ENERGIE BUNĚČNÁ RESPIRACE FOTOSYNTÉZA Doc. MVDr. Eva Bártová, Ph.D.

Rozměr: px
Začít zobrazení ze stránky:

Download "ENERGIE BUNĚČNÁ RESPIRACE FOTOSYNTÉZA. 2013 Doc. MVDr. Eva Bártová, Ph.D."

Transkript

1 ENERGIE BUNĚČNÁ RESPIRACE FOTOSYNTÉZA 2013 Doc. MVDr. Eva Bártová, Ph.D.

2 ZÍSKÁVÁNÍ a PŘENOS ENERGIE BUŇKOU 1. termodynamická věta - různé formy energie se mohou navzájem přeměňovat 2. termodynamická věta - část energie se uvolní jako teplo, část jako volná energie (Gibbsonova energie - schopna konat práci) ZDROJE ENERGIE: - FOTONY (sluneční světlo) - POTRAVA (organické molekuly) - ANORGANICKÉ MOLEKULY (u chemosyntetických bakterií)

3 Dělení organismů podle zdroje energie: FOTOTROFNÍ - světlo (fototrofní bakterie, zelené rostliny a řasy) CHEMOTROFNÍ - anorganické látky (chemolitotrofní bakterie) Dělení organismů podle zdroje C: AUTOTROFNÍ - CO 2 (rostliny) HETEROTROFNÍ - organické látky (živočichové, rostliny) Bakterie: - fotoautotrofní / fotoheterotrofní - chemoautotrofní / chemoheterotrofní Eukaryonta: - fotoautotrofní / fotoheterotrofní chemoheterotrofní MIXOTROFNÍ = autotrofně heterotrofní (masožravé rostliny, poloparazit - kokrhel, všivec..)

4 METABOLISMUS Katabolismus (katabolické dráhy) - odbourání živin, uvolnění Gibbsonovy energie a část se mění v teplo Anabolismus (anabolické dráhy) - syntéza molekul, využití energie potrava stavební molekuly - polymery katabolismus užitečná forma energie teplo anabolismus stavební molekuly - monomery Co jsou to anabolika?

5 KATALÝZA zrychlení chemických reakcí pomoci katalyzátoru, který se během reakce nespotřebovává zajišťuje alternativní reakce, snižuje aktivační energii katalýza energie vazba substrátu substrát aktivní místo po vazbě substrátu, mění enzym tvar produkt nekatalyzovaná reakce katalyzovaná reakce doba komplex enzym - substrát komplex enzym - produkt produkt opouští aktivní místo

6 Jak buňky získávají energii z potravy? - rostliny, živočichové RESPIRACE (buněčné dýchání) C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + volná energie - opačná rovnice fotosyntézy - energie je získávána z cukrů či jiných organ. molekul potravy postupnou oxidací (řízené spalování, respirace,dýchání) - energie se ukládá do chemických vazeb nosičových molekul

7 NOSIČOVÉ MOLEKULY (aktivované přenašeče, koenzymy) Nosičové molekuly ATP, GTP NADH, NADPH, FADH 2 acetyl CoA Přenášená skupina fosfátová skupina elektrony (H-) a proton (H+) acetylová skupina ATP (adenosin-5-trifosfát)-univerzální platidlo, energet. bohaté fosfátové vazby GTP (quanosintrifostát) NADH (redukovaný nikotinamidadenindinukleotid) NADPH (redukovaný nikotinamidadenindinukleotidfosfát) FADH 2 (redukovaný flavinadenindinukleotid)

8 Funkce cukrů energetický zdroj (glukóza) dlouhodová zásoba energie - glykogen (živočichové) - škrob (rostliny) mechanická podpora škrobová zrna - celulóza (polysach. glukózy, rostliny) - chitin (polymer N-acetylglukosaminu, kostra hmyzu, buněčná stěna hub) složka slizů, hlenu, chrupavek součást glykolipidů a glykoproteinů - v buněčné membráně

