Mikrořadiče pro přístrojovou techniku



Podobné dokumenty
Mikroprocesory v přístrojové technice

Mikroprocesory v přístrojové technice

Mikroprocesory v přístrojové technice

Mikroprocesory v přístrojové technice. Přednášky A3B38MMP

Mikroprocesory v přístrojové technice

Seznámení s mikropočítačem. Architektura mikropočítače. Instrukce. Paměť. Čítače. Porovnání s AT89C2051

Rozhraní mikrořadiče, SPI, IIC bus,..


Přednáška A3B38MMP. Bloky mikropočítače vestavné aplikace, dohlížecí obvody. 2015, kat. měření, ČVUT - FEL, Praha J. Fischer

MIKROPOČÍTAČOVÉ SYSTÉMY

Činnost CPU. IMTEE Přednáška č. 2. Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus

Mikrořadiče řady 8051.

Procesory pro vestavné aplikace přehled


Jednočipové mikropočítače (mikrokontroléry)

Mikrokontroléry. Doplňující text pro POS K. D. 2001

Překladač - Assembler, úloha SW_ UART

Procesory z řady 8051


A4B38NVS, 2011, kat. měření, J.Fischer, ČVUT - FEL. Rozhraní mikrořadiče, SPI, IIC bus,.. A438NVS, kat. měření, ČVUT - FEL, Praha. J.

Rozhraní mikrořadiče, SPI, IIC bus,.. Přednáška 11 (12)

Programátorský model procesoru x51

Rozhraní mikrořadiče, SPI, IIC bus,..

Překladač - Assembler. kat. měření, ČVUT - FEL, Praha A3B38MMP, X38MIP Přednáška 3 - část. J. Fischer

PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO KATEDRA INFORMATIKY BAKALÁŘSKÁ PRÁCE. Simulátor mikroprocesorů architektury 8051.

RISC a CISC architektura

PROCESOR. Typy procesorů

od jaké adresy bude program umístěn? Intel Hex soubor, co to je, z čeho a jak se získá, k čemu slouží? Pseudoinstrukce (direktivy) překladače ORG, SET

Maturitní témata - PRT 4M

Vestavné systémy BI-VES Přednáška 5

Mikroprocesor Intel 8051

Struktura a architektura počítačů (BI-SAP) 7

Čísla, reprezentace, zjednodušené výpočty

Přednáška - A3B38MMP Procesory s jádrem ARM. A3B38MMP 2015, J. Fischer, kat. měření, ČVUT-FEL Praha 1

Vestavné systémy BI-VES Přednáška 10

velikosti vnitřních pamětí? Jaké periferní obvody má na čipu a k čemu slouží? Jaká je minimální sestava mikropočítače z řady 51 pro vestavnou aplikaci

FREESCALE KOMUNIKAČNÍ PROCESORY

Klimatizace. Třída: 4.C. Střední Průmyslová Škola Elektrotechnická Havířov Protokol do MIT. Skupina: 3. Zpráva číslo: 3

Univerzální jednočipový modul pro řízení krokových motorů

Čísla, reprezentace, zjednodušené výpočty

Microchip. PICmicro Microcontrollers

Úloha Ohmetr zadání úlohy

Architektura počítače

Podprogram DELAY.INC. - konstanty časových prodlev. RB3 equ 11b DEL1MS: DEL800: DEL400: DEL200 DEL100 DELAY: ret DEL1MS

STEDNÍ PRMYSLOVÁ ŠKOLA, OSTRAVA - MORAVSKÁ OSTRAVA, KRATOCHVÍLOVA 7. (studijní text)

Úvod do mobilní robotiky AIL028

Procesory pro vestavné aplikace přehled, bloky

) informace o stavu řízené veličiny (předávaná řídícímu systému) - nahrazování člověka při řízení Příklad řízení CNC obráběcího stroje

Přednáška , kat. měření, ČVUT - FEL, Praha J. Fischer. A4B38NVS, 2012, J.Fischer, kat. měření,, ČVUT - FEL 1

PROTOKOL O LABORATORNÍM CVIČENÍ


Mikroprocesory v přístrojové technice

Architekura mikroprocesoru AVR ATMega ( Pokročilé architektury počítačů )

Mikroprocesory pro vest. aplikace, Sběrnice, vstupy, výstupy Přednáška , kat. měření, ČVUT - FEL, Praha J. Fischer

Vývoj výpočetní techniky. Rozdělení počítačů. Blokové schéma počítače


Základní uspořádání pamětí MCU

MCP BIOS řídicí jednotky Kit386EXR

Úvod do mobilní robotiky NAIL028

Paměti. Prezentace je určena jako pro studenty zapsané v předmětu A3B38MMP. ČVUT- FEL, katedra měření, Jan Fischer, 2013

Procesor z pohledu programátora

Procesory pro vestavné aplikace přehled, bloky

STEDNÍ PRMYSLOVÁ ŠKOLA, OSTRAVA - MORAVSKÁ OSTRAVA, KRATOCHVÍLOVA 7. (studijní text)

Úloha- Systém sběru dat, A4B38NVS, ČVUT - FEL,

Program "Světla" pro mikropočítač PMI-80

Kubatova Y36SAP procesor - control unit obvodový a mikroprogramový řadič RISC Y36SAP-control unit 1

zení Koncepce připojení V/V zařízení POT POT ... V/V zařízení jsou připojena na sběrnici pomocí řadičů. Řadiče Připojení periferních zařízení

Malý distribuovaný I/O modul

Další aspekty architektur CISC a RISC Aktuálnost obsahu registru


Měřič krevního tlaku. 1 Měření krevního tlaku. 1.1 Princip oscilometrické metody 2007/

A4B38NVS, 2011, kat. měření, J.Fischer, ČVUT - FEL. Přednáška , kat. měření, ČVUT - FEL, Praha J. Fischer

PK Design. MB-ATmega16/32 v2.0. Uživatelský manuál. Základová deska modulárního vývojového systému MVS. Verze dokumentu 1.0 (21.12.

