Podobné dokumenty
Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA

2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:

Molekulárn. rní. biologie Struktura DNA a RNA

Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza

Exprese genetické informace

Základy molekulární a buněčné biologie. Přípravný kurz Komb.forma studia oboru Všeobecná sestra

Exprese genetické informace

Struktura a funkce nukleových kyselin

Genetika. Genetika. Nauka o dědid. dičnosti a proměnlivosti. molekulárn. rní buněk organismů populací

Bílkoviny a rostlinná buňka

Odvětví genetiky zkoumající strukturu a funkci genů na molekulární úrovni

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce

Molekulární genetika: Základní stavební jednotkou nukleových kyselin jsou nukleotidy, které jsou tvořeny

Centrální dogma molekulární biologie

TRANSLACE - SYNTÉZA BÍLKOVIN

Úvod do studia biologie. Základy molekulární genetiky

Proměnlivost organismu. Mgr. Aleš RUDA

Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).

6) Transkripce. Bakteriální RNA-polymeráza katalyzuje transkripci všech uvedených typů primárních transkriptů (na rozdíl od eukaryot).

Buňky, tkáně, orgány, soustavy

-nukleové kyseliny jsou makromolekulární látky, jejichž základní stavební jednotkou je nukleotid každý nukleotid vzniká spojením:

Nukleové kyseliny. DeoxyriboNucleic li Acid

Základy buněčné biologie

jedné aminokyseliny v molekule jednoho z polypeptidů hemoglobinu

Garant předmětu GEN: prof. Ing. Jindřich Čítek, CSc. Garant předmětu GEN1: prof. Ing. Václav Řehout, CSc.

DUM č. 3 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika

Eva Benešová. Genetika

Globální pohled na průběh replikace dsdna

Proteiny Genová exprese Doc. MVDr. Eva Bártová, Ph.D.

A. chromozómy jsou rozděleny na 2 chromatidy spojené jen v místě centromery. B. vlákna dělícího vřeténka jsou připojena k chromozómům

4) pokračování struktury nukleových kyselin

Úvod do studia biologie. Základy molekulární genetiky

Inovace studia molekulární a buněčné biologie. reg. č. CZ.1.07/2.2.00/

Translace (druhý krok genové exprese)

Nukleové kyseliny Milan Haminger BiGy Brno 2017

Nukleové kyseliny. obecný přehled

DUM č. 11 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika

Molekulární základy dědičnosti

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ

Nukleové kyseliny (polynukleotidy) Nukleové kyseliny a nadmolekulové komplexy polynukleotidů buněčných struktur

BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA:

MOLEKULÁRNÍ ZÁKLADY DĚDIČNOSTI

REPLIKACE A REPARACE DNA

Nukleové kyseliny. Nukleové kyseliny. Genetická informace. Gen a genom. Složení nukleových kyselin. Centrální dogma molekulární biologie

GENETIKA dědičností heredita proměnlivostí variabilitu Dědičnost - heredita podobnými znaky genetickou informací Proměnlivost - variabilita

6. Nukleové kyseliny

Stavba dřeva. Základy cytologie. přednáška

Nukleové kyseliny Replikace DNA Doc. MVDr. Eva Bártová, Ph.D.

44 somatických chromozomů pohlavní hormony (X,Y) 46 chromozomů

Molekulární základy dědičnosti

19.b - Metabolismus nukleových kyselin a proteosyntéza

- význam: ochranná funkce, dodává buňce tvar. jádro = karyon, je vyplněné karyoplazmou ( polotekutá tekutina )

Nukleové kyseliny a nadmolekulové komplexy polynukleotidů buněčných struktur

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Molekulární genetika (Molekulární základy dědičnosti)

Inovace studia molekulární a buněčné biologie

1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním

Souhrnný test - genetika

Genetický kód. Jakmile vznikne funkční mrna, informace v ní obsažená může být ihned použita pro syntézu proteinu.

