Přehled buněčné biologie

Podobné dokumenty
Nejmenší jednotka živého organismu schopná samostatné existence. Výměnu látek Růst Pohyb Rozmnožování Dědičnost

BIOFYZIKA BUŇKY A TKÁNÍ

B9, 2015/2016, I. Literák, V. Oravcová CYTOSKELETÁLNÍ PRINCIP BUŇKY

NEMEMBRÁNOVÉ ORGANELY. Ribosomy Centrioly (jadérko) Cytoskelet: aktinová filamenta (mikrofilamenta) intermediární filamenta mikrotubuly

Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA

Exprese genetické informace

Centrální dogma molekulární biologie

Přeměna chemické energie v mechanickou

Buňky, tkáně, orgány, soustavy

Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza

Molekulárn. rní. biologie Struktura DNA a RNA

Bp1252 Biochemie. #11 Biochemie svalů

Eva Benešová. Dýchací řetězec

TRANSPORT PŘES MEMBRÁNY, MEMBRÁNOVÝ POTENCIÁL, OSMÓZA

BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ

Energetický metabolizmus buňky

VAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost

Bílkoviny a rostlinná buňka

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ

Kloubní chrupavka. Buòky. Mezibunìèná hmota. kolagen. chondrocyt. proteoglykan

Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).

2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:

pátek, 24. července 15 BUŇKA

Inovace studia molekulární a buněčné biologie

Exprese genetické informace

Nukleové kyseliny. Nukleové kyseliny. Genetická informace. Gen a genom. Složení nukleových kyselin. Centrální dogma molekulární biologie

Proteiny Genová exprese Doc. MVDr. Eva Bártová, Ph.D.

Typy molekul, látek a jejich vazeb v organismech

Nukleové kyseliny. DeoxyriboNucleic li Acid

Nukleové kyseliny Replikace Transkripce, RNA processing Translace

Rozdělení svalových tkání: kosterní svalovina (příčně pruhované svaly) hladká svalovina srdeční svalovina (myokard)

Interakce buněk s mezibuněčnou hmotou. B. Dvořánková

5. Lipidy a biomembrány

BUNĚČNÁ MOTILITA A MOLEKULÁRNÍ MOTORY

Translace (druhý krok genové exprese)

Milada Roštejnská. Helena Klímová. Buňka. Pankreas. Ledviny. Mozek. Kost. Srdce. Sval. Krev. Vajíčko. Spermie. Obr. 1.

Struktura a funkce nukleových kyselin

Inovace studia molekulární a buněčné biologie

Předmět: KBB/BB1P; KBB/BUBIO

Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách

BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA:

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/

PŘEHLED OBECNÉ HISTOLOGIE

MEMBRÁNOVÝ PRINCIP BUŇKY

Garant předmětu GEN: prof. Ing. Jindřich Čítek, CSc. Garant předmětu GEN1: prof. Ing. Václav Řehout, CSc.

Cytologie. Přednáška 2010

Úvod do biologie rostlin Buňka ROSTLINNÁ BUŇKA

Bunka a bunecné interakce v patogeneze tkánového poškození

NUKLEOVÉ KYSELINY. Složení nukleových kyselin. Typy nukleových kyselin:

II. SVALOVÁ TKÁŇ PŘÍČNĚ PRUHOVANÁ (ŽÍHANÁ) = svalovina kosterní

Biologie I. Buňka II. Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings

Univerzita Karlova v Praze, 1. lékařská fakulta

Struktura a funkce biomakromolekul

DUM č. 11 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika

6. Nukleové kyseliny

NUKLEOVÉ KYSELINY. Základ života

Univerzita Karlova v Praze - 1. lékařská fakulta. Buňka. Ústav pro histologii a embryologii

Substrát: látka, která se mění účinkem enzymu. NAD, NADP, FMN, FAD, koenzym Q, pyridoxalfosfát prostherická skupina: kofaktor vázán pevně

(VIII.) Časová a prostorová sumace u kosterního svalu. Fyziologický ústav LF MU, 2016 Jana Svačinová

Membránové potenciály

19.b - Metabolismus nukleových kyselin a proteosyntéza

Vnitřní prostředí organismu. Procento vody v organismu

Stavba dřeva. Základy cytologie. přednáška

Biologie buňky. systém schopný udržovat se a rozmnožovat

jedné aminokyseliny v molekule jednoho z polypeptidů hemoglobinu

Inovace studia molekulární a buněčné biologie

Nukleové kyseliny Milan Haminger BiGy Brno 2017

Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace

8. Polysacharidy, glykoproteiny a proteoglykany

Pohyb buněk a organismů

Buňka cytologie. Buňka. Autor: Katka Téma: buňka stavba Ročník: 1.

glukóza *Ivana FELLNEROVÁ, PřF UP Olomouc*

Nukleové kyseliny. obecný přehled

Mitochondrie Buněčné transporty Cytoskelet

Nervová soustává č love ká, neuron r es ení

Genetika zvířat - MENDELU

Úvod do buněčné a obecné fyziologie. Michal Procházka KTL 2. LF UK a FNM

Nervová soustava Centrální nervový systém (CNS) mozek mícha Periferní nervový systém (nervy)

VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ

BUNĚČNÉ JÁDRO FYZIOLOGIE BUŇKY JADÉRKO ENDOPLASMATICKÉ RETIKULUM (ER)

Přírodní polymery proteiny

A. chromozómy jsou rozděleny na 2 chromatidy spojené jen v místě centromery. B. vlákna dělícího vřeténka jsou připojena k chromozómům

Schéma průběhu transkripce

FYZIOLOGIE BUŇKY BUŇKA Základní funkce buněk: PROKARYOTICKÁ BUŇKA. Funkce zajišťují základní životní projevy buněk: EUKARYOTICKÁ BUŇKA

Nervová soustava Centrální nervový systém (CNS) mozek mícha Periferní nervový systém (nervy)

TRANSLACE - SYNTÉZA BÍLKOVIN

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu

BIOLOGICKÉ ÚVOD ZÁKLADY MOLEKULÁRN RNÍ BIOLOGIE

Struktura a funkce biomakromolekul KBC/BPOL

Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/

Základy buněčné biologie

Katabolismus - jak budeme postupovat

Pohyb přípravný text kategorie A, B

Struktura a funkce biomakromolekul

ENERGIE BUNĚČNÁ RESPIRACE FOTOSYNTÉZA Doc. MVDr. Eva Bártová, Ph.D.