POKLADNÍ DISPLEJ LCD. hotline: strana 1

enos dat rnici inicializaci adresování adresu enosu zprávy start bit átek zprávy paritními bity Ukon ení zprávy stop bitu ijíma potvrzuje p

MIKROPROCESORY PRO VÝKONOVÉ SYSTÉMY. Systém přerušení. České vysoké učení technické Fakulta elektrotechnická

A51 MACRO ASSEMBLER POKUSNY PROGRAM DATE 10/3/007 PAGE 1

MSP 430F1611. Jiří Kašpar. Charakteristika

Náplň předmětu A3B38MMP a kontrolní otázky k terminu testu v semestru Mikroprocesory řady 8051 /52 a jejich použití Obecné blokové schéma

Struktura a architektura počítačů (BI-SAP) 9

Kubatova Y36SAP 8. Strojový kód Jazyk symbolických instrukcí asembler JSA pro ADOP a AVR Kubátová Y36SAP-strojový kód 1

Přednáška - Čítače. 2013, kat. měření, ČVUT - FEL, Praha J. Fischer. A3B38MMP, 2013, J.Fischer, ČVUT - FEL, kat. měření 1

8. Laboratoř: Aritmetika a řídicí struktury programu

2. Prehľad vlastností jednočipových mikropočítačov (I-8048, I-8051, I-80196)

MIKROPROCESOROVÁ TECHNIKA

Mikrořadiče společnosti Atmel

Strojový kód. Instrukce počítače

ETC Embedded Technology Club setkání zahájení druhého ročníku

ETC Embedded Technology Club setkání

Historie osmibitových mikroprocesoru a mikroradicu ZILOG.

Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl Tematická oblast ELEKTRONIKA

Displej DT20-6. Update firmware řadiče. Simulační systémy Řídicí systémy Zpracování a přenos dat TM 2012_10_

Operační paměti počítačů PC

Metody připojování periferií BI-MPP Přednáška 2

Náplň předmětu A3B38MMP a kontrolní otázky k termínu testu v semestru Mikroprocesory řady 8051 /52 a jejich použití Obecné blokové schéma

Technické prostředky počítačové techniky

Architektury CISC a RISC, uplatnění v personálních počítačích

Základní deska (1) Parametry procesoru (2) Parametry procesoru (1) Označována také jako mainboard, motherboard

Kompaktní procesní stanice

Rozhraní mikrořadiče, SPI, IIC bus,.. Přednáška 11 (12) A4B38NVS, kat. měření, ČVUT - FEL, Praha. J. Fischer

Transkript:

Mikrořadiče pro přístrojovou techniku Doc. Jan Fischer Katedra měření ČVUT v Praze, FEL Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1

Oblast zájmu předmětu Mikroprocesory v přístrojové technice - Přístrojová technika, pojem přístroj Přístroj: spotřební elektronika, prvky automatizace, měřicí technika, prodejní automaty Mikroprocesorem řízený přístroj Mikroprocesor vestavěný v přístroji či zařízení? kolik máte doma mikroprocesorů? 2

up ve spotřební a domácí elektronice Největší spotřeba mikroprocesorů, resp. mikrokontrolérů spojená s automobilovým průmyslem. Přístroj - ve spotřební elektronice: mobilní telefon, PDA, dig.fotoaparát, kamera, CD + MP3 přehrávač, televizor, DVD přehrávač, činnosti: vstup - výstup signálu, digitalizace, komprese, ukládání, přenos tzv. Bílá elektronika myčka, lednička, mraznička, pračka, mikrovlnná trouba, mixér, vysavač činnosti: ovládací vstupy, snímání ( teplota, hladina, průtok,..) akční členy - ovládání motoru, solenoidových ventilů, komunikace s obsluhou Osvětlení - řízení zářivky - zabudovaný mikrořadič 3

up řízený přístroj v měřicí technice Měřicí technika Přístroje: Multimetr, osciloskop, logický analyzátor, měřič impedance, generátor, reflektometr na měření metalických a optických tras Osciloskop (zcela jiná konstrukce oproti původnímu osciloskopu - výkonný počítač + rychlé A/D převodníky), Spektrální analyzátor - digitalizace signálu + Fourier. transformace, metody číslicového zpracování signálu Elektroměr - digitalizace u, i, výpočet odebrané energie, dálkové ovládání - HDO ( noční proud ) komunikace, ovládání relé 4

