APPLICATION LIFE CYCLE ASSESSMENT OF INDUSTRIAL FLOORS IN AGRICULTURAL PRODUCTION



Podobné dokumenty
ŽIVOTNÍ CYKLUS PODLAH PRO ZEMĚDĚLSKÉ OBJEKTY JANA KOTOVICOVÁ - KAREL MALÝ LIFE-CYCLE OF FLOORS FOR AGRICULTURAL OBJECTS

OPTIMALIZATION OF TRAFFIC FLOWS IN MUNICIPAL WASTE TREATMENT OPTIMALIZACE DOPRAVNÍCH TOKŮ V NAKLÁDÁNÍ S KOMUNÁLNÍM ODPADEM

ÚJMA NA ŽIVOTNÍM PROSTŘEDÍ POŠKOZENÍM LESA

Environmentální prohlášení o produktu (typ III) EPD Environmental Product Declaration

RESEARCH OF POSSIBILITIES OF UTILIZATION

BETON V ENVIRONMENTÁLNÍCH SOUVISLOSTECH

ENVIRONMENTÁLNÍ PROHLÁŠENÍ O PRODUKTU

DIAGNOSTICS OF A HYDRAULIC PUMP STATUS USING ACOUSTIC EMISSION

Porovnání environmentálních dopadů nápojových obalů v ČR metodou LCA

EFFECT OF MALTING BARLEY STEEPING TECHNOLOGY ON WATER CONTENT

Model byl např. publikován v závěrečné výzkumné zprávě z tohoto projektu.

2D A 3D SNÍMACÍ SYSTÉMY PRŮMĚRU A DÉLKY KULATINY ROZDÍLY VE VLASTNOSTECH A VÝSLEDCÍCH MĚŘENÍ

Stručné shrnutí údajů uvedených v žádosti

PERSPEKTIVES OF WEGETABLE WASTE COMPOSTING PERSPEKTIVY KOMPOSTOVÁNÍ ZELENINOVÉHO ODPADU

RESEARCH OF ANAEROBIC FERMENTATION OF ORGANIC MATERIALS IN SMALL VOLUME BIOREACTORS

THE PREDICTION PHYSICAL AND MECHANICAL BEHAVIOR OF FLOWING LIQUID IN THE TECHNICAL ELEMENT

ASSESSMENT OF ENERGY-BIOGAS PROCESS AT STATIONS USING THERMOGRAPHY METHODS

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2009, ročník IX, řada stavební článek č.3

1. IDENTIFIKAČNÍ ÚDAJE Označení stavby Stavebník Zpracovatel projektu

VLIVY VIBRACÍ A ZPŮSOBU PROVEDENÍ PRŮMYSLOVÉ DRÁTKOBETONOVÉ PODLAHY NA JEJÍ PORUŠITELNOST

KOMPOZITNÍ TYČE NA VYZTUŽENÍ BETONU

Profesor Ing. Aleš Komár, CSc. Aplikace palivového aditiva v provozu vojenské techniky AČR

PROJEKT SNÍŽENÍ PRAŠNOSTI V OBCI PAŠINKA STUDIE PROVEDITELNOSTI

Curriculum Vitae. OSOBNÍ ÚDAJE Jméno a příjmení: Rostislav Drochytka

INFLUENCE OF CONSTRUCTION OF TRANSMISSION ON ECONOMIC PARAMETERS OF TRACTOR SET TRANSPORT

The target was to verify hypothesis that different types of seeding machines, tires and tire pressure affect density and reduced bulk density.

PLOTOVÝ SYSTÉM TVÁŘ KAMENE GABRO

Ctislav Fiala: Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb

NEW TRANSPORT TECHNOLOGY - BUSES ON CALL

Prof. Ing. Rostislav Drochytka, CSc. Bodlákova 8, Brno, Česká Republika Tel ; drochtka.r@fce.vutbr.

ČESKÁ TECHNICKÁ NORMA

EFEKTIVNOST CHOVU MASNÉHO SKOTU THE EFFICIENCY OF BEEF CATTLE PRODUCTION. Zdeňka Kroupová, Michal Malý

TECHNICKÝ LIST BROŽ MURÁNO. základní kámen, koncový 3/4 kámen, koncový 1/4 kámen, stříška, palisáda 40, schodišťový blok, schodišťový blok poloviční

Úvod. D. Andert, V. Mayer Výzkumný ústav zemědělské techniky, v.v.i. Praha

Stabilita v procesním průmyslu

PONTEX spol. s r. o. Bezová Praha 4 ZOV. Obsah

PROJEKT SNÍŽENÍ PRAŠNOSTI NA ÚZEMÍ MĚSTA KRÁLÍKY STUDIE PROVEDITELNOSTI

TECHNICKÝ LIST BROŽ MURÁNO

TECHNICKÁ A PRŮVODNÍ ZPRÁVA

Pilotní studie vodní stopy

Kompostování réví vinného s travní hmotou. Composting of vine cane with grass

BARIÉRY VSTUPU V ODVĚTVÍ PRODUKCE JABLEK V ČESKÉ REPUBLICE BARRIERS TO ENTRY IN THE CZECH APPLES PRODUCTION INDUSTRY.