NUKLEOVÉ KYSELINY. Základ života

Základy molekulární biologie KBC/MBIOZ

Nejmenší jednotka živého organismu schopná samostatné existence. Výměnu látek Růst Pohyb Rozmnožování Dědičnost

Nukleové kyseliny Replikace Transkripce, RNA processing Translace

Základy molekulární biologie KBC/MBIOZ

Klasifikace mutací. Z hlediska lokalizace mutací v genotypu. Genové mutace. Chromozomální mutace. Genomové mutace

Nukleové kyseliny Replikace Transkripce translace


BIO: Genetika. Mgr. Zbyněk Houdek

-zakladatelem je Johan Gregor Mendel ( ), který se narodil v Hynčicích na Moravě

Eukaryotická buňka. Stavba. - hlavní rozdíly:

Schéma průběhu transkripce

Genetika - maturitní otázka z biologie (2)

Mutace jako změna genetické informace a zdroj genetické variability

od eukaryotické se liší svou výrazně jednodušší stavbou a velikostí Dosahuje velikosti 1-10 µm. Prokaryotní buňku mají bakterie a sinice skládá se z :

Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách

Inovace studia molekulární a buněčné biologie

TEST: GENETIKA, MOLEKULÁRNÍ BIOLOGIE

NUKLEOVÉ KYSELINY. Složení nukleových kyselin. Typy nukleových kyselin:

b) Jak se změní sekvence aminokyselin v polypeptidu, pokud dojde v pozici 23 k záměně bázového páru GC za TA (bodová mutace) a s jakými následky?

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/

Přednáška kurzu Bi4010 Základy molekulární biologie, 2016/17 Replikace DNA

Buňka buňka je základní stavební a funkční jednotka živých organismů

Nukleové kyseliny Replikace Transkripce translace

Genetika zvířat - MENDELU

"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Biosyntéza nukleových kyselin. VY_32_INOVACE_Ch0219.

Buňka. Autor: Mgr. Jitka Mašková Datum: Gymnázium, Třeboň, Na Sadech 308

a) Primární struktura NK NUKLEOTIDY Monomerem NK jsou nukleotidy

Projekt realizovaný na SPŠ Nové Město nad Metují

1.Biologie buňky. 1.1.Chemické složení buňky

ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv

Nukleové kyseliny Replikace Transkripce, RNA processing Translace

Základní učební text: Elektronické zpracování Biologie člověka; přednášky Učebnice B. Otová, R. Mihalová Základy biologie a genetiky člověka,

Deoxyribonukleová kyselina (DNA)

Syntéza a postranskripční úpravy RNA

Transkript:

Organizace genomu eukaryot a prokaryot GENE Mgr. Zbyněk Houdek

Stavba prokaryotické buňky Prokaryotické jádro nukleoid 1 molekula 2-řetězcové DNA (chromozom kružnicová struktura), bez jaderné membrány. Nepohlavní rozmnožování a nedělí se mitoticky: replikace, transkripce a translace.

Organely přenosu GI prokaryot Nukleoid: : p. chromozom - 2-řetězcová kružnicová DNA (nepostradatelné geny), proteiny podobné histonům (HLP) a p. nehistonové povahy, které se pojí k cytoplazm. mem. počátek replikace DNA. Chromozom (replikon( = 1 počátek replikace) tvoří nadšroubovicovou (záporné vinutí) nebo relaxovanou či solenoidovou str. Monoploidní 1 sada genů. Plazmidy mimochromozómové genofory (postradatelné geny). Ribosomy obsahují - sedimentační koeficient p. ribosomů je 70 S: 30S ová podjednotka. 50S ová p.

Replikace u prokaryot Replikace chromozomu a plazmidů oboje replikony. Začátek replikace místo ori vytvoření replikační vidlice (rozestup DNA-řetězců přerušení vodíkových vazeb). Jednosměrná replikace 1 směr (původní hypotéza). Dvousměrná r. (správná hypotéza) oba směry navzájem opačné. R. otáčející kružnicí (viry, bakterie) kružnicové vlákno se neštěpí, ale otáčí se a zároveň slouží jako templát pro syntézu nového vlákna.

Fáze a enzymy replikace DNA Iniciace zahájení v místě ori a vytvoření 2 replikačních vidlic. Elongace připojování nových nukleotidů k matricovému DNA-řetězci. Terminace pochody zakončující replikaci. Všechny pochody jsou řízeny specifickými enzymy: Tři i druhy DNA-polymer polymeráz: DNA-polymer polymeráza I (Kornberg( Kornbergův e.) katalyzuje replikaci DNA v mezerách mezi Okazakiho fragmenty. DNA-polymer polymeráza II a III. DNA-ligáza spojování polynukleotidů (spojování Okazakiho fragmentů). DNA-primáza syntéza RNA-primeru DNA-helikáza přerušuje vodíkové vazby mezi 2 DNA řetězci DNA-gyráza (topoizomeráza) upravuje strukturu DNA-řetězců před vytvořením replikační vidlice.