up řízený přístroj - domovní automatizace Domovní automatizace regulace. regulátor teploty, řízení klimatizace Regulátor topení - snímání teploty v místnostech, venkovní teploty, rychlosti větru, ovládání kotle,... Rozpočítávací měřič tepla - na radiátoru ústředního topení Automatizace - regulace, regulátor teploty, řízení klimatizace Ovládání světel, komunikace - standard D.A.L.I. Dálkové ovládání vrat - garáže - ( komunikace, kódy, akční členy, bezpečnost osob - snímání přítomnosti osob a síly zavírání ) Zabezpečovací technika Přístupové systémy - čtečky karet, klávesnice, komunikace Zabezpečovací systémy- snímače pohybu, zvuku - např. tříštění skla, optické závory, komunikace, signalizace, přenos dat SMS,? přenos redukovaného obrazu ( Nový studijní obor na ČVUT -FEL: Inteligentní budovy 5

up řízený přístroj - prodej, služby Prodejní automaty - na potraviny, ( snímač mincí, zobrazení, akční členy..) Stojan benzinové pumpy ( snímač - průtokoměr, komunikace, zobrazení, čtečka karet). Automatické váhy ( supermarket) snímač síly - tenzometry, zobrazení, komunikace- přeprogramování ceny, tisk Prodejní automat jízdenek ( MHD, ČD,..) Přenosná čtečka karet - (restaurace) - klávesnice, zobrazení, bezdrátová komunikace, tisk. Přístupové systémy - vstupenky, lanovky, vleky čtečka - optická, RFID,.., komunikace, akční členy - otevírání závory 6

up - automobilní elektronika - automotive Automobilní elektronika - palubní přístroje: (řízení motoru- vstřikování,.. řízení brzd ABS, AES, palubní počítač, tempomat,..) Sběr dat: teploty (olej, voda,..), tlak, klepání motoru,spaliny,.. Doplňkové funkce - řízení stěračů, nastavování polohy volantu, sedaček, stahování oken ( snímání proudu - bezpečnost) Regulace - zadání žádané hodnoty, snímání polohy, ovládání motorků, snímání proudu motorku, řízení klimatizace Naklápění reflektorů- up + výkon. budič + krokový motorek Ovládání zábavní elektroniky - rozhlas. přijímač, přehrávač, navigace Komunikace: rozhraní CAN - základní komunikač. rozhraní - (systémová, zábavní) rozhraní LIN - periferie - ovládání motorků v oknech,.. nově - rozhraní Flex ray - např. přímé ovládání brzd 7

Blokové schéma přístroje řízeného up analogové logické vstupy řízené obvody vstupy, výstupy, A/D, D/A analogové logické výstupy zobrazení LED tlačítka klávesnice mikropočítač mikrořadič ( microcontroller) LED 7- segment LCD- segment graf. LCD ext. paměti Flash, pam. karty rozhraní RS232, USB, Ethernet 8

Náplň předmětu problematika Použití jednočip. mikropočítače 8051, architektura, programování Systémové sběrnice mikropočítačů, připojování obvodů na sběrnice Návrh mikropočítače Připojování vstupních a výstupních obvodů Obvody pro komunikaci s obsluhou, připojení vstupních bloků - tlačítek, klávesnic, výstupních bloků -LED, LCD Připojení A/D, D/A převodníků Další druhy mikropočítačů a mikrořadičů- architektura, vlastnosti 32- bitové mikroprocesory řady ARM Cortex M3 (provedení STM32) Signálové procesory ADSP -BF53x Blackfin 9

Mikroprocesory pro vestavné aplikace rysy Široké spektrum procesorů pro vestavné aplikace od 4 bitových po 32 bitové Historický typ jádro 8051, stále využívané desítkami výrobců Atmel AT89C 51, jiná řada Atmel AVR, AT Mega www.atmel.com Motorola Freeescale rodina 68HC08, ( 68HCS908, ) rodina 68HCS12 a vyšší typy http://www.freescale.com/ ST Microelectronics STM8 8- bitový proc. www.st.com/stm8 firma Microchip, procesory PIC, www.microchip.com Texas Instruments MSP430 16 bitový procesor, nízká spotřeba, www.ti.com/msp430 japonské firmy Fujitsu, Nes, Renesas, 8, 16 bitové proc. Signálové procesory Analog Devices, Texas Instruments, Freescale aplikace jednočipové, nebo i externími sběrnicemi možnost připojení externí SDRAM, možnost oprač. systému ( uclinux., Linux) Texas Instruments kombinace DSP a procesoru ARM v jednom pouzdře 10

Hlavní bloky procesoru pro vestavné aplikace CPU vlastní jádro procesoru vnitřní paměť programu (ve formě ROM, Flash nebo SRAM) vnitřní paměť dat SRAM Generátor hodinového signálu, vnější s XTAL ( krystalem), vnitřní RC méně přesné jednotky procent, možná kalibrace resetovací obvod ( Reset, Por,..) dohlížecí obvod Watch dog monitorovací obvod kontrola napájení, monitorování teploty čipu, zálohování napáj. vybrané SRAM obvod reálného času RTC (Real Time Clock) jednotky čítačů, časovačů, (jednotky PCA programmable counter array, funkce input capture, output compare, high speed output),generátory PWM, vnitřní sběrnice, číslicové vstupně výstupní piny, analogové vstupy, analogové výstupy 11