P. Verner, V. Chrást

PLOT TVÁŘ KAMENE - GABRO

PCR IN DETECTION OF FUNGAL CONTAMINATIONS IN POWDERED PEPPER

Krejzek P., Heneman P., Mareček J.

MONITORING OF WATER POLLUTION OF ŽELEČSKÝ STREAM UNDER ŽELEČ VILLAGE SLEDOVÁNÍ ZNEČIŠTĚNÍ ŽELEČSKÉHO POTOKA POD OBCÍ ŽELEČ

Vypořádání připomínek k návrhu koncepce Plán odpadového hospodářství Olomouckého kraje a k vyhodnocení vlivu koncepce na životní prostředí

Environmentální prohlášení o produktu (Environmental Product Declaration) STAVEBNÍ VÝROBKY

THE ISSUE OF TERRITORIAL SYSTEMS OF ECOLOGICAL STABILITY IN THE PROTECTED LANDSCAPE AREA

Vysoká škola zemědělská Praha, Provozně ekonomická fakulta, Katedra zemědělské ekonomiky, Praha 6 - Suchdol tel. 02_ , fax.

VLIV TUHOSTI PÍSTNÍHO ČEPU NA DEFORMACI PLÁŠTĚ PÍSTU

Stručné shrnutí údajů ze žádosti

VYHODNOCENÍ UDRŽITELNÉHO ROZVOJE V ÚZEMNÍM PLÁNOVÁNÍ EVALUATION OF SUSTAINABLE DEVELOPEMENT IN LANDSCAPE PLANNING

ENVIRONMENTÁLNÍ OPTIMALIZACE KOMŮRKOVÉ ŽELEZOBETONOVÉ DESKY

VLIV MLETÍ ÚLETOVÉHO POPÍLKU NA PRŮBĚH ALKALICKÉ AKTIVACE

VÝNOSOVÝ POTENCIÁL TRAV VHODNÝCH K ENERGETICKÉMU VYUŽITÍ

EFFECT OF COMBUSTION OF ALTERNATIVE FUELS ON DIESEL ENGINE EXHAUST EMISSIONS

Zakázka: D Stavba: Sanace svahu Olešnice poškozeného přívalovými dešti v srpnu 2010 I. etapa

C O D E, s. r. o. Computer Design IČO PARDUBICE Na Vrtálně 84 tel , fax SOUHRNNÁ TECHNICKÁ ZPRÁVA

OHROŽENÍ PŘENOSOVÝCH SOUSTAV PŘÍRODNÍMI VLIVY THREAT OF THE ELECTRICAL TRANSMISSION SYSTEMS BY THE NATURAL

Metodika sestavování klíčových indikátorů životního prostředí pro oblast průmyslu, energetiky a dopravy

Univerzita Pardubice. Dopravní fakulta Jana Pernera

h. Dopravní řešení, zdvihací zařízení, výtahy... 9 h.1. Výtahy...Chyba! Záložka není definována.

