Výhodou v tomto případě je strmější sklon fotovolatiky. Případná odchylka budovy od jižního směru nemusí být závažným nedostatkem, snížení produkce při orientaci JV, JZ se dá čekat asi o 5 % nižší než při orientaci přímo na jih. U budov s orientací více na východ či západ není stínění markýzou už tak efektivní. Obrázek 1: Fotovoltaické markýzy SWOT analýza: Silné stránky dostupnost na celé planetě; neprodukuje emise; spolehlivost (neporuchovost); bezhlučnost; výkon systému na míru; větší energetický zisk; reprezentativní vzhled; snížení nežádoucích letních solárních zisků; zvýšení komfortu bydlení; Příležitosti zvýšení účinnosti panelů; využití nevhodných lokalit pro lidi (pouště, neurodné půdy); využití širšího světelného spektra; Slabé stránky produkce elektrické energie jen během dne; vliv lokality a klimatických podmínek; investiční náklady; energetická náročnost výroby solárních panelů; nedostatek volného křemíku na trhu; náchylnost k poruchám; nevhodnost pro budovy s orientací na východ, nebo západ; Hrozby legislativa (např. snížené výkupní ceny el.energie); vyčerpání zásob křemíku na výrobu; počasí; výrazné znečištění atmosféry snižuje účinnost; 8

Základní technické parametry: Protože výkon èlánku závisí na okamžitém sluneèním záøení, udává se jejich výkon jako tzv. Špièkový, tedy pøi dopadajícím záøení s intenzitou 100 W/m 2 pøi definovaném spektru. Èlánek s úèinností 17% má pøi ploše 1m 2 špièkový výkon 170 W p běžná účinnost Monokrystalický 14-17 % 25% Polykrystalický 13-16 % 20% Amorfní 5-7 % 12% Tabulka 1: Účinnosti fotovoltaických panelů. Fotovoltaické panely se vyrábìjí v základních rozmìrech: Vnější rozměry panelů [mm] 1638 x 982 x 40 1318 x 994 x 46 1600 x 800 1680 x 1060 Tabulka 2: základní rozměry fotovoltaických panelů. 1482 x 992 x 40 1425 x 990 x 45 1575 x 826 x 58 1638 x 982 x 40 Ekonomika: Výše investice je kalkulována na základě cen technologie (uvažovanými komponentami jsou panely STP 200( 16 454 Kč), výkonu odpovídající měnič Kaco Power, nosná konstrukce ( 805 Kč/kus)), odhadu cen stavebních prací a ostatních služeb (revize, udělení licence, připojení k síti, doprava). Solární akumulátory nejsou uvažovanou součástí opatření. Oproti Zábradlí lodžií jsou změny v cenách stavebních úprav a nosné konstrukce. Provozní náklady: Životnost, provozní náklady a reinvestice jsou založeny na expertním odhadu. Provozní náklady se skládají z pojištění (0,4 procenta z ceny technologie) a rezervy (0,1 procenta z ceny technologie). Emise CO 2 : Emise potøebné na výrobu energie kterou vyrobí fotovoltaické panely jsou ve výsledku odeèteny od celkových emisí objektu. Popis metodiky: Výpočetní algoritmus na základě geometrie konkrétní budovy určí vhodný počet fotovoltaických panelů a množství vyrobené energie. Na tomto základě kalkuluje pro konkrétní budovu celkové investiční náklady, celkovou cenu vyrobené energie, prostou návratnost a provozní náklady. Podklady, citace: - Zdroje cen: http://www.solarni-panely.cz/e-shop/fotovoltaicke-elektrarny/ www.eshop.neosolar.cz http://www.poagroxxl.com/stridace/ 9

Ceny jsou přebrány z relevantní českých internetových obchodů uvedené včetně DPH. Konkrétní jednotkové ceny jsou uvedené přímo v modelu jako fixní proměnné. - Předešlé výpočty ekowatt - Osobní konzultace Petr Kalčev, EkoWatt 10