Procesory s jádrem ARM pro vestavné aplikace Nyní trend používat jádro ARM (firma ARM www. ARM. COM) nejdříve jádro ARM 7, a především, jádro pro vestavné aplikace jednočipová varianta ARM Cortex M3, ARM Cortex M0 další typy jádro ARM Cortex M4 (funkce DSP),ARM 9, ARM 11, ARM Cortex A9 vyšší typy již spolupráce s externími paměťmi prostřednictvím sběrnic externí SDRAM, 32, 64 a více MByte, portování Linux, nebo omezená verze uclinux ( procesory bez MMU memory Management Unit), 12

Mikrořadič STM8S105 Mikrořadič, jednočipový mikropočítač pro vestavné aplikace 8- bitový obdobné periferie jako vyšší procesory I2C, SPI, ADC, PWM, Čítače 13

Mikrořadič s jádrem ARM Cortex- M3 (STM32F103) Mikrořadič STM32F103 s jádrem 32 bitového procesoru ARM Cortex M3 Procesorové jádro ARM + paměti + periferie Periferie podobné jako 8- bitového mikrořadiče STM8S 14

Signálový procesor ADSP BF533 Signálový procesor Analog Devices, Blackfin, pro vestavné zpracování signálu a obrazu (zpracování zvukového a obrazového signálu) Použití set top box, digitální fotoaparát, elektro akustická zařízení 15

Signálový procesor - mikrořadič ADSP BF504 Signálový procesor - ADSP BF504 F, použití jako typický mikrořadič pro vestavné aplikace Jádro signálového procesoru Blackfin (jako v BF533), ale doplněno periferiemi pro vestavné aplikace, odstraněno připojení na externí paměti Vhodné pro vestavné zpracování signálu, řídicí aplikace (např. řízení motorků) 16

První seznámení s mikroprocesory a mikrořadiči Pro první seznámení s procesory pro vestavné aplikace vhodné začít s jednoduššími 8 bitovými typy mikroprocesorů a mikrořadičů Mikrořadiče s jádrem 8051, (resp. 8052), postupný vývoj, procesorové jádro 51 zůstává, avšak nové typy doplněny řadou periferií typických pro vyšší typy mikrořadičů Mikrořadiče s jádrem 51 stále vyráběny (v současnosti min. 10 výrobců), doplněny dalšími paměťmi a periferiemi: paměť EEPROM komplexní čítačové jednotky komunikační řadiče (CAN, USB, LIN, bezdrátové komunikace) analogové komparátory převodníky A/D analogo číslicové převodníky číslicovo analogové řadiče LCD 17

Procesory s jádrem 8051 Nejznámější a nejrozšířenější 8- bitová architektura procesoru mikrořadiče pro přístrojové a vestavné aplikace Architektura - 8 bitového procesoru, původ Intel 8051 obvykle používané označení 8051 nebo jen 51 ve skutečnosti jádro 8x52 architektura používaná několika desítkami výrobců Atmel, Philips - NXP, Silicon laborartories, Cypress, Texas Instruments, Analog Devices, Siemens- Infinieon,... 18

Vývojové nástroje Programování v asembleru 51 IDE Microvision 3 firmy KEIL www.keil.com demoverze IDE, volná, do 2kByte kódu překlad, simulace, odladění na HW nainstalovat doma IDE, seznámení s up AT89S8252 + 8KByte RAM RS 232 nepájivé kontaktní pole PC + IDE Keil Microvision 3 19

Blokové schéma 8051 ext. int. Blokové schéma I 8051 counter inputs interrupt control 4 KB ROM 128 B RAM Timer 0, 1 8051 CPU osc bus control I/O port serial port UART P0 P2 P1 P3 TxD RxD Address / Data 20

Blokové schéma AT89C52 ext. int. Blokové schéma AT89 C52 counter inputs interrupt control 8 KB Flash 256 B RAM Timer 0, 1, 2 8051 CPU osc bus control I/O port serial port UART P0 P2 P1 P3 TxD RxD Address / Data 21

Význam a funkce bloků AT89C52 CPU - central processing unit I/O port - vstupně/výstupní brány Flash 8k- vnitřní paměť programu ext. int. interrupt control 8 KB Flash Blokové schéma AT89 C52 256 B RAM Timer 0, 1, 2 counter inputs RAM 256B vnitřní paměť dat CPU UART - sériový port (COM) osc bus control I/O port serial port UART P0 P2 P1 P3 TxD RxD Address / Data Funkce jako - jednočipový mikropočítač (jediný obvod)- int. paměř programu a dat nebo jako mikropoč. s externí pamětí (připojení na sběrnici BUS) Deska na cvičeních - ext. paměť programu v EPROM 2764 a ext. paměť dat v 6264 spolupráce s CPU prostřednictvím sběrnice - BUS BUS adres. signály, datové signály, říd. signály /PSEN, /RD, /WR 22