OKRASNÉ TVÁRNICE ŠTÍPANÉ

B. Souhrnná technická zpráva

TECHNICKÁ ZPRÁVA PRO VÝBĚROVÉ ŘÍZENÍ NA DODAVATELE VEŘEJNÉ ZAKÁZKY MALÉHO ROZSAHU

POROTHERM pro nízkoenergetické bydlení

SVAHOVÉ TVAROVKY VELKÉ

doc. Ing. Vladimír Kočí, Ph.D. Ing. Helena Burešová VŠCHT Praha

STANDARD DÍL 23 BUDOVÁNÍ A REKONSTRUKCE ZÁKLADŮ TOČIVÝCH STROJŮ ZÁKLADOVÉ DESKY

PROJEKT. Snížení imisní zátěže na území města Broumova. Studie proveditelnosti

1 MANAŽERSKÉ SHRNUTÍ... 4 SEZNAM POUŽITÉ LITERATURY ZÁKLADNÍ INFORMACE INFORMACE O LOKALITĚ, KTEROU PROJEKT ŘEŠÍ...

HLUKOVÁ STUDIE Silnice II/380 Moutnice průtah změna 2015

SLEDOVÁNÍ JARNÍCH FENOLOGICKÝCH FÁZÍ U BUKU LESNÍHO VE SMÍŠENÉM POROSTU KAMEROVÝM SYSTÉMEM

Ing. Miloš Kalousek, Ph.D., Ing. Danuše Čuprová, CSc. VUT Brno

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK

Modelování imisí v dopravě

SEIZMICKÝ EFEKT ŽELEZNIČNÍ DOPRAVY ÚVODNÍ STUDIE

O Z N Á M E N Í záměru podle 6 zákona č. 100/2001 Sb., o posuzování vlivů na ţivotní prostředí v rozsahu přílohy č. 3 - pro účely zjišťovacího řízení

ANALÝZA VARIANT NÁVRHU ENERGETICKÝCH OPATŘENÍ NA ZÁKLADĚ ENERGETICKÉHO AUDITU ANALYSIS OF POSSIBLE MEASURES FOR REDUCING OF ENERGY CONSUMPTION

vyrobeno technologií GREEN LAMBDA

veřejných výdajů metodou stanovení koeficientu

VLIV TEPELNĚ-MECHANICKÉHO ZPRACOVÁNÍ NA VLASTNOSTI DRÁTU Z MIKROLEGOVANÉ OCELI. Stanislav Rusz a Miroslav Greger a Otakar Drápal b Radim Lukáš a

PŘEDPROJEKČNÍ PŘÍPRAVA SANACE TUNELU

INLUENCE OF CHANGES IN MUNICIPAL WASTE COLLECTION SYSTEM FOR THE PRODUCTION OF RECOVERABLE AND NON-RECOVERABLE COMPONENTS

BIOLOGICKÉ LOUŽENÍ KAMÍNKU Z VÝROBY OLOVA

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

ČISTÁ VEŘEJNÁ DOPRAVA

INFLUENCE OF FOREST CLEARINGS ON THE DIVERSITY OF MOTHS

Výzkum v oblasti LCA analýza a hodnocení životního cyklu osobní standardní pneumatiky typu 175/70 R13

Rozhodnutí. 9. změnu integrovaného povolení při nepodstatné změně v provozu zařízení (dále jen 9. změna IP ) právnické osobě:

Regionální surovinová politika Libereckého kraje

Interakce mezi uživatelem a počítačem. Human-Computer Interaction

ZPRÁVA O PLNĚNÍ PODMÍNEK INTEGROVANÉHO POVOLENÍ

Ing. Simona Psotná, Ing. Taťána Barabášová V 10 APLIKACE PYROLÝZNÍCH OLEJŮ VE FLOTACI UHLÍ

Výuka softwarového inženýrství na OAMK Oulu, Finsko Software engineering course at OAMK Oulu, Finland

Aktuální změny zákona o odpadech a prováděcích právních předpisů Jan Maršák Odbor odpadů Ministerstvo životního prostředí

KULOVÝ STEREOTEPLOMĚR NOVÝ přístroj pro měření a hodnocení NEROVNOMĚRNÉ TEPELNÉ ZÁTĚŽE

Metodika použitá ve studii nebyla ani certifikována státní správou dle tuzemských pravidel a kritérií.

Transkript:

APPLICATION LIFE CYCLE ASSESSMENT OF INDUSTRIAL FLOORS IN AGRICULTURAL PRODUCTION Malý K., Kotovicová J. Department of Applied and Landscape Ecology, Faculty of Agronomy, Mendel University of Agriculture and Forestry in Brno, Zemedelska 1, 613 00 Brno, Czech Republic E-mail: kmaly@centrum.cz ABSTRACT The article is concerned with problems in the application of the life cycle analysis (LCA) method in the course of production of floor systems for agricultural and industrial premises. The process was based on international norms, and within the interpretation of results the method of multi-criterion evaluation was used to achieve higher objectivity. For the purpose of this research, floors on the base of concrete, dry-shake and asphalt have been selected from a wide range of different floors as they are commonly considered the most often used and sold ones. Taking solely the environmental aspect into consideration, the production of classical concrete floors has proved to cause the least environment damage, the dry-shake floors cause slightly higher environment damage and the asphalt floors, as regards this aspect, seem to be the least suitable. The obtained results along with the proposed method can be useful criteria for decision-making processes within the incorporation of environmental safety of similar construction methods. Key words: asphalt, concrete, dry-shakes, industrial floors, agricultural premises, LCA.