Transkripce u prokaryot Katalyzuje enzym RNA-polymeráza nebo RNA- transkriptáza syntéza dlouhých primárních RNA- transkriptů na matrici DNA-řetězce a váže se na promotor. Typy primárních transkriptů: Mediátorová RNA (mrna) přepis GI ve strukturních genech, matrice pro syntézu polypeptidového řetězce na ribosomu (u bakt. není sestřih). Prekurzorová ribozomová RNA (pre-rrna) rrna) transkript genů pro rrna, postranskripční úprava ve funkční typy rrna. Prekurzorová transférová RNA (pre( pre-trna) transkript genů pro trna, postranskripční úprava ve funkční typy trna. Uvedené primární transtkripty mohou být polygenní (polycistronní přepisy více genů).

Bakteriální translace Výchozími látkami pro translaci jsou standardní aminokys.. (20 + selenocystein) ) v cytoplazmě, ale musí být chemicky aktivovány. Probíhá na ribozomech,, kde se tvoří polypeptidy za účasti trna podle GI na mrna a enzymů aminoacyl-trna trna-syntetáz. Průběh bakteriální translace dělíme na 3 fáze: Iniciace vytvoření iniciacního komplexu (ribzom -70S, mrna a iniciační trna vstupuje do peptidového místa na ribozomu a váže se antikodonem na iniciační kodon rrna AUG). Elongace prodlužování polypeptidového řetězce řízena proteiny (elongační faktory). Terminace zakončení syntézy polypeptidu, které je signalizováno terminačním kodonem (UAA, UAG, UGA) řízena p. (terminační f.).

Prokaryotické ribosomy Sedimentační koeficient je 70S (30 a 50S). Skládají se ze 5S-,, 16S- a 23S-rRNA rrna. Vazebná místa na ribozomu: Vazebné místo pro mrna 30S podjednotka (napojení na 3 -konec 16S- rrna). A-místo (aminoacylové( m.) mezi 30S a 50S podjednotkami navázání aminoacyl- trna. P-místo (peptidylové( m.) mezi 30S a 50S podjednotkami váže trna na jejímž 3 - konci je syntetizovaný polypeptidový ř. E-místo (výstupní místo) pro deacylovanou trna, která odevzdala svou aminokys.

Souběh transkripce, translace a degradace mrna U prokaryot může translace a degradace mol. mrna začínat dříve, než je dokončena transkripce (syntéza mrna). Všechny procesy probíhají ve směru 5 k 3, tak mohou probíhat současně. U prokaryot není aparát pro syntézu polypeptidů oddělen jadernou mem.. od syntézy mrna. Urychlení syntézy na 1 mrna pracuje více ribozomů polyribozomy (vzdálenost mezi nimi je asi 80 nukleotidů).

Schématický model eukaryotické buňky: 1 - jadérko; ; 2 - jádro; ; 3-3 ribozom; ; 4 vezikul; ; 5 -endoplazmatické retikulum; ; 6 - Golgiho aparát; 7 - cytoskelet; ; 8 - hladké endoplazmatické retikulum; ; 9 - mitochondrie; ; 10 - vakuola; ; 11 - cytosol; ; 12 - lysozom; ; 13 - centriola

Buněčné jádro Nukleus obsahuje genetický materiál buňky. Jde o nějvětší organelu (10-20 µm). Je ohraničena dvojitou jadernou membránou,, v níž se nacházejí póry tvořené speciálními bílkovinami (100 proteinů): Důmyslná struktura, která je propustná pro malé mol. rozpustné ve vodě. RNA a proteiny jsou tříděny na základě jaderného lokalizačního signálu, speciálních receptorů a energie (proteiny jádro). Transport sestřižen ené mrna z jádra. j Jadérko (nukleolus)) je malá vnitřní část buněčného jádra kulovitého tvaru, která obsahuje hodně ribozomální RNA ( rrna). rrna vzniká přímo v jadérku a následně v něm vznikají i ribozómy). Vzniklé ribozómy se asociují přímo s rrna,, po té jsou jadernými póry transportovány ven do cytoplazmy. Jadérko není od zbylé karyoplazmy odděleno žádnou membránou.

Struktura eukaryotických chromozomů Počet chromozomů v jádrech bb. určitého druhu e. org.. je závislý na tom zda se jedná o b. somatickou nebo gametickou: Gamety (vajíčka, spermie) v jádře haploidní počet ch.. (druhově specifický např. člověk n=23, potkan n=21, drosofila n=4). Somatické bb. mají dvojnásobný počet ch.- diploidní stav (2n). Chemická struktura: DNA, histony, nehistonové p., RNA - chromatin. DNA je vázána na histony jako nukleoproteinový komplex nukleozom (Kornberg 1974). Nukleozomy spojené spojnicovou DNA tvoří negativní nadšroubovicové vlákno 11 nm. Toto vlákno se sbaluje do 30 nm chromatinového vlákna, které se během metafáze váže na nehistonové proteinové lešení.