Vývody AT89C52 P1.0/T2 P1.1/T2EX P1.2 P1.3 P1.4 P1.5 P1.6/ P1.7 RST P3.0/RxD P3.1/TxD P3.2/INT0 P3.3/INT1 P3.4/T0 P3.5/T1 P3.6/WR P3.7/RD XTAL2 XTAL1 VSS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 PDIL 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 VCC P0.0/AD0 P0.1/AD1 P0.2/AD2 P0.3/AD3 P0.4/AD4 P0.5/AD5 P0.6/AD6 P0.7/AD7 EA ALE/PR OG PSEN P2.7/A15 P2.6/A14 P2.5/A13 P2.4/A12 P2.3/A11 P2.2/A10 P2.1/A9 P2.0/A8 Signály procesoru: Brány P1 ( P0.7 až P0.0) P1 ( P1.7 až P1.0) P2 ( P2.7 až P2.0) P3 ( P3.7 až P3.0) P1.7 - MSB, P1.0 - LSB atd. UART výst. TxD, vst. RxD přeruš.vst. /INT0, /INT1 akt. L T0, T1 vstupy čítačů Signály externí sběrnice: /WR, /RD, říd. sig. zápisu a čtení A15 - A8, adresové signály AD8 -AD0 mux. adresové/datové s. Vss zem ( GND ground) Vcc - napájení, +5 V, RST - Reset celého procesoru XTAL 1,2 - krystal - oscilátor 23

Signály AT89C52 SECONDAR Y FUNCTIONS RxD TxD INT0 INT1 T0 T1 WR RD XTAL1 XTAL2 RST EA PSEN ALE POR T 3 V CC V SS POR T 0 POR T 1 POR T 2 ADDRESS AND DATA BUS ADDRESS BUS P1.0/T2 P1.1/T2EX P1.2 P1.3 P1.4 P1.5 P1.6/ P1.7 RST P3.0/RxD P3.1/TxD P3.2/INT0 P3.3/INT1 P3.4/T0 P3.5/T1 P3.6/WR P3.7/RD XTAL2 XTAL1 VSS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 PDIL 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 VCC P0.0/AD0 P0.1/AD1 P0.2/AD2 P0.3/AD3 P0.4/AD4 P0.5/AD5 P0.6/AD6 P0.7/AD7 EA ALE/PR OG PSEN P2.7/A15 P2.6/A14 P2.5/A13 P2.4/A12 P2.3/A11 P2.2/A10 P2.1/A9 P2.0/A8 24

Pouzdro AT89C52 P1.0/T2 P1.1/T2EX P1.2 P1.3 P1.4 P1.5 P1.6/ P1.7 RST P3.0/RxD P3.1/TxD P3.2/INT0 P3.3/INT1 P3.4/T0 P3.5/T1 P3.6/WR P3.7/RD XTAL2 XTAL1 VSS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 PDIL 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 VCC P0.0/AD0 P0.1/AD1 P0.2/AD2 P0.3/AD3 P0.4/AD4 P0.5/AD5 P0.6/AD6 P0.7/AD7 EA ALE/PR OG PSEN P2.7/A15 P2.6/A14 P2.5/A13 P2.4/A12 P2.3/A11 P2.2/A10 P2.1/A9 P2.0/A8 Pouzdro DIL 40, nepostačuje pro všechny signály, proto - sdílení pinů: UART výst.txd a brána P3.1 vstup RxD a P3.0 hradlování čítače T0, brána P.3.0, a přerušovací vstup /INT0 P2.7 a sig. sběrnice AD15 Někdy možnost použít vstupní pin ve více funkcích současně hradlovat čítač, číst stav pinu, přerušit spádovou hranou ( využití v úloze) 25

Vnitřní blokové schéma CPU řady 51 P0.0 - P0.7 P2.0 - P2.7 PORT 0 DRIVERS PORT 2 DRIVERS V CC V SS RAM ADDR REGISTER RAM PORT 0 LATCH PORT 2 LATCH ROM/EPROM 8 B REGISTER ACC STACK POINTER TMP2 TMP1 PROGRAM ADDRESS REGISTER ALU BUFFER PSW SFRs TIMERS PC INCRE- MENTER 8 16 PROGRAM COUNTER PSEN ALE/PROG EA/ V PP RST TIMING AND CONTROL DPTR'S MULTIPLE PD PORT 1 LATCH PORT 3 LATCH OSCILLATOR PORT 1 DRIVERS PORT 3 DRIVERS XTAL1 XTAL2 P1.0 - P1.7 P3.0 - P3.7 26

Paměťový model mikropočítače 8051 Prostory CODE ( pouze čtení), DATA, XDATA Paměťový model up řady 8051 FFFF CODE DATA FFFF XDATA paměť prog. interní paměť dat externí paměť dat 0000 FF 80 7F 00 REG. SP. FUNKCÍ RAM 0000 27

Paměťový model mikropočítače AT89C52 AT89C52 navíc - 128B RAM - DATA, 8KB vnitřní paměti FLASH -CODE, povolení vnitřní FLASH vstup /EA= L FFFF CODE Pamět. prostory u AT89C52 FFFF XDATA ext. pam. prog. ext.pam. dat AT89C52 1FFF 1000 0FFF 0000 EA=1 EA=0 FF 80 7F 00 DATA REG. SP. FUNKCÍ RAM (128B) RAM (128B) 0000 28

Paměťový model - prostor DATA FF 80 7F SP P0 zápisník, data speciální funkční registry FF nepřímo adres. dat. pam. ( pouze u xx52 verzí) adresový prostor DATA paměť RAM + speciální funkční registry SFR 128B 30 2F 20 1F 18 17 10 0F 08 07 00 7F 70 17 10 0F 07 07 00 R7 R0 reg. banka 0 80 bitově adresovatelná paměť reg. banka 3 reg. banka 2 reg. banka 1 29