Základy molekulární biologie KBC/MBIOZ

Biosyntéza a metabolismus bílkovin

Transkript:

Přehled buněčné biologie

Složení eukaryontní živočišní buňky

Strukturně-organizační principy buňky Membránový lipidy membrány kompartmentalizace Paměťový nukleové kyseliny (chromosomy, ribosomy) replikace, transkripce a translace Výkonný - proteiny signálních kaskád Cytoskeletální (aktinová filamenta, střední filamenta, mikrotubuly) -podpůrné vnitrobuněčné proteinové struktury - doručování membránových váčků. Energetický - Výroba, přeměna a skladování energie

Biologické membrány a jejich význam

Kompartmentalizace Tvorba vesikulů umožňuje: -Vytvoření příznivých podmínek pro průběh chemických reakcí. - Ochranu před nežádoucím vlivem látek mimo vesikul - Lokalizaci elementů (vzájemná proximita) Mansy SS, Schrum JP, Krishnamurthy M, Tobé S, Treco DA, Szostak JW (2008) Template-directed synthesis of a genetic polymer in a model protocell. Nature 454:122-125

Příklad: transferin a vstřebávání železa Tino K. et al.: Lysosomes in iron metabolism, ageing and apoptosis, 2008

Struktura membrán ve vodném prostředí se hydrofobní konce fosfolipidů seskupují, aby vytěsnily vodu vzniká dvojvrstva s hydrofilními hlavičkami fosfolipidů obrácenými do vodného prostředí Trojrozměrný pohled na buněčnou membránu

Fosfolipidové dvojné vrstvy volné rozhraní fosfolipidů s vodou energeticky nevýhodné fosfolipidové dvojné vrstvy se samovolně uzavírají samy do sebe vytvářejí uzavřené oddíly uzavřená struktura stabilní (nedochází k energeticky nepříznivému vystavení hydrofobních uhlovodíkových řetězců do vodného prostředí)

Struktury vytvářené fosfolipidy Lipidová dvojná vrstva (ve vodném prostředí) Micela ve vodném prostředí a v organickém rozpouštědle Liposom ve vodném prostředí

Buněčné membrány jako fyzikální bariéry membrány jako fyzikální bariéry mezi dvěma oddíly brání smísení molekul z jedné strany s molekulami z druhé strany (A) mezi vnitřkem buňky a vnějším prostředím (B) mezi dvěma intracelulárními oddíly

Složení eukaryontní živočišní buňky

Pohyblivost fosfolipidů Tři typy možných pohybů molekul fosfolipidu v lipidové dvojné vrstvě (důsledek tepelných pohybů lipidových molekul) laterální difúze rotace překlápění (flip-flop) vzácně (méně než 1 za měsíc)

Tekutost lipidové dvojné vrstvy a membrány snadnost pohybu lipidových molekul ve dvojné vrstvě vrstvy s velkým obsahem nenasycených mastných kyselin tekutější (dvojná vazba = nepravidelnost) umožňuje membránovým proteinům rychle difundovat v rovině membrány způsob rychlé distribuce membránových lipidů (např. z místa syntézy) umožňuje fúzi membrán

Úloha cholesterolu v buněčných membránách cholesterol pouze v živočišných buňkách, snižuje tekutost membrán (A) struktura cholesterolu (B) představa, jak struktura zapadá do mezer mezi molekulami fosfolipidu v lipidové dvojné vrstvě

Funkce proteinů plasmatické membrány

Mitochondrie energetické centra buněk a tok energie přes membrány

Mitochondrie pozorovaná elektronovým mikroskopem (B) (A) příčný řez (B) trojrozměrné znázornění uspořádání mitochondriálních membrán hladká vnější membrána a zprohýbané vnitřní membrány;vnitřní membrána obsahuje většinu proteinů zodpovědných za buněčnou respiraci (dýchání); poskládaná dostatečný povrch (C) schematická buňka vnitřní prostor mitochondrie obarven (A) (C)

Původ mitochondrie Umístění mitochondrií blízko míst vysoké spotřeby ATP Původ v bakteriích pohlcených dávnou eukaryontní buňkou, které v této buňce přežily a vytvořily s ní symbiotický vztah. (A) v buňce srdečního svalu blízko kontraktilního aparátu. (B) ve spermii okolo ústřední části hnacího bičíku (k pohybu vyžaduje ATP)

Získávání energie - hráči Glukóza vstupní komodita ATP, GTP rychlé zdroje energie = vysokoenergetické fosfátové vazby (30,5 kj/mol) NAD H+H +, FAD H+H + - redoxní přenašeče vodíků pro oxidativní fosforylaci, Glykolýza (cytoplazma): -Vstup: glukóza, anaerobní přeměna na pyruvát -Produkce: 2 ATP a 1 NADH + H+ Citrátový cyklus (mitochondrie): - Vstup: pyruvát na acetyl CoA a pak rozklad na CO2 - Produkce 2 CO2, 3 NADH + H+, 1 FADH2, 1 GTP Dýchací řetězec a oxidativní fosforylace (mitochondrální membrána)

Získávání energie v mitochondriích Chemiosmotické spřažení přenos elektronů elektrontransportní řetězec čerpání protonů proteinová pumpa syntéza ATP ATP-syntáza (A) membrána, ve které je zanořena proteinová pumpa, ATP-syntáza a zdroj vysoko energetických elektronů (e - ) a protonů (H + ); pumpa využívá energii získanou při přenosu elektronů k čerpání protonů pocházejících z vody a k vytváření protonového gradientu přes membránu (B) gradient zásoba energie využitelné k pohonu syntézy ATP v ATP-syntáze (červená šipka směr pohybu protonů)

Přenos elektronů přes tři dýchací enzymové komplexy ve vnitřní mitochondriální membráně Během přenosu elektronů z NADH na kyslík (červené šipky) každý z dýchacích enzymových komplexů čerpá přes membránu protony pocházející z vody. Ubichinon (Q) a cytochrom c (c) slouží jako pohyblivé přenašeče, které dopravují elektrony od jednoho komplexu ke druhému.

Redoxní potenciál podél mitochondriálního elektrontransportního řetězce vzrůstá

ATP-syntáza zařízení pro vratné spřažení převod energie gradientu elektrochemického potenciálu protonů na energii chemické vazby nebo naopak ATP-syntáza: (A) syntéza ATP (využívá energii gradientu H + ) (B) hydrolýza ATP (čerpání protonů proti gradientu jejich elektrochemického potenciálu) Směr činnosti závisí na čisté změně volné energie (ΔG) pro spřažené přemísťování H + přes membránu a syntézu ATP z ADP a P i. Při poklesu gradientu elektrochemického potenciálu protonů pod určitou úroveň, nebude už ΔG pro transport H + stačit k pohonu produkce ATP. ATP lze hydrolyzovat ATP-syntázou za účelem znovuustavení gradientu.