Stupně struktury eukaryotických chromozomů

Specializované sekvence DNA chromozomů 3 typy specializovaných sekvencí: Replikační počátky začátek duplikace DNA (více replikač. počátků). Centromery zajišťují rozchod replikovaných ch. do dceřinných b. při dělení (na centromeře proteinový komplex kinetochor, který váže duplikované ch. na dělící vřeténko). Obsahují repetitivní nukleotidové sekvence. Telomery na obou koncích ch., které obsahují repetitivní nukleotidové sekvence umožňují replikaci konců ch.. Protože primery nemohou vznikat na konci ch. docházelo by ke ztrátám koncových oblastí. Existuje enzym telomeráza,, která tyto sekvence syntetizuje. Dále telomery chrání ch.. před působením DNA-nukleáz, které degradují konce DNA-molekul.

Transkripce a úpravy RNA u eukaryot Transkripce u eukaryot je složitější: RNA se syntetizuje v jádře a musí se pak přenést do cytoplazmy (ribozomy( ribozomy-translace). Eukaryotický transkript = 1 gen. Většina primárních transkriptů prochází před transportem do cytoplazmy 3 podstatnými modifikacemi: K 5 koncům prim. transkriptů se připojí 7-7 metylguanozinové čepičky. K3 koncům těchto odštěpených transkriptů se připojí úseky poly(a). Vyštěpují se introny.

Translace u eukaryot E. ribosomy: : Jsou tvarem a funkcí velmi podobné prokaryotním,, skládají se také ze 2 podjednotek (velká 60S, malá 40S), ale sedimentační koeficient je vyšší = 80S (18S, 5S, 5.8S, 28S). Translace se uskutečňujě u eukaryot ve 2 nebo třech místech b. (živočichové cytoplazma, mitochondrie; ; rostliny ještě navíc v chloroplastech). Translace v mitochondriích a chloroplastech ribosomy,, sedimentační k.=60s podobný jako u bakterií stejný průběh h translace jako u bakterií.

Průběh eukaryotické translace Na ribozomech 80S a princip je shodný jako u bakterií, ale u eukaryot je iniciační trna s navázaným methioninem připojena k malé podjednotce r. (jako jediná trna v b. se pevně váže na tuto podjednotku) ) za asistence několika proteinů (iniciačních f.). Pak se malá podjednotka váže na 5 -konec mrna (rozpoznán podle čepičky) a začne podél mrna ve směru 5 3 a hledat 1. kodon AUG, který je rozpoznán antikodonem iniciační trna (váže e na P-místo). P Po jeho nalezení se odpojí iniciační faktory a připojí se velká podjednotka a začíná elongace navázání 2. trna s aminokys.. do A-místa. A Terminace je shodná s prokaryoty stejné terminační kodony (UAA, UAG, UGA).

Mutace Mutace jsou změny v genotypu organismu oproti normálu. Org.. se změněným genotypem vlivem mutace mutant. Velká většina mutací je naprosto náhodných, cílená mutageneze se používá téměř výhradně pro vědecké účely. Pravděpodobnost jedné takovéto chyby se pohybuje v řádech asi 10-7 (náhodné při replikaci, bez zjevné vnější příčiny spontánní mutace). Pravděpodobnost vzniku mutace se zvyšuje působením některých fyzikálních nebo chemických činitelů - mutagenů indukované mutace.

Mutace somatické a gametické Mutace mohou vznikat v jakémkoli org.. (viry, prokaryota, eukaryota). Vyskytují se nejen v jakékoli buňce, ale i vývojovém stádiu org. U vyšších org.. jsou bb. zárodečné (germinální( germinální) ) linie (vznik gamet) odděleny od ostatních typů bb. (somatické bb.). Podle výskytu mutace v určitém typu bb. dělíme mutace na gametické a somatické. Gametické m.: vyskytují se pouze u bb. zárodečné linie (přenáší se na potomstvo, ale jen na určitý podíl potomků). Somatické m.: vyskytují se naopak pouze v somatických bb. (nepřenáší se na potomky).