Prostor DATA, paměť RAM u 8051 FF 80 7F SP P0 zápisník, data speciální funkční registry FF nepřímo adres. dat. pam. ( pouze u xx52 verzí) 128 Byte paměti RAM 128B 30 2F 7F 70 80 20 1F 18 17 10 0F 08 07 00 17 0F 07 R7 R0 10 07 00 bitově adresovatelná paměť reg. banka 3 reg. banka 2 reg. banka 1 reg. banka 0 paměť RAM 128 Byte v prostoru DATA 30

Registry R0 - R7 FF 80 7F SP P0 zápisník, data speciální funkční registry FF nepřímo adres. dat. pam. ( pouze u xx52 verzí) 128 Byte paměti RAM Registry R0 - R7, banka 0, R0 na adr. 00 128B 30 2F 20 1F 18 17 10 0F 08 07 00 7F 70 17 10 0F 07 07 00 R7 R0 reg. banka 0 80 bitově adresovatelná paměť reg. banka 3 reg. banka 2 reg. banka 1 registry R0 až R7 31

Bitově adresovatelná paměť RAM FF 80 7F SP P0 zápisník, data speciální funkční registry FF nepřímo adres. dat. pam. ( pouze u xx52 verzí) 128B 128 Byte paměti RAM Registry R0 - R7, banka 0, R0 na adr. 00 bitově adresovatelná.paměť bit 00,01,02...celk. 128 bitů 30 2F 20 1F 18 17 10 0F 08 07 00 7F 70 17 10 0F 07 07 00 R7 R0 reg. banka 0 80 bitově adresovatelná paměť 16 Byte = 16 x 8 bitů = 128 bitů reg. banka 3 reg. banka 2 reg. banka 1 32

Doplňková - pouze nepřímo adr. paměť RAM (8x52) FF 80 7F SP P0 zápisník, data speciální funkční registry FF nepřímo adres. dat. pam. ( pouze u xx52 verzí) 128B 128 Byte paměti RAM Registry R0 - R7, banka 0, R0 na adr. 00 bitově adresovatelná.paměť bit 00,01,02...celk. 128 bitů 30 2F 20 1F 18 17 10 0F 08 07 00 7F 70 17 0F 07 R7 R0 10 07 00 reg. banka 0 80 bitově adresovatelná paměť 128 Byte nepřímo adres. pam (např. MOV A, @R0) reg. banka 3 reg. banka 2 reg. banka 1 (pouze) nepřímo adres. paměť RAM -128 Byte 33

Prostor DATA přímo i nepřímo adr. RAM FF 80 7F SP P0 zápisník, data speciální funkční registry FF nepřímo adres. dat. pam. ( pouze u xx52 verzí) 128B 128 Byte paměti RAM Registry R0 - R7, banka 0, R0 na adr. 00 bitově adresovatelná.paměť bit 00,01,02...celk. 128 bitů 30 2F 20 1F 18 17 10 0F 08 07 00 7F 70 17 0F 07 R7 R0 10 07 00 reg. banka 0 80 bitově adresovatelná paměť reg. banka 3 reg. banka 2 reg. banka 1 128 Byte přímo i nepřímo adres. pam (pouze) nepřímo adres. paměť RAM -128 Byte Přímo i nepřímo adr. pam. RAM - 128 Byte 34

Celá oblast nepřímo adr. paměti RAM FF 80 7F SP P0 zápisník, data speciální funkční registry FF nepřímo adres. dat. pam. ( pouze u xx52 verzí) 128B 128 Byte paměti RAM Registry R0 - R7, banka 0, R0 na adr. 00 bitově adresovatelná.paměť bit 00,01,02...celk. 128 bitů 30 2F 20 1F 18 17 10 0F 08 07 00 7F 70 17 0F 07 R7 R0 10 07 00 reg. banka 0 80 bitově adresovatelná paměť reg. banka 3 reg. banka 2 reg. banka 1 celkem 256 Byte nepřímo adres. pam RAM (pouze) nepřímo adres. paměť RAM -128 Byte Přímo i nepřímo adr. pam. RAM - 128 Byte Nepřímo adr. pam 256 Byte 35

Prostor DATA, Speciální funkční registry - SFR FF 80 7F SP P0 zápisník, data speciální funkční registry FF nepřímo adres. dat. pam. ( pouze u xx52 verzí) 128B 128 Byte paměti RAM Registry R0 - R7, banka 0, R0 na adr. 00 bitově adresovatelná.paměť bit 00,01,02...celk. 128 bitů 30 2F 20 1F 18 17 10 0F 08 07 00 7F 70 17 0F 07 R7 R0 10 07 00 reg. banka 0 80 bitově adresovatelná paměť reg. banka 3 reg. banka 2 reg. banka 1 spec. funkč. registrybrány, čítače, UART, řízení, řadič přerušení, přímo adr. MOV 80h, #0Fh (pouze) nepřímo adres. paměť RAM -128 Byte Přímo i nepřímo adr. pam. RAM - 128 Byte Nepřímo adr. pam 256 Byte Spec. funkční registry - pouze přímo adresovatelné v prostoru DATA 36

