Petra Suková, 2.ročník, F-14 1 Úloha 15: Studium polovodičového GaAs/GaAlAs laseru 1 Zadání 1. Změřte současně světelnou i voltampérovou charakteristiku polovodičového laseru. Naměřenézávislostizpracujtegraficky.Stanovteprahovýproud i 0. 2. Pomocí Hg výbojky okalibrujte stupnici monochromátoru SPM 2. 3. Změřte emisní spektrum polovodičového laseru při několika hodnotách proudu laserempodanadodhadnutouprahovouhodnotou i 0.Určetevlnovoudélkustimulované emise a kvalitativně diskutujte změny ve spektrech provázející změnu napájecího proudu. 4. Z modové struktury emisního spektra laseru určete délku aktivní oblasti rezonátoru. Diskutujte, proč je volena velmi úzká štěrbina monochromátoru. 5. Určete výkonovou účinnost laseru pro vybranou hodnotu proudu v nadprahové oblasti. 2 Teorie Nachází-liseelektronvevzbuzenémenergetickém stavunahladině W 2,můžepřejít dozákladníhoenergetickéhostavu(hladina W 1 )zasoučasnéhovyzářenífotonu,jehož frekvence je úměrná energetickému rozdílu mezi těmito dvěma hladinami podle vztahu ν 12 = W 2 W 1 h, (1) kde h je Planckova konstanta. K emisi může dojít dvěma způsoby. Buď elektron bez vnějšího vlivu přeskočí na nižší hladinu a vyzáří kvantum energie nebo je k emisi přinucen interakcí s fotonem, který má stejnou frekvenci jako vyzářený foton. Prvním způsob nazýváme spontánní emise a druhý stimulovaná emise. Spontánní emise probíhá náhodně a atom vyzařuje do všech směrů fotony se stejnou frekvencí, ale náhodnou fází. Počet takto emitovaných fotonů pak závisí pouze na počtu eletronůnavyššíenergetickéhladině N 2 atopřímoúměrně. Stimulovanáemisejevšakzávislánejenna N 2,aleinahustotěstimulujícíhozáření ρ(ν 12 ).Přitomtoprocesupředáválátkaenergiistimulujícímuelektromagnetickémupoli a zvyšuje tak jeho intenzitu(zvyšuje se počet fotonů). Emitované fotony mají stejný směr a stejný stav polarizace jako budící fotony- jsou se stimulujícím zářením koherentní. Za obvyklých podmínek je počet takto vyzářených podmínek mnohem menší než početabsorbovanýchfotonů.pokudvšakzajistímepřísunenergielátcetak,aby N 2 > N 1 (N 1 jepočetelektronůvzákladnímstavu)-tzv.inverznípopulaceadále,abymohlo
Petra Suková, 2.ročník, F-14 2 záření projít prostředím vícekrát a docházelo tak k mnohonásobnému zesílení, získáme zdroj koherentního záření o velké intenzitě(ve viditelné oblasti spektra mluvíme o laseru). Pro zajištění podmínky mnohonásobného průchodu se látka umisťuje do rezonátoru(např.: Fabryho-Perotův rezonátor). Obrázek1:a)PNpřechodvrovnovážnémstavub)PNpřechodzapojenýv propustném směru Po splnění těchto podmínek je intenzita vystupujícího záření I popsána vztahem I I 0 e (g α)l, (2) kde g je koeficient zisku, α je koeficient ztrát a l délka aktivního prostředí. Dodávání potřebné energie laseru se nazývá čerpání. U polovodičového laseru toho dosahujeme proudem, který protéká P N přechodem, zapojeným v propustném směru. Na obrázku 1a) je znázorněn takový přechod bez vnějšího napětí, na obrázku 1b) vidíme, jaksezměnífermihohladinypopřiloženínějšíhonapětí U.Vúzkéoblastinarozhraní P a Nprostředívznikáinverznípopulace(naobrázkujetatooblastoznačenajako x a její rozměr je přibližně 1 µm). Zesílení se pak dosahuje vhodným tvarem polovodiče, např.tak,abystěnybylykolména PNpřechodadocházelokmnohonásobnýmodrazům (Fabryho-Perotův rezonátor- viz obrázek 2). Při nízkém procházejícím proudu dochází pouze ke spontánní emisi, jakmile však velikost proudupřekročíjistoumezníhodnotu i 0 (tzv. prahový proud), převýšízisk ztráty(g > α) a záření začne být zesilováno stimulovanou emisí. Tím se zvýší intenzita záření a zúží spektrální obor. Parametrem činosti laserové diody je výkonová účinost η, definovaná jako η= Φ e P, (3) kdeφ e jezářivýtokap= i Ujepříkondiody,adosahujehodnotvřádupromile až desítek procent.