ID název opatření katalog úsporných opatření PV05 Fotovoltaické panely na štítech Obecné zařazení: Obnovitelné zdroje energie Popis: Získávání elektrické energie přímo ze slunečního záření je z hlediska životního prostředí čistý a šetrný způsob její výroby. V případě ČR je větší využití sluneční energie zatím na počátku svého rozvoje. V průběhu poslední dekády minulého století se v ČR omezilo na ostrovní systémy pro nezávislé napájení objektů a zařízení v lokalitách bez připojení na rozvodnou síť. Fotovoltaické panely mohou tvořit vnější plášť zateplení s odvětranou mezerou. U panelových domů by šlo typicky o štítové stěny orientované na jih, kde nejsou okna žádná nebo jen jedno okno na patro. Nevýhodou je, že nosná konstrukce PVE musí být důkladně kotvena do panelu, takže v zateplení vzniká tepelný most. Důležité je zajistit důkladné odvětrání zadní strany panelů, protože to je jediný způsob jak panely ochlazovat. Je známo, že v takovýchto aplikacích je teplota panelů vyšší než u jiných aplikací, což zhoršuje jejich účinnost. Další výraznou nevýhodou je skutečnost, že i při jižní orientaci stěny je energetický zisk svisle umístěné fotovoltaiky cca o 30 % nižší než při sklonu 35 až 45. To výrazn ě zhoršuje ekonomiku. SWOT analýza: Obrázek 1: Aplikace fotovoltaických panelů na štítovou fasádu panelového domu. Silné stránky dostupnost na celé planetě; neprodukuje emise; spolehlivost (neporuchovost); bezhlučnost; výkon systému na míru; větší energetický zisk; reprezentativní vzhled fasády; ušetření nákladů na povrchovou úpravu fasády; Příležitosti zvýšení účinnosti panelů; využití nevhodných lokalit pro lidi (pouště, neurodné půdy,..); využití širšího světelného spektra; Slabé stránky produkce elektrické energie jen během dne; vliv lokality a klimatických podmínek; investiční náklady; energetická náročnost výroby solárních panelů; nedostatek volného křemíku na trhu; náchylnost k poruchám; vznik tepelných mostů při kotvení; nemožnost dosáhnutí optimálního sklonu panelů ( 35 45 ); vysoká teplota panelů, nutnost zajistit důkladné odvětrání; Hrozby legislativa (např. snížené výkupní ceny el.energie); vyčerpání zásob křemíku na výrobu; počasí; 11

výrazné znečištění atmosféry snižuje účinnost; Základní technické parametry: Protože výkon èlánku závisí na okamžitém sluneèním záøení, udává se jejich výkon jako tzv. Špièkový, tedy pøi dopadajícím záøení s intenzitou 100 W/m 2 pøi definovaném spektru. Èlánek s úèinností 17% má pøi ploše 1m 2 špièkový výkon 170 W p. V pøípadech, kdy se panely montují ve svislé poloze je tøeba uvažovat s dalším snížením jejich výkonu. běžná účinnost Monokrystalický 14-17 % 25% Polykrystalický 13-16 % 20% Amorfní 5-7 % 12% Tabulka 1: Účinnosti fotovoltaických panelů. Fotovoltaické panely se vyrábìjí v základních rozmìrech: Vnější rozměry panelů [mm] 1638 x 982 x 40 1318 x 994 x 46 1600 x 800 1680 x 1060 Tabulka 2: základní rozměry fotovoltaických panelů. 1482 x 992 x 40 1425 x 990 x 45 1575 x 826 x 58 1638 x 982 x 40 Ekonomika: Výše investice je kalkulována na základě cen technologie (uvažovanými komponentami jsou panely STP200 (16 454 Kč), výkonu odpovídající měnič Kaco Power, nosná konstrukce (795 Kč na 1 kus)), odhadu cen stavebních prací a ostatních služeb (revize, udělení licence, připojení k síti, doprava). Solární akumulátory nejsou uvažovanou součástí opatření. Komponenty jsou identické k PV 01, pouze změny v cenách stavebních úprav a nosné konstrukce. Oproti Zábradlí lodžií jsou změny v cenách stavebních úprav a nosné konstrukce. Provozní náklady: Životnost, provozní náklady a reinvestice jsou založeny na expertním odhadu. Provozní náklady se skládají z pojištění (0,4 procenta z ceny technologie) a rezervy (0,1 procenta z ceny technologie). Emise CO 2 : Emise potøebné na výrobu energie kterou vyrobí fotovoltaické panely jsou ve výsledku odeèteny od celkových emisí objektu. Popis metodiky: Výpočetní algoritmus na základě geometrie konkrétní budovy určí vhodný počet fotovoltaických panelů a množství vyrobené energie. Na tomto základě kalkuluje pro konkrétní budovu celkové investiční náklady, celkovou cenu vyrobené energie, prostou návratnost a provozní náklady. Podklady, citace: - Zdroje cen: 12

http://www.solarni-panely.cz/e-shop/fotovoltaicke-elektrarny/ www.eshop.neosolar.cz http://www.poagroxxl.com/stridace/ Ceny jsou přebrány z relevantní českých internetových obchodů uvedené včetně DPH. Konkrétní jednotkové ceny jsou uvedené přímo v modelu jako fixní proměnné. - Předešlé výpočty ekowatt - Osobní konzultace Petr Kalčev, EkoWatt 13