Obrázek byl převzat z http://www.biocarta.com/pathfiles/h_etcpathway.asp

Přenašeče a tok hmoty přes membrány

Tok hmoty Relativní propustnost syntetické dvojné vrstvy lipidů pro jednotlivé třídy molekul Čím je molekula menší a čím méně ochotně interaguje s vodou (čím méně je polární), tím rychleji difunduje dvojnou vrstvou. Mnohé z molekul, které buňka používá jako živiny, jsou příliš velké a polární na to, aby mohly čistou dvojnou vrstvou lipidu projít.

Membránové transportní proteiny jsou zodpovědné za přenos malých ve vodě rozpustných molekul přes buněčné membrány (A) umělá dvojná vrstva lipidů neobsahuje proteiny, nepropustná pro většinu ve vodě rozpustných látek (B) buněčná membrána obsahuje proteiny, propustná pro látky rozpustné ve vodě každý typ transportního proteinu specifický pro určitý typ molekuly určitý typ solutů bude uvnitř buňky

Klidový membránový potenciál Tok iontů přes membránu měřitelný jako elektrický proud Hromadění iontů (není-li vyváženo hromaděním opačně nabitých iontů akumulace elektrického náboje = membránový potenciál Klidový membránový potenciál při takovém ustáleném stavu, kdy je tok záporných a kladných iontů přes plasmatickou membránu vyvážen, takže se ani na jedné ani na druhé straně membrány nehromadí náboj. Vnitřek buňky záporný, proto záporný ( 20 až 200 mv) Hlavní kationty: K + Změna koncentrace (propustnosti) iontů změna potenciálu až kladné hodnoty

Transport látek přes membrány Pasivní samovolně, pomocí kanálů a přenašečových proteinů gradient koncentrace membránový potenciál (cytoplazmatická strana obvykle záporný náboj) celková síla = gradient elektrochemického potenciálu prostá difúze usnadněná difúze kanály Aktivní vyžaduje přísun energie, pomocí přenašečových proteinů pumpy poháněné ATP pumpy poháněné světlem spřažené přenašeče primární transport zdrojem energie chemická nebo fotochemická reakce sekundární transport zdrojem energie gradient elektrochemického potenciálu

Srovnání aktivního a pasivního transportu Nenabité soluty dostatečně malé samovolný pohyb přes dvojnou vrstvu lipidů prostou difuzí (např. ethanol, oxid uhličitý, kyslík). Většina proteinů může procházet jen s pomocí transportního proteinu (přenašeče nebo kanálu). pasivní transport podél (koncentračního) gradientu přenašeče i kanály probíhá samovolně aktivní transport proti (koncentračnímu) gradientu přenašečové proteiny vyžaduje přísun energie

Srovnání aktivního a pasivního transportu Nenabité soluty dostatečně malé samovolný pohyb přes dvojnou vrstvu lipidů prostou difuzí (např. ethanol, oxid uhličitý, kyslík). Většina proteinů může procházet jen s pomocí transportního proteinu (přenašeče nebo kanálu). pasivní transport podél (koncentračního) gradientu přenašeče i kanály probíhá samovolně aktivní transport proti (koncentračnímu) gradientu přenašečové proteiny vyžaduje přísun energie

Přenašečový a kanálový protein Přenašečový protein konformační změny umožňují přenos malých ve vodě rozpustných molekul přes lipidovou dvojnou vrstvu řada konformačních změn Kanálový protein hydrofilní pór přes lipidovou dvojnou vrstvu, difúze specifických anorg. iontů konformace otevřená nebo zavřená větší rychlost transportu

Tři cesty řízení aktivního transportu spřažený transport pumpy poháněné ATP pumpy poháněné světlem aktivně přenášená molekula vyznačena žlutě, a zdroj energie červeně

Sodno-draselná pumpa: Na+/K+-ATPáza přenašečový protein aktivní transport (primární) využívá energii z hydrolýzy ATP čerpání Na + z buňky a K + do buňky v obou případech proti gradientu elektrochemického potenciálu iontu ouabain droga, váže se na pumpu, inhibuje její aktivitu tím, že brání navázání K +

Schematický model čerpacího cyklu sodno-draselné pumpy Navázání Na + (1) a následná fosforylace cytosolové strany pumpy ATP (2) konformační změna, přenos Na + přes membránu vně buňky (3). Energii pro konformační změnu poskytuje vysoce energetická vazba fosforylu na protein. Navázání K + na vnější povrch (4) a následná defosforylace (5) vrátí protein zpět do původní konformace, čímž dojde k přenosu K + přes membránu a jeho uvolnění do cytosolu (6). pro jednoduchost jen po jednom vazebném místě pro Na + i K + ve skutečné pumpě v savčích buňkách jsou zřejmě 3 vazebná místa pro Na + a 2 vazebná místa pro K + čistým výsledkem jednoho cyklu pumpy přenos 3 Na + ven z buňky a 2 K + do buňky

Jens Christian Skou v roce 1957 objev sodno-draselné pumpy (Na + /K + -ATPázy) (Department of Physiology, University of Aarhus, Dánsko) Nobelova cena 1997 "for the first discovery of an ion-transporting enzyme, Na +,K + -ATPase"

Tři typy transportu přenašečovými proteiny Uniport: přenos jediného solutu Spřažený transport: přenos jednoho solutu závisí na současném nebo následném přenosu jiného solutu symport: ve stejném směru antiport: v opačném směru Uniport, symport i antiport při pasivním i aktivním transportu

Spřažené přenašeče (symport a antiport) přenašečový protein aktivní transport (sekundární) spřažený přenašeč (přenašeč glukosy proti koncentračnímu spádu poháněn gradientem Na) zdrojem gradientu elektrochemického potenciálu Na + Na a glukosa se na přenašeč dobře vážou, ale pouze pokud jsou spolu navázání Na + konformační změna zvýšení afinity ke glukose ( a naopak) koncentrace Na + : extracelulární prostor» cytosol proto A B pravděpodobnější než B A výsledek: přenos glukosy a Na + do buňky

Kanály kanálové proteiny iontové kanály Liší se iontovou selektivitou podmínkami uzavírání Kanály řízené napětím změna napětí přes membránu aktivované mechanicky mechanické podráždění regulované chemicky (ligandem) navázání chemické látky ke kanálu na vnější nebo vnitřní straně buňky Pasivní transport