ÚVOD Díky rostoucímu povědomí veřejnosti o kvalitě životního prostředí a postupné aplikaci nástrojů environmentální politiky, lze pozorovat zvyšující se zájem průmyslových podniků, ale i laické veřejnosti o sledování environmentálních dopadů výroby a služeb na životní prostředí, a také snahu o jejich minimalizaci. Reakcí na vzniklou situaci byl vývoj různých metod a přístupů k hodnocení dopadů výroby a služeb na životní prostředí, který lze datovat do počátku 60. let. Cílem těchto snah je zvolit, propagovat a realizovat ekologicky nejpříznivější výrobek nebo pracovní postup. Vyvinuté metody však vyžadovaly značné množství informací a často také poskytovaly odlišné a nesrovnatelné výsledky. K provedení kompletní charakteristiky environmentálních dopadů chování lidské společnosti bylo nutno sjednotit dosud používané metodiky a vytvořit víceméně jednotný aparát, který je dnes znám pod názvem posuzování životního cyklu LCA (Life Cycle Assessment). Tato metoda studuje environmentální aspekty výroby a její možné dopady na životní prostředí v průběhu celého života výrobku, od získání surovin, přes výrobu, užívání až po zneškodnění a nakládání s odpadem, tzv. od kolébky do hrobu. CÍL PRÁCE Pro tento výzkum byla z celé řady aspektů vybrána podlaha na bázi, asfaltu a vsypů. Byl vybrán pouze tento úzký výběr tři typů průmyslových podlah z hlediska podrobnější analýzy těchto třech druhů. A to z důvodu, že pokud by se srovnávalo více druhů průmyslových podlah, nedosáhlo by se tak velké a podrobné analýzy, jako v tomto případě. Vybrány byly tři typy průmyslových podlah, které jsou obecně považovány za nejpoužívanější a z hlediska výrobních firem za nejprodávanější. Betonové a asfaltové podlahy byly v minulosti i dnešní době jsou hojně využívány zvláště do zemědělských objektů pro jejich nenáročnost a relativně nízké pořizovací náklady. Vsypy byly vybrány, poněvadž jsou hojně využívány, a patří mezi typy průmyslových podlah, které mají dlouhou životnost s ohledem na výši vstupních nákladů. EXPERIMENTÁLNÍ ČÁST Využití metody LCA předpokládá s pomocí input-output analýzy zhodnotit surovinové a energetické vstupy včetně zatížení životního prostředí v průběhu jejich získávání, vlastní výroby a odstranění produktu. Tak lze kvantifikovat surovinové a energetické toky vztažené na jednotku výrobku, spolu s množstvím emitovaných látek a energií do jednotlivých složek životního prostředí, počínaje získáváním surovin a konče odstraněním výrobku. V předkládané práci jsou hranice systému v souladu s příslušnou normou2 omezeny výhradně na environmentální posouzení technologie výroby a odstranění odpadu, zatímco environmentální aspekty spojené s těžbou surovin byly zanedbány. Důvodem byla neznalost energetických a materiálových toků v průběhu získávání surovin. Pokud se týká narušení krajiny těžbou surovin, lze konstatovat, že v mnoha případech je lokalita po těžbě z hlediska životního prostředí dokonce cennější, než před počátkem těžby. Důvodem je fakt, že v rámci technické rekultivace jsou zde budovány vodní plochy, zakládány lesní porosty, zpevňovány