9

10 TRÁVENÍ - energie pro buňku pochází z chemických vazeb v molekulách potravy - energie se získává postupným odbouráváním CUKRŮ (LIPIDŮ, PROTEINŮ) v enzymových drahách - ve střevech (v organizmu) a v lysozomech (v buňce) - odbourání polymerů na malé molekuly Polysacharidy monosacharidy Proteiny AK Tuky MK a glycerol lysozom tenké střevo Umět lokalizovat (v rámci buňky), kde jednotlivé fáze buněčného dýchání probíhají

11 ROZKLAD MONOMERŮ - momomery vstupují do cytoplazmy buňky a dochází k jejich rozkladu Př. Glykolýza (štěpení cukrů) - sled 10 reakcí, každá vede ke tvorbě odlišných meziproduktů, katalyzováno odlišnými enzymy. 1 glukóza (6 C) 2 pyruváty (2x 3 C) Uvolněná energie je uložena do: 2 ATP, 2 NADH

12 VZNIK ACETYL-CoA - pyruvát přechází z cytosolu do matrix mitochondrií (u aerobních bakterií v cytosolu) 1 pyruvát (3C) CO 2 + acetyl (2C) acetyl + CoA acetyl CoA Oxidací jednoho pyruvátu vzniká 1 NADH, celkem 2NADH Umět nakreslit a popsat mitochondrii

13 ZPRACOVÁNÍ ACETYL-CoA - acetylová skupina je přenesena na oxalacetát za vzniku kyseliny citrónové, ta je oxidována na CO 2 a H 2 O (Krebsův cyklus - v matrich mitochondrie) acetyl CoA + O 2 CO 2 + H 2 O Energie z 1acetyl-CoA je uložena do: 3 NADH, 1 FADH 2, 1GTP Celkem 6NADH, 2FADH 2, 2ATP

14 ATP - hlavní chemicko-energetické platidlo v buňkách - malá část ATP se tvoří v cytosolu - většina ATP se tvoří při membránových dějích v: mitochondriích, chloroplastech, buněčné membráně bakterií Pyruvát z glykolýzy (2 molekuly pyruvátu z 1 molekuly glukózy) Krebsův cyklus

15 OXIDAČNÍ FOSFORYLACE Chemiosmotické spřažení v mitochondriích nosičové molekuly (NADH, FADH 2 ) poskytují elektrony, které jsou přenášeny elektrontransportním řetězcem (protonové pumpy - proteiny) elektrony + O 2 H 2 O + energie energie z vysokoenergetických elektronů je využita k čerpání H + protonů přes membránu do mezimembránového prostoru pomocí protonových pump: NADH-dehydrogenázový komplex komplex cytochromů b+c1 cytochromoxidázový komplex syntéza ATP je poháněna protonovým gradientem (průchod H + přes ATP-syntázu do matrix přes vnitřní membránu)

16 CHEMIOSMOTICKÉ SPŘAŽENÍ V MITOCHONDRIÍCH

17 SYNTÉZA ATP HYDROLÝZA ATP vnitřní mitochondriální membrána matrix Animace syntézy ATP: etabolism/atpsyn1.swf etabolism/atpsyn2.swf

18 Schéma respirace

19 Buňka získá oxidací 1 glukózy na CO 2 a H 2 O asi 30 ATP Fosforylace substrátu Teorie: NADH 3ATP, FADH 2 2 ATP Oxidace Glykolýza 2 ATP 2 NADH Oxidace pyruvátu - 2 NADH Krebsův cyklus 2 ATP (z GTP) 6 NADH + 2 FADH 2 Celkem 4 ATP 10 NADH + 2 FADH 2 Celkem ATP: (transport NADH z glykolýzy přes membránu mitochondrie) = 36 ATP Skutečnost: NADH 2,5 ATP, FADH 2 1,5 ATP Celkem ATP: = 30 ATP Asi 50 % energie glukózy se váže v ATP (k užitečné práci), zbytek teplo

20 30ATP aerobní podmínky anaerobní podmínky 2ATP

21 Jak získávají buňky energii ze slunce? rostliny, fotosyntetizující bakterie, řasy, někteří protista proces fotosyntézy Fotosyntéza sluneční záření voda CO 2 minerály kyslík cukry Umět napsat rovnici fotosyntézy (opačná rovnice buněčného dýchání)

