StatSoft Úvod do neuronových sítí



Podobné dokumenty
K možnostem krátkodobé předpovědi úrovně znečištění ovzduší statistickými metodami. Josef Keder

Moderní systémy pro získávání znalostí z informací a dat

Ambasadoři přírodovědných a technických oborů. Ing. Michal Řepka Březen - duben 2013

Pokročilé neparametrické metody. Klára Kubošová

Algoritmy a struktury neuropočítačů ASN - P10. Aplikace UNS v biomedicíně

Rozdělování dat do trénovacích a testovacích množin

Neuronové sítě Ladislav Horký Karel Břinda

Strojové učení Marta Vomlelová

Diagnostika regrese pomocí grafu 7krát jinak

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Neuronové sítě v DPZ

Vytěžování znalostí z dat

5. Umělé neuronové sítě. Neuronové sítě

Úvodem Dříve les než stromy 3 Operace s maticemi

StatSoft Úvod do data miningu

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1

Testování neuronových sítí pro prostorovou interpolaci v softwaru GRASS GIS

Trénování sítě pomocí učení s učitelem

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group

Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů)

Pokročilé operace s obrazem

Neuronové sítě. 1 Úvod. 2 Historie. 3 Modely neuronu

RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.

Úvod do optimalizace, metody hladké optimalizace

Klasifikace předmětů a jevů

OSA. maximalizace minimalizace 1/22

Neuronové sítě (11. přednáška)

StatSoft Jak poznat vliv faktorů vizuálně

Data Miner Recipes. StatSoft

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Neuronové časové řady (ANN-TS)

3. Vícevrstvé dopředné sítě

1. Data mining. Strojové učení. Základní úlohy.

Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence

Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář,

Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc

Emergence chování robotických agentů: neuroevoluce

IBM SPSS Neural Networks

Využití metod strojového učení v bioinformatice David Hoksza

10. Předpovídání - aplikace regresní úlohy

Algoritmy a struktury neuropočítačů ASN P4. Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby

Rozpoznávání písmen. Jiří Šejnoha Rudolf Kadlec (c) 2005

Fakulta informačních technologií VUT Brno. Předmět: Srovnání klasifikátorů Autor : Jakub Mahdal Login: xmahda03 Datum:

Lineární klasifikátory

Numerická stabilita algoritmů

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

8-9. Pravděpodobnostní rozhodování a predikce. Gerstnerova laboratoř katedra kybernetiky fakulta elektrotechnická ČVUT v Praze

Učící se klasifikátory obrazu v průmyslu

Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma

SIGNÁLY A LINEÁRNÍ SYSTÉMY

2. RBF neuronové sítě

PRAVDĚPODOBNOST A STATISTIKA

Algoritmy a struktury neuropočítačů ASN - P1

Vytěžování znalostí z dat

přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat

Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení.

Bayesovské metody. Mnohorozměrná analýza dat

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

STATISTICKÝ SOUBOR. je množina sledovaných objektů - statistických jednotek, které mají z hlediska statistického zkoumání společné vlastnosti

Kybernetika a umělá inteligence, cvičení 10/11

ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT. Institut biostatistiky a analýz

Rosenblattův perceptron

Algoritmy a struktury neuropočítačů ASN - P11

NG C Implementace plně rekurentní

Úloha - rozpoznávání číslic

Příprava dat v softwaru Statistica

PRAVDĚPODOBNOST A STATISTIKA

Statistické zkoumání faktorů výšky obyvatel ČR

Obsah přednášky Jaká asi bude chyba modelu na nových datech?

Pokročilé neparametrické metody. Klára Kubošová

Regresní a korelační analýza

9. přednáška z předmětu GIS1 Digitální model reliéfu a odvozené povrchy. Vyučující: Ing. Jan Pacina, Ph.D.

Analýza dat pomocí systému Weka, Rapid miner a Enterprise miner

Otázky ke státní závěrečné zkoušce

Klasifikace a rozpoznávání. Lineární klasifikátory

Statistická analýza dat

Lineární regrese. Komentované řešení pomocí MS Excel

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ /14

Plánování experimentu

Pro zvládnutí této kapitoly budete potřebovat 4-5 hodin studia.