břehy apod., které jsou začleňovány do okolní krajiny vše v návaznosti na regionální biokoridory v daném území. Proto ani narušení krajiny těžbou surovin nebyl v rámci životního cyklu zvažován. Do hranic posuzovaného systému byla naopak zahrnuta spotřeba elektrické energie a pohonných hmot. Vzhledem k tomu, že smyslem článku nebylo detailně analyzovat posuzovaný systém, nýbrž předložit čtenáři obecný postup aplikace LCA na konkrétní výrobní proces, jako vzor využití v rozhodovacím procesu, byla v rámci hodnocení provedena určitá zjednodušení: a) Předpokládalo se, že veškerá spotřebovaná energie je vyrobena v tepelných elektrárnách; b) Ze škodlivin emitovaných při výrobě elektrické energie byly hodnoceny pouze emise CO 2, zatímco od emisí dalších polutantů (CO, NOx, SO 2, tuhé znečišťující částice aj.), které při výrobě elektrické energie termickým způsobem vznikají, bylo absentováno. c) Analogické zjednodušení bylo provedeno i při hodnocení zátěže životního prostředí v důsledku emisí vzniklých při spalování pohonných hmot. Opět byly pro přehlednost zvažovány výhradně emise CO 2, přestože spaliny obsahují jiné polutanty (SO 2, CO, NO x, CxHy, PM2,5, PM10), které zatěžují životní prostředí často relevantně vyšším dopadem, jako jsou například ozon nebo polycyklické aromatické uhlovodíky. Použitý beton ztrácí po určité době vlastnosti, které měl při své pokládce, protože dochází k jeho korozi. Jde o degradaci spojenou se ztrátou pevností, delaminace výztuže, vzniku trhlin apod. Vlivem provozu dochází rovněž k opotřebení v podobě výtluků, trhlin aj. Je tudíž nezbytné podlahy časem recyklovat nebo reparovat a to buď formou odstranění a následné recyklace nebo sanace (pomocí stěrky nebo nové vrstvy ). Proto i tato fáze životního cyklu byla akceptována s obdobnými zjednodušeními, jako tomu bylo v případě vlastní výroby. MATERIÁL A METODIKA Potřebná data o jednotlivých tocích v hodnocených systémech byla získána z podnikových evidencí, technologických popisů, výpočty s využitím emisních faktorů, z evidence vedené firemním ekologem a metodou on-site interview. Pro potřeby inventarizační analýzy byla hodnota spotřebované energie, pohonných hmot a vzniklých odpadů pro jednotlivé fáze výroby a odstranění kalkulována z reprezentativní plochy 1000 m 2 podlahy a pro další zpracování přepočtena na jeden m 2. Hodnoty emisí CO 2 byly vypočteny na základě odpovídajících emisních faktorů 5, 6, 7 a hluková zátěž odečtena z katalogů výrobců stavebních strojů a zařízení. Příslušné hodnoty včetně sumace jsou přehledně prezentovány v tabulce 4 pro výrobu betonové podlahy, v tabulce 5 betonové podlahy se vsypem a v tabulce 6 pro výrobu asfaltové podlahy. Hodnoty uvedené v kolonce odpadů se při výrobě betonových směsí týkají odpadní hlušiny, pro kterou se nepředpokládá další využití, analogicky jako pro odpad asfaltu při odstraňování staré podlahy. V tabulce 1 je výčet výhod a nevýhod jednotlivých posuzovaných podlah. Rozsah operací je vzhledem k rozdílům v technologických postupech stanoven zvlášť pro výrobu,vsypů i asfaltu. Následující tabulky č. 2 a 3 zobrazují seznam operací a jejich charakteristiku tak, jak byla uvedena a popsána v odpovídajících technologických dokumentech. Červeně jsou zobrazeny ty operace, které se vyskytují u výroby vsypů.

Tab. 1 Výhody a nevýhody porovnávaných průmyslových podlah Výhody Nevýhody Beton Vsypy Asfalt cena vysoká životnost odolnost proti opotřebení pevnost odolnost proti obrusu tlumí hluk tuhost bezprašnost vodotěsný rovinnost odolný proti střídání tepla a mrazu prašnost technologická náročnost deformace nízká odolnost v obrusu cena další rekonstrukce pouze asfaltem nasákavost tepelná nestálost Tab. 2 Seznam operací a jejich charakteristika podle technologického popisu (TP) pro výrobu a vsypů Operace podle technologického předpisu sběr a odvoz ornice dovoz a jeho rozvoz hutnění, izolace geotextílie, fólie míchání a dovoz Zpracování strojní hlazení, fáze tuhnutí sypání vsypu hlazení, leštění těsnící nátěr řezání podlahy provoz poruchy + opotřebení likvidace činnost úprava a nanesení folií nákladní automobil hotovou směs míchá a následně ji přiveze na místo určení beton,,rozprostře se,, na místo určení lidská obsluha na rozlitý beton se vsype směs (vsyp) přístroje leští určenou plochu práce dělníků vyřezání části podlahy (např. 15 cm vrstva, vyřeže se 10 cm) působení různých vlivů a ztráta kvality podlahy odstranění povrchu či zanechání podlahy pro další využití Tab. 3 Seznam operací a jejich charakteristika podle technologického popisu (TP) pro výrobu asfaltu Operace podle technologického předpisu sběr a odvoz ornice dovoz a jeho rozvoz úprava povrchu namíchání asfaltu fáze tuhnutí užívání opotřebení vyfrézování celého povrchu a odvoz použití jako podklad pro další úpravu povrchu Činnost těžká speciální technika připravující obalovací směs po nanesení se uhladí a tuhne časté využití vede ke ztatě kvality část povrchu se vyjme a nahradí novou asfaltovou vrstvou ponechá se původní a na ni se položí další vrstva