PORES AND SELECTIVITY FILTERS Iontová selektivita

Řízené iontové kanály V závislosti na typu iontového kanálu se hradlo otevírá v reakci (A) na změnu napětí přes membránu (B) na navázání chemické látky ke kanálu na vnější straně buňky (C) na navázání chemické látky ke kanálu na vnitřní straně buňky (D) na mechanické podráždění

Struktura iontového kanálu

Struktura iontového kanálu na obrázku iontový kanál z plasmatické membrány svalových buněk otevírá se při navázání nervového mediátoru acetylcholinu na strukturu kanálu iontový kanál složen z pěti transmembránových proteinových podjednotek, které se spojují za vzniku vodného póru napříč dvojnou vrstvou lipidů pór ohraničen pěti transmembránovými α-helixy (1 helix z každé podjednotky) záporně nabité postranní řetězce aminokyselin na obou koncích póru zajišťují, že pórem mohou procházet jen kladně nabité ionty, především Na + nebo K + (kanály jsou vysoce selektivní) kanál v uzavřené konformaci pór v oblasti zvané hradlo obklopen hydrofobními postranními řetězci aminokyselin. vazba acetylcholinu konformační změna postranní řetězce se navzájem vzdalují otevření hradla Na + nebo K + mohou procházet přes membránu po spádu svého elektrochemického potenciálu i při navázaném acetylcholinu kanál náhodně přechází z otevřeného stavu do uzavřeného a naopak; bez navázaného acetylcholinu se otevírá zřídka

Kanály regulované napětím Konformace (sodný kanál) vysoce polarizovaná membrána nejstálejší kanál zavřený depolarizovaná membrána otevření kanálu poté inaktivace kanálu repolarizace membrány uzavření kanálu

Kanály regulované chemicky Přeměna elektrického signálu v chemický v místě nervového zakončení Přeměna chemického signálu v elektrický pomocí mediátorem ovládaných iontových kanálů v synapsi

Kanály regulované mechanicky (A) Řez Cortiho orgánem (podél hlemýždě vnitřního ucha). Každá vlásková buňka vnitřního ucha výběžky (stereocilia), vyčnívají z horní části povrchu. Vláskové buňky zanořeny ve vrstvě podpůrných buněk, tvořících vrstvu mezi bazilární membránou pod nimi a tektoriální membránou nad nimi. (B) Zvukové vibrace rozkmitají bazilární membránu naklánění stereocilií. Každé spojeno tenkým vláknem s dalším, kratším stereociliem. Nakláněním vlákna napínána otevírají mechanicky ovládané iontové kanály v membráně stereocilií, vstup K + aktivace vláskových buněk stimulace sluchových nervů signál do mozku Mechanismus vláskových buněk vnitřního ucha velice citlivý: síla potřebná k otevření jediného kanálu asi 2 l0-13 N, nejjemnější zvuky pohnou vlákny přibližně o 0,04 nm, (méně než průměr atomu vodíku).

Molekulární základy dědičnosti Tok informácií

DNA deoxyribonukleová kyselina Základní nositel dědičné informace nesoucí informaci o struktuře a regulaci všech proteinů a RNA v organizmu (mimo mitochondriální a chloroplastovou DNA )

Nukleotidy

Stavba DNA Párování bází (nukleotidů): A --T 2 vodíkové můstky G---C 3 vodíkové můstky vlákna antiparalelní

Dvojšroubovice DNA nukleotidy spojeny fosfodiesterovou vazbou mezi 3 -hydroxylovou skupinou jednoho sacharidu a 5 -fosfátovou skupinou druhého sacharidu 3 konec: volná hydroxylová skupina na C3 sacharidu 5 konec: volná fosfátová skupina na C5 sacharidu

Replikace DNA Každý řetězec DNA může být templátem pro syntézu komplementárního vlákna díky přesnému párování bází určuje strukturu komplementárního vlákna přesné kopie. Enzym: DNA polymeráza

Replikace DNA Replikace ve směru 5 3 umožní růst řetězce i po korektuře chybně začleněného nukleotidu (DNA-polymeráza opravuje své chyby).

Replikace DNA Replikace ve směru 5 3 Opožďující se řetězec Krátké úseky Okazakiho fragmenty

Mutace DNA se v průběhu života moc nemění. Mutace: neopravitelné chyby v syntéze DNA trvalé změny genetické informace Cílené mutace: laboratorně pro výzkumné účely Srpkovitá amemie dědičné onemocnění, projevuje se změnou tvaru červených krvinek (na protažené srpky) jedna mutace v genu pro hemoglobin na 6. pozici v ß-řetězci A T Glu Val hemoglobin označovaný jako HbS Průměrná délka života nemocných: 42 (muži), 48 (ženy) Val hydrofobní Glu hydrofilní; HbS odlišné vlastnosti, v deoxygenované podobě shlukování molekul hemoglobinu, deformace krvinky snížení flexibility buňky

RNA ribonukleová kyselina Krátkodobý přenos informace a regulace.

RNA struktura místo thyminu uracil jednovláknová možnost párování bází místo deoxyribosy ribosa

RNA typy Kódující: nese informaci o stavbě proteinů mrna z angl. Messenger (mediátorová RNA) přepisována přímo z genové sekvence DNA (u eukaryotje pak exportována do cytoplazmy) a využita pro překlad na protein. Nekódující: nenese informaci o struktuře budoucího proteinu, jiné funkce: trna (transferová RNA) adaptor mezi mrna a ribosomem, transport aminokyselin k ribozomu rrna (ribozomální RNA) v ribozomu, účast na proteosyntéze mirna (microrna) regulace genové exprese některých genů sirna (small interfering RNA) role v procesu RNA interference snrna (small nuclear RNA) podílí se na splicingu (posttranslační modifikace RNA, sestřih)

CENTRÁLNÍ DOGMA Tok informace v normální živé buňce DNA transkripce RNA translace Protein Jiné možnosti laboratoř, viry, nižší formy života

Transkripce přepis DNA do mrna DNA vlákno kódující a nekódující

Translace konverze genetické informace do proteinové sekvence

Genetický kód báze mrna dekódovány po trojicích každá trojice určuje aminokyselinu kodony (triplety bází) kódující aminokyseliny 64 (4 3 ) možných kombinací 64 odlišných kodonů možnost ve 3 rámcích, protein v jednom start kodon většinou AUG Met stop kodon UAA, UAG, UGA

trna mrna nerozpoznává přímo kódované aminokyseliny trna adaptorové molekuly, schopny rozpoznat kodon (tři nukleotidy komplementární ke kodonu antikodon) současně nese aminokyselinu