Prostor DATA, jednočip. mikropočítač AT89C2051 FF 80 7F SP P0 zápisník, data speciální funkční registry Jednočip. mikropočítač AT89C2051 - použití v první samostatné úloze pouze 128B RAM malé pouzdro DIL20 30 2F 20 1F 18 17 10 0F 08 07 00 7F 70 17 0F 07 R7 R0 10 07 00 bitově adresovatelná paměť reg. banka 3 reg. banka 2 reg. banka 1 reg. banka 0 vývody -port P1 a necelý P3 na P1.0 a P1.1 nejsou PULL - UP rezistory - není schopen generovat na výstupu úroveň H 37

Prostor SFR - (DATA) u AT89S8252 F8h F0h E8h E0h D8h D0h C8h C0h B8h B0h A8h A0h 98h 90h 88h 80h bitově. adresov. B (00h) ACC (00h) PSW (00h) T2CON (00h) IP P3 (FFh) P2 (FFh) P1 (FFh) P0 (FFh) T2MOD SCON (00h) SBUF (xx) TCON (00h) TMOD (00h) RCAP2L RCA2H RCA2H TL2 TH2 SPSR TL0 (00h) TL1 (00h) TH0 (00h) TH1 (00h) SP (07h) DPL (00h) DPH (00h) DP1L (00h) DP1H (00h) WMCON PCON 0 (8) 1 (9) 2 (A) 3 (B) 4 (C) 5 (D) 6 (E) 7 (F) FFh F7h EFh E7h DFh D7h CFh C7h BFh B7h AFh A7h 9Fh 97h 8Fh 87h 38

Adresování SFR MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB B P2 SCON P1 TCON P0 F0h AFh A8h A7h A0h 90h 90h 8Fh 88h 87h 80h MSB LSB bitová adresa Adresování SFR (např. brána P1 na adrese 90h) MOV 90h, #00h ; zapiš do SFR na adr. 90h přímá data 00h SETB 90h nastav bit v s bit. adr. 90h (nejnižší bit-lsb- brány P1) 90h bitová adresa od začátku (obtížně se pamatuje) SETB 90h.0 nastav bit na bitové adrese, která odpovídá nejnižšímu bitu na bajtové adrese 90h (určení y souřadnice -bajt, a x souřadnice -bit), bitovou adresu určí překladač SETB P1.0 totéž, ale i bajtovou adresu (P1 equ 90h) překladač nejdříve vezme z tabulky symbolů- P1 odpovídá hodnota 90h 39

Registry speciálních funkcí - SFR střadač ACC... registr B... registry R0..R7... ukazatel zásobníku - SP datový ukazatel - DPTR porty P0..P3... stavový registr PSW sériový buffer SBUF hodnoty časovačů řídicí registry... 8 bitový registr; funkce střadače 8 bitový reg., pomoc. reg. pro násobení/ dělení 8 bitové registry; 4 banky, přepínané v PSW 8 bitový reg. 16 - bitový registr (DPH, DPL); adresace XDATA 8-bitové registry; čtení, zápis na porty procesoru 8 bitový reg.; výsledky arit., log. operací CY, AC, F0, RS1, RS0, OV,-, P 8 bitový reg.; vyrovnávací registr pro vysíl. /příjem 16- bitové registry (THx, TLx) 8- bitové registry; IP,IE,TMOD, TCON, SCON,PCON 40

Přehled rezervovaných symbolů A R0 - R7 - střadač - osm obecných registrů v právě aktivní bance DPTR PC C AB - datový ukazatel (data pointer), 16- bitový registr, který se používá pro adresování v programové a externí datové paměti - programový čítač; 16 - bitový registr, který obsahuje adresu následující instrukce - Carry flag - přenosový bit; indikuje přenos z MSB při operacích ALU - registrový pár; používá se při násobení a dělení 41

Přehled instrukčního souboru 8051 aritmetické operace (sčítání, odečítání, násobení, dělení,...) logické operace (AND,OR, XOR, bitové rotace, nastavování/nulování bitu přesuny dat (mezi registry, styk s programovou a externí datovou pamětí) předání řízení (skoky) (skoky, volání podprogramu,návrat z podprogramu a z přerušení,...) 42

Instrukční soubor 8051 - Operandy instrukcí rezervované symboly: <název> A,C,DPTR, registry speciálních funkcí -SFR bajtové adresy: <adresa> adresy vnitřní datové paměti (0-127) a SFR registry (128-255) bitové adresy: <adresa bitu> bitově adresovatelná paměť RAM a vybrané SFR přímá data : # <hodnota> operand je přímo zadán, je součástí instrukce nepřímé adresování: @R0, @R1, @DPTR, @A+PC data (skok) se adresují přes ukazatel relativní adresa: 8 bitů se znaménkem (+127 až -128) 43

Instrukční soubor 8051 - Aritmetické instrukce sčítání: ADD prosté sečtení ADDC sčítání s přenosem z nižšího řádu INC přičtení jedničky (inkrementace) odčítání: SUBB odečítání s výpůjčkou DEC odečtení jedničky (dekrementace) násobení: MUL násobení obsahu střadače obsahem registru B dělení: DIV dělení obsahu střadače registrem B dekadická korekce: DA dekadická korekce po sčítání dvou BCD čísel 44

Logické instrukce a instrukce pracující s bity logické operace: AND logický součin ORL logický součet XOR nonekvivalence bitové operace: SETB nastavení bitu do log. 1 CLR vynulování bitu CPL bitový doplněk RL rotace bitů vlevo RLC rotace bitů vlevo přes C RR rotace bitů vpravo RRC rotace bitů vpravo přes C 45