Tab. 4 Inventarizační matice pro výrobu Technologické operace Benzín [dm3.m-2] VSTUPY Nafta [dm3.m-2] Elektrická energie [kwh.m-2] Emise CO2 [g.m-2] VÝSTUPY Hluk [db] Odpad [kg.m- 2] Sběr zeminy - 0,03200-84,34944 0,10700 - Odvoz zeminy - 0,19425-512,02746 0,08500 4,00000 Dovoz - 0,16650-438,88068 0,08500 - Rozvoz Hutnění Míchání - 0,01300-34,26696 0,10700 - - 0,00500-13,17960 0,06300 - - - 0,13135 0,15368-0,07600 Dovoz - 0,17760-468,13939 0,08500 0,12000 Pokládka Vibrování - - 0,08750 0,10238 0,07300 0,15000 - - 0,00150 0,00176 0,03000 0,00200 Hlazení 0,06000 - - 138,46050-0,00200 Řezání dilatačních spár 0,02420 - - 55,84574 0,10800 - Odstranění - 0,05200-137,06784 0,11000 375,00000 Vážený průměr - - - - 0,09343 - Celkem 0,08420 0,64035 0,22035 1 882,47542 379,35000 Tab. 5 Inventarizační matice pro výrobu se vsypem VSTUPY VÝSTUPY Technologické operace Benzín Elektrická energie Nafta [dm3.m-2] Emise CO2 [g.m-2] Hluk [db] Odpad [kg.m-2] [dm3.m-2] [kwh.m-2] Sběr zeminy - 0,03200-84,34944 0,10700 - Odvoz zeminy - 0,19425-512,02746 0,08500 4,00000 Dovoz - 0,16650-438,88068 0,08500 - Rozvoz - 0,01300-34,26696 0,10700 - Hutnění - 0,00500-13,17960 0,06300 - Míchání - - 0,13135 0,15368-0,07600 Dovoz - 0,17760-468,13939 0,08500 0,12000 Pokládka - - 0,08750 0,10238 0,07300 0,15000 Vibrování - - 0,00150 0,00176 0,03000 0,00200 Aplikace vsypu - - - - - - Rozprašování emulzí 0,00500 - - 11,53838 - - Hlazení 0,06000 - - 138,46050-0,00200 Řezání dilatačních spár 0,02420 - - 55,84574 0,10800 - Odstranění - 0,05200-137,06784 0,11000 375,00000 Vážený průměr - - - - 0,09343 - Celkem 0,08920 0,64035 0,22035 1 894,01380 379,35000

Tab. 6 Inventarizační matice pro výrobu asfaltu Technologi cké operace Sběr zeminy Odvoz zeminy Dovoz Rozvoz Hutnění Míchání asfaltu Dovoz asfaltu Pokládka asfaltu Válcování asfaltu Zemní plyn [m3.m-2] VSTUPY Nafta [dm3.m-2] Elektrická energie [kwh.m-2] Emise CO2 [g.m-2] VÝSTUPY Hluk [db] Odpad [kg.m-2] - 0,032-84,34944 0,10700 - - 0,19425-512,02746 0,08500 4,00000-0,1665-438,88068 0,08500 - - 0,013-34,26696 0,10700 - - 0,005-13,1796 0,06300-1,25000-0,12600 69,52242 - - - 0,1776-468,139392 0,08500 - - 0,054-142,33968 0,08600 - - 0,026-68,53392 0,07400 - Odstranění - 0,068-179,24256 0,10200 Vážený průměr 250,0000 0 - - - - 0,08659 - Celkem 1,25000 0,73635 0,12600 2010,482112 254,0000 0 Pro komplexní posouzení environmentálních dopadů hodnocených variant, označených jako X 1 - betonová podlaha, X 2 - betonová podlaha se vsypem a X 3 - asfaltová podlaha byla zvolena metoda vícekriteriálního hodnocení. Jako kritéria byla zvolena, kritérium A 1 reprezentující sumární hodnotu spotřebovaných pohonných hmot, zatěžujících životní prostředí těžbou fosilní suroviny, ropy, kritérium A 2 představující sumární hodnotu příspěvku ke skleníkovému efektu CO 2 vzniklého spalováním pohonných hmot a výrobou elektrické energie, kritérium A 3 značící sumární hodnotu vyprodukovaného odpadu a konečně kritérium A 4, které reprezentuje vážený průměr hlukové zátěže, ve kterém váhy tvořily průměrnou dobu provozu jednotlivých strojů pro jednotlivé hodnocené fáze. Váhy jednotlivých kritérií byly získány jako vážený průměr bodových hodnot získaných pomocí brainstormingu v pracovním kolektivu tří osob. Zainteresované osoby stanovily pro každé kritérium bodové ohodnocení z intervalu 1; 5 přirozených čísel, přičemž vyšší hodnota bodového ohodnocení reprezentuje, že kritérium je pro danou osobu významnější. Přehled bodového ohodnocení je evidentní z tabulky 4 a výpočet jednotlivých vah pro uvažovaná kritéria je patrný z tabulky 5.