VÝBĚR A JEHO REPREZENTATIVNOST

Strukturální regresní modely. určitý nadhled nad rozličnými typy modelů

Regresní a korelační analýza

Obsah. Seznam obrázků... XV. Seznam tabulek... XV

Pravděpodobnost, náhoda, kostky

UČENÍ BEZ UČITELE. Václav Hlaváč

4EK201 Matematické modelování. 11. Ekonometrie

Umělé neuronové sítě

Využití strojového učení k identifikaci protein-ligand aktivních míst

Základy umělé inteligence

STATISTICKÉ PROGRAMY

Manuální kroková regrese Newsletter Statistica ACADEMY

Předpovídejte snadno a rychle

Regresní analýza 1. Regresní analýza

Téma 9: Vícenásobná regrese

Miroslav Čepek. Fakulta Elektrotechnická, ČVUT. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Uvod Modely n-tic Vyhodnocov an ı Vyhlazov an ı a stahov an ı Rozˇ s ıˇ ren ı model u n-tic Jazykov e modelov an ı Pavel Smrˇ z 27.

Využití neuronové sítě pro identifikaci realného systému

Transkript:

StatSoft Úvod do neuronových sítí Vzhledem k vzrůstající popularitě neuronových sítí jsme se rozhodli Vám je v tomto článku představit a říci si něco o jejich využití. Co si tedy představit pod pojmem neuronová síť? Neuronová síť Neuronová síť je algoritmus, který si bere za vzor činnost lidského mozku. Již v dřívějších dobách bylo zjištěno, že mozek je tvořen velkým množstvím vzájemně propletených buněk, které nazýváme neurony, jež spolu komunikují pomocí elektrických impulzů. Od vzniku prvních počítačů se programátorské kapacity snaží vytvořit algoritmus, který bude činnost lidského mozku napodobovat. Vzniká tak pojem umělá inteligence, který výsledky takového snažení někdy více a někdy méně reprezentuje. Princip neuronových sítí je v dnešní době implementován v řadě dostupných analytických a rozhodovacích softwarů a v různých oborech lidské činnosti podává extrémně dobré výsledky, tedy ve srovnání se standardními typy rozhodovacích algoritmů. Princip sítě Princip softwarové neuronové sítě, jak už bylo řečeno a je odhadnutelné z názvu, se inspiruje biologickou neuronovou sítí, kde je základním stavebním kamenem (zjednodušeně řečeno) nervová buňka neuron. Jednotlivé neurony jsou vzájemně propojeny spoji ohodnocenými vahami. Takovéto propojení a schopnost tyto váhy adaptovat (učit se) na základě trénovacích vzorů v datech, dává neuronové síti nové široké možnosti v oblasti analýzy dat. Jak již bylo řečeno, hlavní předností neuronové sítě je schopnost učit se, tedy zapamatovat si kombinace, které vedly k požadovanému výstupu a u nových vstupů se potom obracet na svou paměť a na základě zkušeností odhadovat nový výsledek. V tomto případě mluvíme o generalizaci (zevšeobecňování), která je další velkou předností algoritmu neuronových sítí. Zjednodušeně řečeno, jde o přiměřenou dovednost správně zareagovat i na vstupy, které nebyly součástí trénovacích dat, a vyvodit z nich obecné závěry o datech. Schopnost učit se bývá někdy dokonce považována za definici umělé inteligence. Často v praxi nemáme ani dostatek apriorních znalostí o tom, co způsobuje konkrétní variabilitu zkoumané proměnné, a není proto jiná možnost než se vlivy snažit popsat na základě historický naměřených dat. Učení se z historických dat je dnes součástí mnoha oborů, včetně Data Miningu, do kterého v našem pojetí neuronové sítě řadíme.