Instrukční soubor 8051- Předání řízení nepodmíněné skoky: AJMP skok uvnitř 2kB stránky LJMP dlouhý skok ( v rámci 64 kb) JMP obecná inst. skoku (překladač - AJMP nebo LJMP) podmíněné skoky: JB, JNB skok, je/není-li zadaný bit nastaven JBC skok a vynulování bitu, je-li zadaný bit nastaven JC, JNC skok je/není-li nastaven bit přenosu C JZ, JNZ skok je/není-li obsah střadače nulový DJNZ sniž obsah registru o 1;dále JNZ volání podprogramu: ACALL volání podprogramu uvnitř 2 kb stránky LCALL dlouhé volání podprogramu CALL obecná inst. volání podprogramu (překladač...) RET návrat z podprogramu návrat z přerušení: RETI návrat z přerušení 46

Demonstrační program, blik, hlavní smyčka ; Program pro blikani LED diody na vyvojove desce MIP s 8051. ; Program slouzi pro blikani LED pripojene na nastaveny pin portu P1. ; Strida blikani je 1:1. LED je zapojena proti napajeno. ; perioda blikani nastavena cekaci funkci Cekej, kde pocet ; cekacich cyklu udava konstanta POCET LED equ P1.5 ; LED - buzena proti napajeni POCET equ 35000 ; pocet cyklu cekaci smycky PROG_PAM equ 0A000h ; adresa ulozeni programu dseg at 30h WaitLo: ds 1 ; Pomocne promenne pro cekaci smycku WaitHi: ds 1 ; cseg at PROG_PAM jmp Init ; reset vektor - skok na vlastni zacatek programu cseg at PROG_PAM+100h ; rezervujeme prostor prvnich 256 bajtu na prerus. Init: mov SP,#70h pro stack vyuzij hornich 15 byte pameti Start: clr LED ; rozsvit LED call Cekej setb LED ; zhasni LED call Cekej jmp Start ; opakuj v nekonecne smycce 47

Demonstrační program, blik, podprog. čekání ;**************************************************************************************************** ;* Procedura cekani - konstantni doba dana konstantou POCET ;* zadne vstupni a vystupni parametry ;**************************************************************************************************** Cekej: mov mov Znovu: nop djnz djnz ret WaitHi,#HIGH(POCET)+1; inicializace prodlevy WaitLo,#LOW(POCET)+1 WaitLo,Znovu WaitHi,Znovu end 48

Jak postupovat při vývoji programu Nainstalovat IDE Ověřit funkčnost na testovacím programu Seznámit se s architekturou 8051 lit. program blikání LED, čtení tlačítka, modifikace blikání podle tlačítka možno plně ověřit pomocí simulátoru simulace výstupu indikace stavu P1.x (P1.7 až P1.4) simulace vstupu zaškrtnutím stavu vstupu na P1.x (P1.3 až P1.0) AT89C2051 příprav a programu, překlad, napálení do vnitřní paměti Flash. program blikání LED podle vstupu tlačítko. 49

Dva způsoby tvorby programu A) Základní program bez využití symbolů a symbolických adres B) Program s využitím symbolů a symbolických adres MOV DPTR, 01C4h ; Vypis uvodniho titulku Titlulek: MOV DPTR,# Txt_U ; Vypis uvodniho titulku ACALL 0294h ; volani programu pro vypis textu MOV 3Fh,# 00h ; vynulovani pocitadla bliknuti SETB 90h.5 ; zhasni LED - zapojene proti Ucc ACALL 018Eh CLR 90h.5 ; cekej ; rozsvit LED CALL Sendrss ; volani programu pro vypis textu Start: MOV Pruch, #00 ;vynulovani pocitadla bliknuti Aznovu: SETB LED ; zhasni LED - zapojene proti Ucc CALL Cekej ; cekej CLR LED ; rozsvit LED 50

Srovnání variant tvorby programu A) Základní program bez využití symbolů a symbolických adres Programátor musí přehled o umístění jednotlivých proměnných, adresách, kam se skáče,... změna jednoho parametru - nutnost přepisování ve více místech programu Komplikovaná modifikace programu MOV R0, # 55H DJNZ R0, ZAC B) Program s využitím symbolů a symbolických adres Snaha minimalizovat přímé číselné konstatnty v těle programu, ale nahradit je symbolickými konstatntami. Symbolická jména proměnných i pevných konstatnt umístěných v paměti. Snadná modifikovatelnost OPAK EQU 55H... MOV RO, # OPAK DJNZ R0, ZAC 51

Symbol, symbolické adresy Místo číselných adres a číselných konstant symbolické adresy a symbolické konstanty. Překladač dosadí příslušnou hodnotu symbolu podle zadání nebo počitadla adres při překladu. Symbol je jméno, které se definuje, aby reprezentovalo hodnotu, textový blok, adresu nebo jméno registru. Symboly mohou reprezentovat číselnou konstantu a výraz Symboly začínají písmenem nebo spec znaky _,? (nesmí začínat číslicí) vyhodnocení symbolu 16 bitově možno rozsah 0 až 65535 (bez znaménka) nebo -32768 až +32767 dvojkový doplněk 52