22 FOTOSYNTÉZA probíhá v chloroplastech na membráně tylakoidů rostliny přijímají CO 2 ze vzduchu a vodu z půdy; za přítomnosti energie fotonů a chlorofylu produkují cukr (glukóza) a kyslík část cukru je využit rostlinou k životním procesům (růst, reprodukce); zbytek se ukládá v podobě škrobu sluneční záření 6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2 Chlorofyl zelený pigment Fotosyntéza a buněčné dýchání zajišťuje na Zemi rovnováhu CO 2 a O 2 na zemi. Umět nakreslit a popsat chloroplast

23

24 cukr FOTOSYNTÉZA CO 2 světlo NADP NADPH ADP H + ATP H + membrána tylakoidů H 2 O + H + O 2 Fotosystém II H + e - Fotosystém I H H + + ATP syntáza

25 I. Fáze fotosyntézy (světelná): v tylakoidech chloroplastů dopad fotonů na asimilační barviva (chlorofyl a, chlorofyl b, karotenoidy ve fotosystémech I a II v thylakoidních membránách chloroplastů) a excitace elektronů energie je využita k čerpání H + protonů ze stromatu přes membránu do thylakoidů protonovou pumpou: komplex cytochromů b6 a f fotolýza vody H 2 O 2H ē + 1/2O 2 přenos elektronů redoxními systémy k redukci NADP na NADPH syntéza ATP, která je poháněna protonovým gradientem tj. průchodem H+ATP- syntázou do stromatu přes thylakoidní membránu

26 Chemiosmotické spřažení FOTOSYNTETICKÁ FOSFORYLACE

27 II. fáze fotosyntézy (temnostní, Kalvinův cyklus): pojmenované po Melvin Calvin reakce mohou probíhat bez přítomnosti světla navázání CO 2 a jeho redukce uvolněným vodíkem (z fotolýzy vody) za vzniku organických sloučenin (energii dodají přenašeče energie), ve stromatu chloroplastu k produkci 1 molekuly glukózy je třeba 6 Calvinových cyklů světlo světelná fáze Kalvinův cyklus Animace fotosyntézy: photosynthesis.swf fotosystém II fotosystém I chloroplast cukr

28 UKLÁDÁNÍ a ZUŽITKOVÁNÍ POTRAVY MK - jsou ukládány jako tukové kapénky v tukových buňkách Cukry - jsou ukládány jako glykogen (živočichové) škrobová zrna (rostliny) Oxidací 1 g tuku se uvolní 2 x více energie než z glykogenu V tuku je uložena energie na 1 měsíc V glykogenu je uložena energie na 1 den!!!

29 Jaké typy pohybů znáte? CYTOSKELET POHYB

30 Pohyb na buněčné úrovni: lokomoce buněk (řasinkový, bičíkový, améboidní pohyb) proudění cytoplazmy, vnitrobuněčný transport pohyb chromozomů při mitóze, cytokineze Pohyby na úrovni mnohobuněčného organismu: svalový pohyb

31 CYTOSKELETÁLNÍ PRINCIP (CYTOSKELET) intermediární filamenta (střední) (průměr 10 nm) mikrotubuly (25 nm) mikrofilamenta (aktinová vlákna) (7 nm) Funkce: tvar buňky, rozmístění organel (intermed. filamenta) pohyb buňky (mikrotubuly, mikrofilamenta) vnitrobuněčný transport (mikrotubuly) mitóza - dělící vřeténko, kontraktilní prstenec (mikrotubuly, mikrofilamenta)

32 střední filamenta mikrotubuly mikrofilamenta

33 INTERMEDIÁRNÍ FILAMENTA fibrilární bílkoviny (alfa šroubovice - dimer - tetramer - vlákno (8 tetramerů), spojují se do protofilament Třídy: keratiny (epitelie), vimentiny (pojiva, svaly, neuroglie), neurofilamenta, laminy (v jádrech) Funkce: zpevnění buňky - v místech desmosomů zpevnění jaderné membrány (laminy) determinace tvaru buněk rozmístění organel v buňce

34 MIKROTUBULY složeny z globulárních proteinů (tubuliny) polární dimer (α tubulin - a β tubulin + ) řetězec = protofilamentum mikrotubul (ze 13 řetězců) polarita: a + konec dynamická nestabilita (50 % aktinu v monomerech, 50 % v polymerech, růst a rozpad s využitím ATP)