Petra Suková, 2.ročník, F-14 3 Obrázek 2: Konstrukce polovodičového laseru- Fabryho-Perotův rezonátor V rezonátoru vzniká stojaté vlnění násobnými odrazy a musí pak platit m λ 2 = l, (4) kde m je celé číslo. Vzdálenost dvou módů mohu vyjádřit jako rozdíl frekvencí, příp. vlnovýchdélek,použitímvztahuprogrupovourychlost v g = c N g,kde N g jegrupový index lomu, ve tvaru 3 Měření ν= c 2lN g (5) λ= λ2 2lN g (6) Nejdříve jsem proměřila charakteristiky laserové diody. Voltmetrem a ampermetrem jsem měřila napětí a proud čerpání diody, zářivý tok diody jsem měřila pomocí galvanometru. K přepočtu stupnice galvanometru jsem použila výrobcem udanou hodnotu zářivéhotokuφ=0,5mwdiodyproproud I=115mA.Podlevztahu2jsemurčila účinnost diody. Chybu v určení proudu a napětí jsem odhadla na polovinu poslední zorazované číslice, chybu vypočtených hodnot jsem určila podle standartní teorie přenosu chyb. Naměřené a vypočtené hodnoty viz tabulka 1. Z posledních dvou naměřených hodnot jsem lineární regresí určila hodnotu prahového proudu i 0 =(98 ±5)mA(grafickézpracovánívizgraf2)zrovnice Φ[µW]=29,3I[mA] 2869 (7)
Petra Suková, 2.ročník, F-14 4 Tabulka1:Naměřenéavypočtenéhodnotypro kprošlýchproužkůproměření1-5 I[mA] U[V] G[dílky] σ G Φ[mW] σ Φ [mw] η[%] 115,1 1,905 2800 50 500 18 0,23 109,0 1,885 1800 50 321 15 0,16 101,8 1,862 1300 50 232 13 0,12 94,8 1,838 1050 50 188 12 0,11 90,2 1,822 900 50 161 12 0,10 82,2 1,795 725 50 129 11 0,09 76,2 1,773 625 50 112 11 0,08 66,0 1,734 480 5 86 2 0,07 55,8 1,694 370 5 66 2 0,07 46,2 1,655 280 5 50 2 0,07 35,6 1,608 195 5 35 2 0,06 27,2 1,567 140 5 25 1 0,06 18,4 1,519 85 5 15 1 0,05 11,1 1,470 65 5 12 1 0,07 4,5 1,400 23 5 4 1 0,06 0 0,195 0 5 0 1 Vzhledem k nedostatečnému počtu naměřených hodnot pro proudy vyšší než prahový jsem chybu pouze odhadla. Dále jsem okalibrovala stupnici monochromátoru změřením spektra rtuťové výbojky, vlnové délky jejichž čar je tabelováno (např. viz [2]). Z grafu 3, kde jsem vynesla spektrum rtuťové výbojky, jsem odečetla dílky odpovídající jednotlivým čarám (viz tabulka 3). Lineární regresí těchto hodnot jsem určila kalibrační vztah λ[nm]=(53,23 ±0,08) dílky (533 ±1,5) (8) Grafické znázornění lineární regrese viz graf 4. Po provedení příslušné kalibrace jsem měřila spektrum samotné GaAs/GaAlAs laserové diody a přepočítala ho přímo do vlnových délek, pokud předpokládáme, že stupnice monochromátoru je lineární i v oboru vlnových délek, kde toto měření probíhalo. Spektrum jsem proměřila pro 5 různých čerpacích proudů(115,2; 110,1; 98,5; 90,1 a 80,8 ± 0,05 ma). Naměřené hodnoty se ukládaly do počítače, jejich grafické zpracování viz graf 5(kde nejvyšší křivka odpovídá největšímu čerpacímu proudu atd.), tabulky kvůli velkému počtu hodnot neuvádím(více než tisíc bodů pro každý proud). Po překročeníprahovéhoproudusespektrumzužujeadosahujemaximapro λ 0 =(819±0,5)nm, což podle teorie odpovídá vlnové délce stimulované emise.