Mutageny, promutageny Mutageny: Účinným fyzikálním mutagenem je např. záření (ionizující = rentgenové paprsky) nebo neionizující (UV záření) změna ve struktuře e DNA. Chemickými mutageny jsou silná oxidační činidla (např. H 2 O 2 ), alkyl deriváty a analogy bazí (mitomycin C), které se naváží do polynukleotidových řetězců. Promutageny: Látky, které nejsou rovnou mutagenní,, ale stávaj vají se mutagenními mi metabolickým působenp sobením org.. (enzymová reakce). Kancerogeny: Látky, kterými se aktivují geny způsobuj sobující kancerogenezi. Prokarcerogeny: Látky, které se stávaj vají karcerogenní vlivem metabolické aktivace (aflatoxiny( aflatoxiny).

Klasifikace mutací Genové (bodové) mutace jsou změny v genetické informaci, které proběhly v jednom genu a nenarušily stavbu chromozómu (změna fenotypové vlastnosti-nádorová nádorová onemocnění, srpková anémie). Chromozómové mutace vedou ke zlomům a k přestavbám struktury chromozómů (větší skupiny genů, jsou pozorovatelné mikroskopem). Genomové mutace jsou změny v počtu chromozómů (dobře pozorovatelné pod mikroskopem).

Mutace genové Substituce je náhrada báze původní sekvence bází jinou. Transice je záměna purinového nukleotidu za purinový a pyrimidinového za pyrimidinový. Transverze je záměna purinového nukleotidu za pyrimidový a naopak. Posunové mutace: U delece jde o ztrátu jednoho nebo více nukleotidů původní sekvence. Adice (inzerce) zařazení jednoho nebo více nadbytečných nukleotidových párů.

Mutace měnící a neměnící smysl Mutace neměníci smysl (samesense( mutation), kdy je i přes mutaci zařazena stejná aminokyselina. Jsou způsobeny substitucemi na třetí pozici kodonu. Tichá mutace (silent( mutation) ) se změnou v kodonu,, která se neprojevuje ve funkci polypeptidového řetězce. Mutace měnící smysl (missense( mutation), které mění smysl polypeptidového vlákna, které způsobí zařazení odlišné aminokyseliny při proteosyntéze. Nesmyslné mutace (nonsense mutation), které zapříčiní vznik předčasného terminačního kodonu v sekvenci DNA. Výsledkem je zcela nefunkční protein.

Chromozomální mutace Jsou to všechny úchylky chromozomů změna struktury a tvaru. Zjišťují se analýzou karyotypu,, jako tvarové a strukturální odchylky od normálního karyotypu. Tyto změny na chromozomech nazýváme chromozomové aberace. Jedná se o velký počet genů a odráží se ve fenotypu jedince. Důležité je jaký chromozom byl zasažen a jakým typem aberace zlom v určitém místě chromozomu fragment.

Typy aberací Poruchy párování ch.. při dělení bb. poruchy oplození,, reprodukce dále d ve fenotypu neplodnost, snížen ená životaschopnost a mortalita. Heterozygotní a.: znamenají výlučně strukturáln lní změnu na 1 ch.. z páru p (asi 1% gamet). Homozygotní a.: velmi vzácn cné,, protože musí dojít t ke stejnému zlomu v obou ch. Intrachromozomální a.: přestavby uvnitř 1 ch. nebo páru delece, duplikace, inverze, kruhový ch., translokace Interchromozomální a.: a. zasahuje 2 ch. páry nebo 2 různé ch. různé translokace a fůze ch.

Genomové mutace Změny v počtu chromozomů od normálního stavu. Aneuploidie ztráta nebo nadbytečná přítomnost některých jednotlivých chromozómů monozomie, trizomie u člověka trizomie 21 ch. Downům syndrom. Polyploidie početní změny celých sad chromozómů, časté u rostlin větší vzrůst šlechtitelské postupy. Haploidie redukce celých ch. sad. Heteroploidie označení variability počtu chromozomů v jádrech a aneuploidní charakter (dlouhodobě kultivované bb. in vitro).

Opravy mutací Organismy jsou do jisté míry schopny mutace v DNA opravit: enzymové komplexy k těmto biochemickým reakcím. Fotoreaktivace opravy poškození způsobeného UV zářením v 2-řet2 etězcové DNA kovalentní vazby mezi pyrimidiny (tyminy), opravný enzym se aktivuje denním m světlem rozpojení a oprava DNA do původnp vodní struktury. Excisní oprava vystřižen ení poškozen kozeného úseku a nahrazením m správn vného úseku DNA (nukleázy, polymerázy a ligázy zy). Rekombinační oprava (málo probádan daná) rekombinační výměna poškozených oblastí mezi 2 mol. DNA 1 opravená mol. a 1 mol. s kumulovanými poškozenými oblastmi.