Další vlastností neuronových sítí je schopnost řešit i silně nelineární úlohy. Využití neuronové sítě v analýze dat má smysl všude tam, kde selhávají klasické modely jako například regrese. V některých případech se stává, že není možné najít nějakou jednoduchou matematickou funkci, která by vhodně postihla všechny vlivy, které variabilitu sledované proměnné ovlivňují. Potom jsou neuronové sítě vhodná alternativa. Neuronové sítě jsou také do jisté míry schopné pracovat s nepřesnými daty a šumy. My však doporučujeme provést vždy čištění a přípravu dat. Možností aplikace neuronových sítí je celá řada, dají se využít na následující typy ůloh. Vpravo vidíme menu softwaru STATISTICA, podle kterého možnosti využití shrneme. Regrese regresní analýza se zabývá předpovídáním spojité proměnné na základě vstupů (spojitých či kategorických prediktorů nezávislých proměnných). Klasifikace neboli zařazování do tříd. Na základě úrovně cílové proměnné a kombinace vstupů, které ke konkrétnímu výsledku vedou, bude vytvořen model, který dokáže klasifikovat nová data. Typickým příkladem jsou bankovní problémy, které řeší otázky bonity klienta, schopnost jeho splácení, ale také problémy typu poslat či neposlat pacienta na podrobné vyšetření, detekce spamu apod. Časové řady (regrese) slouží k modelování spojitých proměnných, které prochází vývojem v čase, resp. časových řad. V této situaci můžeme vybrat buď pouze jedinou závislou proměnnou, kde model bude vycházet ze zpožděných hodnot této časové řady, nebo máme možnost zvolit další proměnné, které budou tuto řadu vysvětlovat. Časové řady (klasifikace) tento typ analýzy použijeme tehdy, je-li naše cílová (závislá) proměnná kategorické povahy. Závislou proměnnou lze vysvětlovat opět pouze svým historickým průběhem v čase, případně je možné zvolit další spojité i kategorické prediktory jako nezávislé vysvětlující proměnné. Shluková analýza tento typ analýzy nepoužívá závislou proměnnou (učení bez učitele), cílem je detekovat netriviální shluky v datech. Jde o tzv. Kohonenovu síť. Vstupem jsou pouze hodnoty (vstupních) nezávislých proměnných. Kohonenovu síť (též Self-organizing Feature Map SOFM) chápejme jako druh shlukové analýzy (vektorovou kvantizaci). Poznamenejme, že máme také možnost zvolit více závislých proměnných pro analýzu. Což znamená například možnost modelovat vícerozměrnou časovou řadu.

Model neuronu Jak již bylo naznačeno, neuronové sítě se skládají z neuronů propojených vazbami. Model jednoho neuronu zachycuje obrázek níže: x 0 = 1 x 1 x 2 w 1 w 2 w 0 = θ w n ξ y = f ( ξ ) x n Zdroj: Skripta STATISTICA NEURONOVÉ SÍTĚ (Doc. RNDr. Ing. Marcel Jiřina, Ph.D.) Model neuronu se skládá ze tří částí vstupní, výstupní a funkční. Na základě vah mohou být jednotlivé vstupy potlačeny, nebo naopak zvýhodněny. Funkční část zpracuje informace ze vstupů a vygeneruje výstup. Výstupní část potom přivede výslednou informaci na vstup jiných neuronů. Tedy výstup neuronu f(ξ) je spočítán ve chvíli, když suma vstupů do neuronu vynásobených jejich konkrétními vahami překročí určitou hodnotu, kterou nazýváme práh ( ). Neuron lze popsat tímto způsobem: = Kde je konkrétní hodnota na i-tém vstupu, je potom váha tohoto vstupu, je prahová hodnota, je celkový počet vstupů, je transformační funkce a hodnota na výstupu. Skupina neuronů Toto byl pouze jeden neuron, ten sám o sobě není schopen vykonávat o nic moc složitější funkci než klasická regresní analýza. Síla neuronové sítě se však projeví až při propojení neuronů mezi sebou do větších struktur. Neurony jsou uspořádány do vrstev. Nezapomeňme, že algoritmus se učí sám a všechny váhy si sám volí. Vzorem takové jednoduché neuronové sítě je například následující obrázek: Příklad uspořádání třívrstvé NS se třemi vstupy a dvěma výstupy