Petra Suková, 2.ročník, F-14 5 Tabulka 2: Závislost výkonnové účinosti na čerpacím proudu I[mA] 115,1 109 101,8 94,8 90,2 82,2 76,2 66 η[%] 0,23 0,16 0,12 0,11 0,10 0,09 0,08 0,07 I[mA] 55,8 46,2 35,6 27,2 18,4 11,1 4,5 η[%] 0,07 0,07 0,06 0,06 0,05 0,07 0,06 Při posledním měření jsem zúžila štěrbinu natolik, že již nedocházelo ke zprůměrování signálu a byly tudíž pozorovatelné mody laserového záření. Ty jsou vynesené v grafu 6. V tabulce 4 jsou odečtená maxima z oblasti nejvýraznějších maxim a jejich diference. Z nich jsem podle vztahu 6 spočítala délku rezonátoru L(Pro GaAs/GaAlAs laser platí N g =4,5): L=(0,24 ±0,01)mm
Petra Suková, 2.ročník, F-14 6 Tabulka 3: Spektrální čáry rtuti λ[nm] 404,7 407,8 434,8 433,9 435,8 546,1 577,0 579,0 dílky 17,612 17,672 18,191 18,174 18,199 20,272 20,854 20,893 Tabulka 4: Frekvence odečtených maxim ν[thz] ν ν[thz] ν 366,935 0,141 365,390 0,122 366,794 0,141 365,267 0,140 366,653 0,141 365,128 0,140 366,512 0,141 364,988 0,140 366,372 0,141 364,848 0,139 366,231 0,141 364,709 0,139 366,091 0,140 364,570 0,139 365,950 0,140 364,430 0,122 365,810 0,140 364,309 0,139 365,670 0,140 364,170 0,156 365,530 0,140 364,013
Petra Suková, 2.ročník, F-14 7
Petra Suková, 2.ročník, F-14 8
Petra Suková, 2.ročník, F-14 9 4 Diskuze Ze světelné charakteristiky laserové diody je vidět, že nad prahovým proudem mám příliš málo naměřených hodnot na přesné určení hodnoty prahového proudu. Ze dvou bodů, které jeví dostatečné zvýšení intenzity jsem lineární regresí určila hodnotu prahového proudu, na určení chyby bych ovšem potřebovala více naměřených hodnot. Chybu jsem proto pouze odhadla. Také jsem uvážila, že pro proudy vyšší než prahové nastává zesílení určitých frekvencí, což můžeme pozorovat pro čerpací proudy 115,2 a 110,1 ma, prahový proud tedy bude menší. Pro zpřesnění této hodnoty by bylo potřeba změřit více hodnot pro proudy větší než 100 ma, případně i zvětšit rozsah měření(což z hlediska konstrukce diody nebylo možné). Spetra laserové diody(graf 5) pro jednotlivé čerpací proudy dobře odpovídají teorii. Intenzity vyzařování na všech vlnových délkách jsou přibližně stejné, dokud čerpací proud nepřekročí prahovou hodnotu. Intenzita se pak sice lehce zvyšuje na všech vlnových délkách, což odpovídá většímu množství dodané enrgie, v určité oblasti však začne prudce narůstat. Tato oblast odpovídá vlnové délce stimulované emise, ve stavu, kdy se vytvoří inverzní populace. Pro větší proudy je tento efekt silnější, neboť se zvyšuje také poměr počtu částic na jednotlivých hladinách, a pík odpovídající stiulované emisi se zvyšuje a zužuje. Pro měření modů laserového záření bylo nutné zmenšit štěrbinu, aby nedocházelo ke
Petra Suková, 2.ročník, F-14 10 zprůměrování signálu. Vhodnou intenzitu jsem pak nastavila ještě pomocí clony. V grafu 7 je vynesena závislost účinnosti diody na čerpací proudu. Pro proudy větší než 100 ma vidíme nárůst intenzity, což odpovídá nástupu stimulované emise a výraznému zvýšení emise v určitých vlnových délkách. 5 Závěr 1. Změřila jsem světelnou i voltampérovou charakteristiku diody(viz tabulka 1 a grafy1a2).určilajsemhodnotuprahovéhoproudu i 0 =(98 ±5)mA. 2. Změřila jsem spektrum rtuťové výbojky, čímž jsem okalibrovala stupnici monochromátoru. Naměřené hodnoty viz tabulka 3, grafické zpracování viz grafy 3 a 4. 3. Změřila jsem spektrum laserové diody GaAs/GaAlAs pro 5 hodnot čerpacího proudu. Grafické zpracování viz graf 5. 4. Změřila jsem mody spektra laseru a určila délku aktivní oblasti rezonátoru L=(0,24 ±0,01)mm. 5. Určilajsemzávislostúčinnostilaserunačerpacímproudu-viztabulka2agraf7. Reference [1] J. Mikulčák, B. Klimeš, J. Široký, V. Šůla, F. Zemánek: Matematické, fyzikální a chemické tabulky pro střední školy, SPN, Praha 1989 [2] I. Pelant, J. Fiala, J. Pospíšil, J. Fähnrich: Fyzikální praktikum III- Optika, Karolinum, Praha 1993 [3] http://physics.mff.cuni.cz/vyuka/zfp/