Tab. 7 Přehled bodového ohodnocení kritérií Označení kritéria* Osoba 1 Osoba 2 Osoba 3 A 1 5 4 5 A 2 4 3 3 A 3 3 3 3 A 4 1 1 1 CELKEM: 13 11 12 A 1 sumární hodnota spotřeby pohonných hmot; A 2 sumární hodnota příspěvku ke skleníkovému efektu CO 2; A 3 sumární hodnota produkce odpadu; A 4 vážený průměr hlukové zátěže; Tab. 8 Výpočet vah stanovených kritérií Kritérium (vij) Osoba 1 Osoba 2 Osoba 3 Celková váha (vi) A1 0,385 0,364 0,417 1,166 0,390 A2 0,308 0,273 0,250 0,831 0,277 A3 0,231 0,273 0,250 0,754 0,250 A4 0,077 0,091 0,083 0,251 0,083 Každá úloha vícekriteriálního hodnocení je charakterizována tzv. kriteriální maticí, kde v našem případě sloupce odpovídají kritériím A 1 - A 4 a řádky hodnoceným variantám X 1, X 2 a X 3. Prvky matice vyjadřují ohodnocení i-té varianty podlé j-tého kritéria a ve všech případech jsou minimalizační. Kriteriální matice má následující tvar: A 1 A 2 A 3 A 4 0,724 1 882 379,350 93,43 X 1 Y = 0,729 1 894 379,350 93,43 X 2 1,986 2 010 254,000 86,59 X 3 Dále je nutno stanovit ideální a bazální variantu. Ideální variantou se rozumí hypotetická nebo reálná varianta, která dosahuje ve všech kritériích nejlepší možné hodnoty. V zadané úloze je ideální variantou vektor H = (0,724; 1 882; 254,0; 86,59) a bazální variantou vektor D = (1,986; 2 010; 379,35; 93,43). Dále je nezbytné z jednotlivých prvků y i,j matice Y kalkulovat odpovídající prvky z i,j normalizované matice Z s využitím bazální, d j a ideální h j varianty dle vztahu (1) z i,j = ( y i j - h i,j). (d j - h j ) -1 (1) 0 0 1 1 Z = 0,003961965 0,09375 1 1 1 1 0 1

S využitím znalosti vah jednotlivých kritérií v j (viz tabulka 5) a prvků z i,j normalizované matice Z se vypočte hodnota váženého součtu u (x i) pro jednotlivé varianty x i, kde i 1; 3 přirozených čísel dle rovnice (2): n u (x i) = Σ z i j. w j (2) j = 1 Varianta podlahových systémů s minimálním environmentálním dopadem bude varianta s minimální hodnotou váženého součtu, protože byla aplikována minimalizační kritéria. Pro jednotlivé hodnoty u (x i) vážených součtů platí: u (x 1) = 0,333 u (x 2) = 0,361 u (x 3) = 0,667 ZÁVĚR Cílem této studie bylo na konkrétním příkladu z technologické praxe ukázat možnosti aplikace metodiky životního cyklu za účelem ekologizace výroby a snížení zátěže životního prostředí. Cíl se v podstatných rysech splnilo naplnit. Bylo prokázáno, že metodologie LCA je využitelná pro srovnání environmentálních impaktů tří technologických procesů. Řešení práce však komplikovalo několik skutečností, mezi než patří zejména neexistence obdobných materiálů v dostupné literatuře a dále pak nedostupnost některých údajů z partnerské firmy, které jsou předmětem obchodního tajemství. Velkou překážkou bylo také obtížné získávání konkrétních požadovaných informací od výrobců stavebních strojů a mechanizací. Předpokladem splnění primárního cíle bylo naplnění cílů sekundárních. Mezi nimi bylo nejkomplikovanější získání potřebných dat a jejich následný přepočet na stanovenou funkční jednotku, kdy v některých případech bylo nutno využít kvalifikovaného odhadu odborných pracovníků. Výsledky prokázaly, že optimální variantou je technologie výroby betonových podlah. Jako druhá nejoptimálnější varianta je technologie výroby vsypových podlah a jako třetí je technologie asfaltových podlah. V současnosti stále není stanoven jednotný metodický postup, který by hodnocení vlivů upravoval. Relevantní část úvah byla tedy založena na subjektivním přístupu zpracovatele, který byl diskutován s experty v daných oblastech v teoretické i praktické rovině. K rozhodovacímu procesu, do kterého se dostávají především investoři, jsou však nutné další aspekty, zejména ekonomické informace týkající se hlavně provozních a investičních nákladů, popř. velikosti trhu, dále pak možné sociální dopady a bezpečnostní opatření. Velmi důležitým kritériem, které při rozhodovacím procesu je nutno zohlednit je celková životnost výrobku, v tomto příkladu podlah v zemědělských objektech. U betonových podlah se uvažuje s životností cca 30 let. Vsypová úprava betonových podlah finančně zvyšuje náklady na realizaci podlahy (cca o 60 100 Kč/m2), nicméně vysoce zvyšuje technické vlastnosti výsledného výrobku, především odolnost proti vnějším vlivům, trvanlivost a únosnost. Díky této úpravě vsypové podlahy dosahují mnohem delší životnosti než běžné betonové podlahy. U asfaltových podlah se uvažuje s životnosti cca 25 let.