Proteosyntéza Ribosom místa: A aminoacyl-trna P peptidyl trna E exit site Opakování 3 kroků 1. navázání aminoacyl-trna do A-místa ribosomu 2. vznik nové peptidové vazby s aminokyselinou v místě A současné odštěpení karboxylového konce peptidu od trna v P-místě posun malé podjednotky s navázanou m RNA až do místa E 3. posun malé podjednotky o 3 nukleotidy zpět podél mrna do původní polohy uvolnění trna bez navázané aminokyseliny z E-místa a přesun trna z místa A do P

Membránové organely, zrání proteinů a doručovaní váčků https://www1.imperial.ac.uk/nhli/molecular/membrane_traffic/

Endoplazmatické retikulum a Golgiho aparát - Membránové organely zprostředkující třídění a maturaci proteinů

Doručování váčků vesicular traficking

Typy vesikulů GA plazm. membrána ER - GA

Dynamin umožňuje odškrcení váčků GTPase

Fuze váčků zporstředkovaná specifickými proteiny ze skupiny SNARE

Fuze váčků zporstředkovaná specifickými proteiny ze skupiny SNARE 4 a helices in trans-sna complexes

Rab proteiny určují specificitu fuze

Modifikace proteinů v ER a GA

Cytoskelet a jeho role v doručování váčků

Cytoskelet Proteinová vlákna poskytují všem eukaryontním buňkám vnitřní síť pomáhá organizovat vnitřní aktivity, základní zařízení pro pohyb buňky a změny jejího tvaru Aktinová filamenta (mikrofilamenta) šroubovité polymery proteinu aktinu; pružné struktury o průměru 7 nm, organizované do lineárních svazků, dvourozměrných sítí a trojrozměrných gelů; rozložena po celé buňce, nejkoncentrovanější v kortexu, těsně pod plasmatickou membránou Intermediární (střední) filamenta provazovitá vlákna o průměru 10 nm; tvořena řadou proteinů; např. pletivo zvané jaderná lamina těsně pod vnitřní jadernou membránou, jiné typy pronikají cytoplasmou přes celou šířku buňky, dodávají jí mechanickou pevnost a vyrovnávají tlaky na buňky Mikrotubuly dlouhé duté trubice tvořené proteinem tubulinem; vnější průměr 25 nm; nejpevnější; mikrotubuly jsou dlouhé a rovné, obvykle jeden konec připojen k organizačnímu centru mikrotubulů (centrosom)

Struktura mikrotubulu (A) 13 podjednotek, z nichž každá odpovídá jednomu tubulinovému αβ-dimeru paralelní řady protofilamenta polární struktura (B)

Růst a smršťování seskupení mikrotubulů Seskupení mikrotubulů, ukotvených na centrosomu, se neustále mění, jak nové mikrotubuly rostou a starší mikrotubuly se zkracují.

Kontrola růstu mikrotubulů Tubulinové dimery nesoucí GTP se vážou jeden k druhému pevněji než tubulinové dimery s navázaným GDP. mikrotubuly s čerstvě přidanými tubulinovými dimery s navázaným GTP mají tendenci pokračovat v růstu občas v GTP-čepičce hydrolýza GTP na GDP dříve, než se stačí navázat nové tubulinové dimery nesoucí GTP ztráta GTPčepičky; dimery s navázaným GDP jsou v tubulinovém polymeru méně pevně vázány a mohou být rychle uvolněny z volného konce mikrotubulů, takže se mikrotubulus začne rychle zkracovat

Selektivní stabilizace mikrotubulů Nově vytvořený mikrotubulus může v buňce přetrvávat, pouze když jsou oba jeho konce chráněny před depolymerací. minus-konec mikrotubulu chráněn organizačním centrem, z něhož mikrotubulus vyrůstá plus-konce nejprve volné, mohou být stabilizovány navázáním jiných proteinů (A) nepolarizovaná buňka s novými mikrotubuly vyrůstajícími z centrosomu a zkracujícími se nazpět k centrosomu zcela náhodně všemi směry (B) některé z mikrotubulů se v buněčném kortexu navážou na speciální proteiny vytvářející čepičku mikrotubulu (capping proteins), dojde ke stabilizaci volného plus-konce mikrotubulů (C) to způsobí rychlou změnu orientace soustavy mikrotubulů a (D) silnou polarizaci buňky

Molekulové motory transportují náklady podél mikrotubulů kinesiny se pohybují k směrem k plus-konci mikrotubulů dyneiny se pohybují k minus-konci mikrotubulů oba typy molekulárních motorů existují v mnoha formách, přenášejí rozdílné náklady druhý konec proteinu molekulového motoru určuje, jaký náklad je protein schopen přenášet

Kynesin Dynein

Umísťování organel pomocí mikrotubulů (B) ER kinesiny (C) Golgi dyneiny mikrotubuly, endoplasmatické retikulum, Golgiho aparát, buněčné jádro, centrosomy

Mikrotubuly Dynamika buněk ER Membrána Mitochondrie

Řasinky Elektronmikroskopický snímek řasinkového epitelu dýchacího traktu člověka. Silné svazky řasinek na řasinkových buňkách se střídají s vypouklými povrchy epiteliálních buněk, nenesoucích řasinky. pohyb v cyklu: silový úder a fáze návratu; cyklus trvá 0,1 0,2 vteřiny a generuje sílu kolmou k ose řasinky rychlý silový úder: řasinka plně natažena a tekutina je prohnána po povrchu buňky pomalejší fáze návratu: řasinka se prohýbá a dostává do výchozí pozice bez vyvolání silnější turbulence v okolní tekutině

Bičíky Opakované vlnité pohyby bičíku spermie. Zelená řasa Chlamydomonas plave pomocí dvojice bičíků, jež vykonávají opakované pohyby připomínající plavecký styl prsa. (A) dvojice vnějších mikrotubulů s navázanými dyneiny, uvolněnými ze struktury bičíku; za přítomnosti ATP se v důsledku opakované činnosti dyneinů dvojice mikrotubulů teleskopicky posunují jedna vůči druhé (B) v kompletním bičíku dvojice mikrotubulů spjaty příčnými proteinovými spojkami, posun dyneinů vyvolává prohnutí celého bičíku

Cytoskelet a extracelulární matrix Kožní buňka byla fixována a obarvena Coomassie-modří, která barví všechny proteiny.