35 Místa odkud mikrotubuly vyrůstají: centrosom vnitrobuněčný transport bazální tělísko bičíkový, řasinkový pohyb póly dělícího vřeténka mitóza Nakresli dělící vřeténko

36 MIKROFILAMENTA (AKTINOVÁ VLÁKNA) fibrilární provazce složené z globulárních molekul aktinu strukturální polarita (+, konec) dynamická nestabilita

37 Mechanismus pohybu: - transformace energie chemické v mechanickou Motorové proteiny = molek. motory, mechanochem. enzymy Složení motorů: Motorová doména - 1 polypeptidový řetězec, hlavička s ATPázovou aktivitou, kontaktuje mikrofilamenty nebo mikrotubuly po kterých se motor pohybuje. Koncová doména - jiný polypeptidový řetězec. Má vazebná místa pro molekuly či buněčné struktury (membránové váčky, plazmatická membrána). ATPázy uvolňují energii hydrolýzou ATP po kontaktu motorů s mikrotubuly (či mikrofilamenty)

38 Motory spolupracující s mikrotubuly: kineziny pohyb od k + konci (antegrální transport) dyneiny pohyb od + k konci (retrográdní transport) Jak se nazývají motory spolupracující s mikrofilamenty?

39 Motory spolupracující s mikrofilamenty: myoziny I - 1 motorová doména, ve všech typech buněk myoziny II - 2 motorové domény, svalový myozin myozin I myozin II motorová doména koncová doména myozin II (vlákno)

40 PRINCIP POHYBU MOTORŮ A) pohyb motoru po cytoskeletální struktuře, která je fixována - motorová doména se váže k cytoskeletální struktuře, dojde k hydrolýze ATP, změní se konformace motorové domény, posune se po mikrotubulu (mikrofilamentu), s motorem se posune i to co je na motor navázáno, konformace hlavičky se obnoví

41 B) pohyb mikrotubulu (mikrofilamentu) pomoci motoru, který je fixován

42 C) klouzání mikrotubulů (mikrofilament) - motory pevně vázány na jeden mikrotubulus (mikrofilamentum), motorovou doménou kontaktuje jiný mikrotubulus (mikrofilament), dochází k vzájemnému posunu cytoskeletálních struktur

43 SHRNUTÍ cytoskeletální vlákno mikrotubuly mikrofilamenty molekulový motor pohyb kineziny, dyneiny myozin I, II - vnitrobuněčný, - bičíkový, - řasinkový, - mitóza (dělící vřeténko) - améboidní, - svalový, - mitóza (kontraktilní prstenec u živočišné buňky) Nakresli nervovou buňku Animace pohybu molekulových motorů: *

44 VNITROBUNĚČNÝ TRANSPORT - transport váčků v sekreční dráze, v axonech nervových buněk, přemísťování pigmentu v melanoforech tělo nervové buňky Jaký je rozdíl mezi centrozomem, centrioly a centromerou?

45 motory se pohybují po mikrotubulech (v cytoplazmě), které vyrůstají z centrozomu a směřují k periferii buňky směr pohybu motorů je dán polaritou mikrotubulů centrozom

46 Centrioly ve dvojicích součást centrozomu živočišných buněk po obvodu je 9 trojic mikrotubulů vznikají z nich bazální tělíska CENTROSOM CENTRIOLY MIKROTUBULY

47 POHYB KINOCILIÍ (BIČÍKY A ŘASINKY) Kinocílie jsou pokryty plazmatickou membránou a zakotveny do bazálních tělísek (9 trojic mikrotubulů bez centrálních mikrotubulů).

48 Pohybová struktura kinocilií je axonema = svazek mikrotubulů spojených asociovanými proteiny. V ose axonemy jsou 2 centrální mikrotubuly a kolem nich je 9 zdvojených mikrotubulů = dublet (9+2 vzorec). Dublet má A a B podjednotku. Příčný průřez konocílií (A a B podjednotka)

49 Pohyb kinocilií je dán klouzáním mikrotubulů, poháněné dyneinem (koncovou doménou je připojen k A podjednotce a motorovou doménou kontaktuje B podjednotku) Při aktivaci motorové domény dojde ke konformační změně (ATP z cytosolu), vzájemný posun mikrotubulů je omezen, proto dojde k jejich ohýbání, ne k posunu.