Pokud si představíme, jak takovouto sítí proudí příchozí data, je nám jasné, že právě díky složitosti spojení dokáže neuronová síť najít i složitější a nelineární vztahy, na druhou stranu je ale pravda, že ze získané neuronové sítě nikdy nebudeme schopni získat interpretaci, proč to u konkrétního pozorování dopadlo, jak to dopadlo. Je to tedy metoda typu black box nejsme schopni jednoduše interpretovat výsledky či získat jednoduchý předpis závislosti mezi závislou a nezávislými proměnnými. Tato vlastnost nám vůbec nevadí, pokud nám jde pouze o předpověď veličiny v oblasti našeho zájmů, nicméně pokud chceme zjistit i důvody výsledku, pak nám tato metoda příliš nepomůže. V modulu STATISTICA Automatické neuronové sítě máte na výběr několik typů sítí. MLP - Vícevrstvou perceptronovou síť RBF - Radial Basis Function) SOFM - Kohonenovu síť Lineární síť Bayesovské sítě (PNN a GRNN) Každý typ sítě má různé vlastnosti, výběr závisí na povaze úlohy a charakteru dat. Hrozba přeučení sítě Obecně platí, že pokud síť obsahuje malý počet neuronů, její schopnost vystihnou a popsat závislosti v trénovacích datech je slabší. Pokud bude síť naopak obsahovat příliš velký počet neuronů, tato síť pravděpodobně nebude mít problém navést a reprezentovat závislosti v trénovacích datech, ale její schopnost generalizace, tedy vystihnou správný výsledek na nových datech, může být horší. Takovému jevu se říká přeučení sítě (overfitting). K přeučení také může docházet ve chvíli, kdy model obsahuje velký počet vstupních parametrů a relativně málo pozorování. Cílem tedy není maximalizace výkonu sítě na trénovacích datech, ale rozumný kompromis mezi trénovacím výkonem a schopností zevšeobecňovat znalosti i na nových datech. S tím, o čem zde píšeme, úzce souvisí následující princip rozdělení datového souboru, který neuronové sítě implicitně používají. Jedná se o rozdělení dat na trénovací, testovací a případně validační množinu. Trénovací množina náhodně vybraná část dat, která slouží pro učení sítě Testovací množina další část dat sloužící k zastavení trénovaní, aby nedošlo k přeučení sítě Validační množina zbytek dat, na kterém ověříme konečnou kvalitu modelu. Jde o data, která dosud model k dispozici neměl Typicky se toto rozdělení dělá v poměru 50-25-25, případně 70-15-15. Ve výsledcích je pak reportován výkon na každé z těchto množin, přičemž většinou vybíráme model, který nemá příliš velké výkyvy mezi výkony na jednotlivých množinách.

Využití neuronových sítí Neuronové sítě mají (někdy až pozoruhodnou) schopnost extrahovat pravidla a trendy z komplikovaných průběhů v datech. Další vlastností je, při správné aplikaci, schopnost velmi přesně předpovědět údaje, které nebyly součástí trénovacích dat, tedy schopnost zobecňovat. Tuto schopnost mají samozřejmě i jiné typy algoritmů, které spadají do Data Miningu. Neuronové sítě se nejčastěji používají např. k Odhadu dynamické stability u energetických systémů Rozpoznání poruch strojů a výpočetní techniky Lékařství detekce a odhad velikosti tumoru, chemická diagnostika Dopravní signalizace Rozpoznání kvality výrobku bez nutnosti laboratorních experimentů Předpověď finančních časových řad včetně velmi dynamických řad (burza, směnné kurzy) Samoobslužné mechanismy (subsystémy řízení budov) Optické rozpoznávání textů, písma a podpisů NN byla nasazena také v systémech pro převod mluvené řeči do písemné podoby Reakce spotřebitelů na nové zboží Detekce úvěrového rizika Odhad kvality ropných produktů Konkrétní využití neuronových sítí v praxi naleznete například pod následujícími odkazy: UNIPETROL RPA Česká rafinérská Více o aplikaci neuronových sítí se můžete dozvědět například na našem odborném kurzu. V nějakém z příštích čísel bychom Vás rádi provedli konkrétním příkladem v modulu STATISTICA Automatické neuronové sítě.