Tři typy proteinových filament, která vytvářejí cytoskelet aktinová filamenta střední filamenta mikrotubuly značeno různými fluorescenčními barvivy

Aktinová vlákna (A) (B) (C) (A) elektronmikroskopický snímek aktinových vláken (B) uspořádání aktinových molekul v aktinovém filamentu (vlákno je dvojšroubovice se závitem opakujícím se každých 37 nm), silné interakce mezi vlákny zabraňují rozvolnění šroubovice (C) shodné podjednotky aktinového filamenta zobrazeny stejnou barvou (zdůraznění těsných interakcí mezi každou aktinovou molekulou a čtyřmi dalšími molekulami s ní sousedícími)

Polymerace aktinu Aktinové monomery v cytosolu nesou ATP hydrolyzován na ADP krátce po zapojení monomerů do rostoucího aktinového vlákna. Molekuly ADP zachyceny uvnitř aktinového vlákna bez možnosti výměny za ATP, dokud se aktinové monomery, který je nesou, neoddělí od filamenta a nedostanou se zpět do monomerní formy.

Myosiny (A) (B) (C) myosin I: jednořetězcová molekula s jednou globulární hlavičkou a koncem, který se může vázat k jiné molekule nebo k buněčné organele; napojená molekula či organela tažena podél drah, vytýčených aktinovými vlákny myosin II: složen ze dvou identických myosinových molekul, má dvě globulární hlavičky a konec ve formě stočené šroubovice myosinové vlákno: konce myosinu II se mohou navzájem spojovat a vytvářet myosinové vlákno, hlavy myosinu II trčí navenek; holá oblast uprostřed vlákna složená pouze z konců vláken

Funkce myosinu v eukaryontních buňkách Hlavičky myosinů se pohybují po aktinových filamentech směrem k jejich plus-koncům. krátký konec molekuly myosinu I obsahuje vazebná místa pro různé buněčné složky, včetně membrán (A) pohyb membránových váčků podél aktinových vláken (C) pohyb aktinovým filamentem vzhledem k plasmatické membráně malá vlákna složená z molekul myosinu II schopna posunovat aktinová vlákna proti sobě místní zkracování svazků aktinových vláken (B)

Svazky aktinových vláken v buňkách Aktinové buněčné struktury (A) Mikroklky na povrchu střevní výstelky. (B) Kontraktilní svazky v cytoplasmě. (C) Listovité (lamellipodia) a prstovité (filopodia) výběžky na vedoucím okraji pohybující se buňky. (D) Kontraktilní prstenec během buněčného dělení.

Stavba středního filamenta Elektronmikroskopický snímek hotová střední filamenta o průměru 10 nm Schéma (A) monomer proteinu středního filamenta složený ze střední tyčinkovité oblasti a z globulárních oblastí na obou koncích (B) páry monomerů se spojují do dimerů (C) dva dimery se spojují paralelně s určitým posunem a vytvářejí tetramer (D) tetramery se uspořádávají spojením svých konců (E) tetramery se skládají do stočené struktury připomínající lano (zobrazeno také rozvinutí do plochy)

Extracelulární matrix a organizace buněk do tkání Histologický snímek tenkého střeva u myši

TKÁNĚ Tkáně tvoří buňky s vnitřní sítí cytoskeletálních filament extracelulární matrix cévy, nervy a další komponenty Rozdělení tkání svalové epitelové (epiteliální) pojivové nervové

TKÁNĚ buňky mnohobuněčného organismu uspořádány do spolupracujících uskupení tkání (např. nervové, pojivové, svalové, epitelové) tvořeny buňkami s jejich vnitřní sítí cytoskeletálních filament a extracelulární matrix extracelulární matrix dává podpůrným tkáním pevnost buňky navzájem spojeny pomocí extracelulární matrix nebo přímým kontaktem spoje mezi buňkami v pružných a pohyblivých tkáních živočichů přenášejí síly z cytoskeletu jedné buňky do sousední nebo z cytoskeletu buňky na extracelulární matrix stejně jako se budova neobejde bez rozvodných sítí, telefonních linek a dalšího vybavení, potřebuje živočišná tkáň krevní cévy, nervy a další komponenty vytvářené mnoha specializovanými buněčnými typy

Organizace buněk ve tkáních Příčný řez stěnou savčího střeva tkáň epitelová, pojivová, svalová tkáně složeny z organizovaného shluku buněk, navzájem spojených na základě mezibuněčných adhezí, pomocí extracelulární matrix nebo oběma způsoby

Tři klíčové faktory, které udržují buněčnou organizaci tkání signály od ostatních buněk selektivní mezibuněčná vazba genová exprese uchování charakteru, přenos na potomstvo

Tři klíčové faktory, které udržují buněčnou organizaci tkání Tkáně jsou propojením mnoha buněčných typů, které musí zůstat odlišné jeden od druhého v průběhu koexistence ve stejném prostředí. Buňky téměř všech dospělých tkání neustále umírají a jsou nahrazovány novými; v průběhu buněčné a tkáňové obnovy musí zůstat organizace tkáně zachována. Umožněno třemi faktory: Buněčná komunikace: Každý typ specializovaných buněk neustále kontroluje své okolí a vnímá signály od ostatních buněk, podle toho přizpůsobuje svoji proliferaci a vlastnosti; nové buňky vznikají pouze tehdy a tam, kde jich je třeba. Selektivní mezibuněčná adheze: Různé buněčné typy mají tendence selektivně se vázat homofilní vazbou k ostatním buňkám stejného typu, vytvářet kontakty s určitými jinými buněčnými typy nebo se specifickými složkami extracelulární matrix. Selektivní adheze zabraňuje chaotickému promíchání různých buněčných typů v tkáni. Buněčná paměť: Speciální formy genové exprese vyvolané signály působícími v průběhu embryonálního vývoje jsou stabilně udržovány, takže si buňky autonomně uchovávají svůj určitý charakter a přenášejí ho na své potomstvo.

SVALOVÉ TKÁNĚ epitelové tkáně pojivové tkáně nervové tkáně

Kosterní svalová buňka Mnohojaderné buňky (svalová vlákna), 50 μm v průměru, dlouhé i několik centimetrů; četné myofibrily, s pravidelným uspořádáním vláken aktinu a myosinu (příčně pruhovaný vzhled myofibril). Elektronmikroskopický snímek podélného řezu kosterní svalové buňky králíka při malém zvětšení (pravidelné uspořádání sarkomer, kontraktilních jednotek myofibril).