Předpokládané využití výsledků získaných řešením této studie je v managementu dané firmy pro další zkvalitnění ekologicko - ekonomických charakteristik technologií výroby podlah v zemědělských objektech. Výsledky studie poskytují současně i primární návod pro použití metodiky LCA v oblasti technologie výrob různých průmyslových podlah. LITERATURA OBRŠÁLOVÁ, I., MACHAČ, O. Ekonomika a řízení tvorby a ochrany životního prostředí, Vysoká škola chemicko-technologická v Pardubicích, Pardubice 1993 ČSN EN ISO 14040: Environmentální management Posuzování životního cyklu Zásady a osnova, Český normalizační institut 1998. http://www.panbex.cz/data/tech_data//iu_cds_cz_12.pdf, staženo 2. března 2009 BOŽEK, F., URBAN, R., ZEMÁNEK, Z. Recyklace, MORAVIATISK Vyškov s. r. o., Pustiměř 2003 http://www.cpu.cz/webmagazine/kategorie.asp?idk=179, staženo 27. srpna 2009 http://www.mpo.cz/dokument6794.html, staženo 27. srpna 2009 http://www.cdv.cz/podil-dopravy-na-produkci-sklenikovych-plynu/, staženo 27. srpna 2009 Bičík, J., Dohnal, J.: Sanace betonových konstrukcí, Jaga group, Bratislava 2003, ISBN 80-88905-24-9 Aitcin, P. C. : Vysokohodnotný beton, Edice betonové stavitelství, Praha 2005, ISBN 80-86769-39-9 BODNÁROVÁ L.: Kompozitní materiály ve stavebnictví, VUT v Brně FAST 2002, ISBN 80-214-2266-1 ČSN EN ISO 14042 Environmentální management Posuzování životního cyklu Hodnocení dopadů životního cyklu. Český normalizační institut. 2001. DROCHYTKA, R.: Atmosférická koroze betonů, IKAS Praha 1998 ISBN 80-902558-0-9 Kotovicová, J. a kol.: Odpady biodegradabilní - energetické a materiálové využití - III. ročník konference. 1. vyd. Brno: Mendelova zemědělská a lesnická univerzita v Brně, 2008. 109 s. ISBN 978-80-7375-229-3 MALÝ, K.: Životní cyklus průmyslových podlah pro zemědělství a potravinářství, Sborník Manažérstvo životného prostredia, Materiálovotechnologická fakulta Slovenskej technickej univerzity v Trnave, 2008 ISBN 80-89281-02-08 RUSKO, M., KURACINA, R., KOTOVICOVÁ, J., - KREČMEROVÁ, T. : Kapitoly z bezpečnostného a environmentálneho manažérstva. - Žilina: Strix et VeV, Edícia EV-20, Prvé slovenské vydanie, ISBN 978-80-89281-17-6. 2007 Státní politika životního prostředí (dokument schválený vládnou ČR ). Praha. MŽP ČR. 1999. Svoboda, L. a kol.: Stavební hmoty, Bratislava 2007, Jaga group, ISBN 978-80-8076-057-1 VÁLEK J.: Vliv rozptýlené výztuže na vybrané vlastnosti, Brno 2007