Sarkomery Detail snímku kosterní svalové buňky (dvě paralelní myofibrily s jednou celou sarkomerou a dvěma polovinami sarkomer). Schematické zobrazení sarkomery, původ tmavých a světlých pruhů, viditelných pod mikroskopem. Z-disky na obou stranách sarkomery jsou místy, kam se upínají aktinová vlákna; uprostřed silná vlákna, každé sestává z mnoha molekul myosinu II.

Svalový stah Myosinová a aktinová vlákna sarkomery se překrývají symetricky na obou stranách od středové linie sarkomery; aktinová vlákna ukotvena svými plus-konci na Z-disku; myosinová vlákna bipolární. Během stahu se aktinová a myosinová vlákna vzájemně posunují, aniž by se sama zkracovala; posunování poháněno myosinovými hlavičkami, kráčejí směrem k plus-koncům aktinových vláken.

Cyklus změn, pomocí nichž dochází ke kráčení molekul myosinu podél aktinového vlákna

PŘIPOJENÍ Na začátku cyklu je myosinová hlavička bez navázaného nukleotidu pevně spojena s aktinovým vláknem v tzv. rigorové konfiguraci (podle rigor mortis, což je mrtvolná tuhost). V aktivně se zkracujícím svalu je tato fáze velmi krátká a obvykle se ukončí navázáním ATP. UVOLNĚNÍ Molekula ATP se váže k velkému zářezu na zadní straně hlavičky, tedy co nejdále od aktinového vlákna, a okamžitě způsobuje drobnou změnu v konformaci těch domén, které tvoří aktin-vázající místo. To snižuje afinitu hlavičky vůči aktinu a dovoluje mu pohyb podél vlákna. (Prostor tady nakreslený mezi hlavičkou a aktinem zdůrazňuje tuto změnu, i když ve skutečnosti zřejmě zůstává hlavička velmi blízko aktinu.) NAKLONĚNÍ Zářez se uzavře kolem molekuly ATP jako škeble a spustí tak mohutnou změnu tvaru, která vede k tomu, že se hlavička posune podél vlákna o přibližně 5 nm. Dojde k hydrolýze ATP, ale ADP a Pi zůstávají vázány k proteinu. SILOVÝ ZÁBĚR Slabá vazba myosinové hlavičky na novém místě na aktinovém vlákně způsobí uvolnění anorganického fosfátu z hydrolýzy ATP, za současného pevného navázání hlavičky na aktinové vlákno. Toto uvolnění fosfátu spouští silový záběr, což je silotvorná změna tvaru molekuly, při níž hlavička získá zpět svoji původní konformaci. Během silového záběru ztrácí hlavička navázaný ADP, a vrací se tak na start nového cyklu. PŘIPOJENÍ Na konci cyklu se myosinová hlavička opět octne v těsném sevření s aktinovým vláknem v rigorové konfiguraci. Všimněte si, že hlavička se po aktinovém vlákně posunula do nové polohy.

svalové tkáně EPITELOVÉ TKÁNĚ pojivové tkáně nervové tkáně

Střední filamenta zpevňují živočišné buňky vrstva epiteliálních buněk natažena vnějšími silami (vznikajícími např. růstem nebo pohybem okolní tkáně) síť tvořená středními filamenty a desmosomy roztažena bude omezovat míru natažení pokud by v epitelu byly přítomny pouze desmosomy bez středních filament, stejné vnější síly by způsobily silnou deformaci buněk, vedoucí až k roztržení plasmatické membrány a poškození epitelu

Souhrnné schéma hlavních typů mezibuněčných spojů v epitelech živočichů Těsné spoje jsou charakteristické pro epitely; ostatní spoje v modifikované podobě také v různých mimoepiteliálních tkáních.

Těsné spoje bariéra proti difúzi (A) malé značené molekuly přidané na jednu stranu epitelu nemohou projít přes těsné spoje, které pevně připojují sousední buňky k sobě. (B) elektronmikroskopický snímek buněk epitelu s přídavkem malé značené molekuly (tmavě obarvená) na apikální stranu (vlevo) i bazolaterální stranu (vpravo); značené molekuly zastaveny těsnými spoji. (C) model struktury těsného spoje ukazuje, jak jsou buňky pravděpodobně připojeny k sobě proteiny ve vnější vrstvě lipidové dvojité vrstvy plasmatické membrány. (C)

Molekuly kadherinu zprostředkovávají mechanické připojení jedné buňky k druhé Dvě stejné molekuly kadherinů v plasmatických membránách sousedních buněk se vzájemně vážou; intracelulárně jsou prostřednictvím spojníkových proteinů připojeny k cytoskeletálním vláknům.

Adhezní pásy (pásové desmosomy) epiteliálních buněk tenkého střeva (mechanické spoje) Blízko vrcholu každé buňky pod cytoplasmatickým povrchem plasmatické membrány kontraktilní svazek aktinových filament spojený se svazkem aktinových filament v sousedních buňkách pomocí kadherinových molekul, které procházejí buněčnými membránami.

Ohýbající se epiteliální list tvoří trubici nebo váček Kontrakce svazku aktinových filament, která jsou mezi buňkami propojena mechanickými spoji, způsobuje zúžení epiteliálních buněk na jejich apikální straně. Podle toho, zda je kontrakce orientována podle jedné osy nebo rovnoměrně ve všech směrech, se epitel stáčí buď do trubice nebo invaginuje a vytváří váček. Tvorba nervové trubice; elektronmikroskopický snímek ukazuje kolmý řez trupem dvoudenního kuřecího embrya (část epitelu, který pokrývá povrch embrya, zesílila, apikální kontrakcí se stočila do trubice a připravuje se k oddělení, aby se z ní stala samostatná vnitřní struktura). Tvorba čočky; část povrchového epitelu pokrývajícího zárodečný základ oční sítnice se vydul a nakonec se odštěpil jako samostatný čočkový váček uvnitř očního pohárku.

Desmosomy (A) spojení dvou buněk v epidermis čolka a přichycení keratinových filament (B) desmosom na cytoplasmatickém povrchu každé z membrán destička z intracelulárních příchytných proteinů, na vnitřní straně intermediární filamenta (keratinová), na vnější straně proteiny z kadherinové rodiny (procházejí membránou a vážou obě buňky k sobě); pevnost v tahu hojné na exponovaných epitelech (kůže) (C) lidská epidermis se svazky keratinových filament, procházejí cytoplasmou jedné z hlouběji uložených buněk k desmosomům, kterými je buňka spojena se svými sousedy; mezi sousedními buňkami otevřené kanály, přes metabolicky aktivní tkáň volně difundují živiny

Hemidesmosom ukotvuje keratinová filamenta epiteliální buňky k bazální membráně Epiteliální buňky musí být, kromě pevného připojení jedna k druhé, ukotveny ke tkáním ležícím pod nimi. Ukotvení je zprostředkováno integriny proteiny bazální plasmatické membrány epiteliálních buněk. Vně se vážou k lamininu v bazální lamině; uvnitř buňky ke keratinovým filamentům struktura podobá polovině desmosomu hemidesmosomy.

Mezerové spoje Tenký řez mezerovým spojem mezi dvěma buňkami v kultuře na snímku z elektronového mikroskopu. Interagující plasmatické membrány dvou sousedních buněk. Přiložené dvojné vrstvy lipidů prostoupeny proteinovými komplexy (konexony) složenými ze šesti stejných proteinových podjednotek, tzv. konexinů. Dva konexony se spojují a přemosťují štěrbinu mezi buňkami a vytváří mezi nimi pro vodu propustný kanál.

svalové tkáně epiteliální tkáně POJIVOVÉ TKÁNĚ nervové tkáně

Pojivové tkáně Buňky Mezibuněčná hmota Kloubní chrupavka kolagen chondrocyt proteoglykan

Kolagen Molekula: tři dlouhé polypeptidové řetězce v každé třetí poloze glycin pravidelná struktura možnost vzájemného ovíjení dlouhá pravidelná trojšroubovice kolagenová vlákna kolagenová fibrila trojšroubovicová molekula kolagenu jednoduchý polypeptidový řetězec kolagenu

Kolagen V exrtacelulární hmotě uspořádání s rozmanitou orientací (paralelní svazky, sítě, vrstvy s různou orientací ). sekrece v podobě prokolagenu přídavné peptidy zabraňují uspořádání do fibril po odštěpení kolagenázou (extracelulárně) fibrily pouze vně buňky

Hyperelastická kůže James Morris, muž s elastickou kůží, na fotografii přibližně z roku 1890. Abnormálně roztažitelná kůže je příznakem genetického syndromu, který je důsledkem chyby v sestavování nebo zesíťování kolagenu. U některých jedinců je příčinou nepřítomnost kolagenázy, která přeměňuje prokolagen na kolagen.

Elastin volné a nečleněné polypeptidové řetězce kovalentně spojeny do elastické síťoviny příčinou elasticity schopnost molekul proteinu reverzibilně se rozvinout při napětí natahování a stahování bez roztržení (kůže, tepny, plíce)

Molekulové spojení extracelulární matrix a cytoskeletu u živočišné buňky (A) schéma a (B) fotografie molekuly fibronektinu (C) transmembránové spojení zprostředkované integrinovou molekulou: molekula integrinu přenáší napětí přes plasmatickou membránu uvnitř buňky je připojena k cytoskeletu a vně přes fibronektin k extracelulární matrix; plasmatická membrána tedy nemusí být pevná

Proteoglykanový agregát z chrupavky Elektronmikroskopický snímek agregátu rozprostřeného do plochy (mnoho volných podjednotek ve skutečnosti také velkých proteoglykanových molekul). Schematický nákres obřího agregátu, ukazující jeho stavbu z GAG a proteinů. Molekulová hmotnost komplexu i více než 100 MDa; zaujímá prostor ekvivalentní bakterii, (2 10-12 cm 3 ).

Kyselina hyaluronová, relativně jednoduchý GAG Tvořena jedním dlouhým řetězcem z více než 25 000 opakujících se disacharidových jednotek, každá záporný náboj. Jedním ze sacharidových monomerů každého disacharidu aminocukr. Mnoho GAG obsahuje další záporně nabité postranní skupiny, převážně sulfáty.

svalové tkáně epitelové tkáně pojivové tkáně NERVOVÉ TKÁNĚ

Signalizace v nervových buňkách Signál změna membránového potenciálu pasivní šíření signálu nevhodné aktivní signální mechanismus Akční potenciál (nervový impuls) putující vlna elektrického vzruchu na konec axonu (nervového zakončení) Přeměna elektrického signálu v chemický nervové mediátory Přeměna chemického signálu v elektrický Vzrušivá a tlumivá synapse excitační a inhibiční mediátory

Akční potenciál červená křivka klidový membránový potenciál: 60 mv akční potenciál: po depolarizaci membrány asi o 20 mv membránový potenciál 40 mv prahová hodnota pro spuštění akčního potenciálu po spuštění akčního potenciálu, rychlá depolarizace membrány membránový potenciál +40 mv po průchodu akčního potenciálu návrat ke klidové hodnotě 60 mv zelená křivka ukazuje, jak by se membránový potenciál po počátečním depolarizačním podnětu postupně vracel ke své klidové hodnotě, pokud by v plasmatické membráně nebyly žádné napěťově ovládané iontové kanály

Tok iontů a akční potenciál akční potenciál spuštěn krátkým elektrický impulsem depolarizace membrány otevření a následná inaktivace elektricky ovládaných sodných kanálů ani při opětovné stimulaci nemůže membrána vytvořit další akční potenciál, dokud se kanály nevrátí z inaktivované do uzavřené konformace

Šíření akčního potenciálu podél axonu (A) napětí, které by bylo možné zaznamenat z řady intracelulárních elektrod umístěných v pravidelných vzdálenostech od sebe podél axonu akční potenciál neslábne (B) změny v Na + -kanálech a tocích proudu dávají vznik membránovému potenciálu; oblast axonu s depolarizovanou membránou: Akční potenciál se může šířit jen dopředu, inaktivace sodných kanálů brání šíření depolarizace opačným směrem.

Přeměna signálů v synapsi Akční potenciál v nervovém zakončení otevření elektricky ovládaných Ca 2+ -kanálů v plasmatické membráně vápenaté ionty do zakončení nervové buňky. Zvýšená koncentrace Ca 2+ v nervovém zakončení stimuluje synaptické váčky k fúzi s presynaptickou membránou, při níž se uvolní v nich obsažený nervový mediátor do synaptické štěrbiny Uvolněný nervový mediátor se váže na chemicky regulované iontové kanály v plasmatické membráně postsynaptické buňky a otevírá je. Výsledné toky iontů mění membránový potenciál postsynaptické buňky, a tím převedou chemický signál zpět do elektrické podoby.

V přednášce použity obrázky z knihy B. Alberts et al. Základy buněčné biologie Espero Publishing, Ústí nad Labem