50

51 Animace bičíkového a řasinkového pohybu: ege.edu/biology/biology1111 /animations/flagellum.html

52 BAKTERIÁLNÍ BIČÍK - umožňuje lokomoci bakterií ve vodném prostředí - polotuhé, šroubovité vlákno, tvořené jedním proteinem (flagelinem) v membráně buňky v ložisku, ve kterém jsou uváděna do točivého pohybu tokem protonů zvenčí do buňky (podle signálů z prostředí bakterie mění směr otáčení bičíku) kotva (universální spoj) vlákno Pouzdro (L a P prstenec) STAROR (čepy a C prstenec) ROTOR (S a M prstenec)

53 AMÉBOIDNÍ (měňavkovitý) POHYB améby (měňavky), hlenky, leukocyty a jiné krevní buňky, fibroblasty, princip fagocytózy Princip: 1. vysílání výběžků (aktinová vlákna) ve směru pohybu buňky, vytlačení cytoplazmy, klouzání mikrofilament poháněné myoziny 2. přichycení výběžků na podložku pomoci integrinů (transmembránové proteiny) 3. kontrakce zadní části buňky, interakce aktinových vláken s molek. motory - myozin I Typy výběžků: pseudopodie, lamelipodie tenké, plochý tvar filopodie vláknitý tvar

54

55 FAGOCYTÓZA princip améboidního pohybu Animace fagocytózy: imat/cellstructures/phagocitosis.swf

56 SVALOVÝ POHYB Pohybové činnosti (běh, chůze, plavání, let), kosterní svaly Nevolní pohyby (srdeční stahy, střevní peristaltika) srdeční a hladké svaly Kosterní sval - kosterní svalová buňka (mnohojaderná, jádra těsně pod plazmatickou membránou), cytoplazma vyplněna myofibrilami (průměr 1-2 μm), složeny z kontraktilních jednotek = sarkomera (délka 2,5 μm) Nakresli sarkomeru

57 Myosinová vlákna (silná) - uprostřed sarkomery, vznikají spojováním myozinu II (2 globulární domény - hlavička a konec) Aktinová vlákna (tenká) - vycházejí z obou konců sarkomery (ukotvena + konci k Z- diskům = Z linie), volnými konci se překrývají s myozinem

58 Příčně pruhovaný sval ve světelném mikroskopu Příčně pruhovaný sval v elektronovém mikroskopu

59 SVALOVÝ STAH 1) signál z nervové soustavy, elektrický vzruch se šíří pomoci příčných kanálků (T-systém, vzniká invaginací membrány) 2) předání signálu sarkoplazmatickému retikulu (specializované ER kolem myofibrily, obsahuje Ca 2+ ). Elektrický signál způsobí změnu potenciálu na membráně, otevření iontových kanálů membrán SR a uvolnění Ca 2+ do cytosolu.

60 3) Ca 2+ se váže na troponinový komplex (proteiny), který udržuje tropomyozin (protein) v poloze, kdy překrývá vazebná místa aktinu pro myozin. Troponin se posune a uvolní tato vazebná místa.

61 4) vazba hlaviček myozinu II na aktinová vlákna, paralelní pohyb dvou opačně orientovaných sad aktinových vláken

62 Sarkomery jsou spojeny speciální signalizační soustavou, která umožňuje okamžitý stah všech sarkomer (stah sarkomer z 3 μm do staženého stavu 2 μm trvá 0,1 sec). Svalové uvolnění: ukončení nervového vzruchu, Ca 2+ je vypumpován do SR pomoci Ca 2+ pump v jeho membráně. Molekuly troponinu a tropomyozinu se vrátí do klidových poloh. Animace svalové kontrakce: * Hladký sval (ve stěně žaludku, střev, dělohy, cév atd.) Myozin II je aktivován zvýšením hladiny Ca 2+, dojde k fosforylaci myozinu II, změně jeho konformace a reakce s aktinem. Stahy jsou pomalejší, méně specializované, řízeny různými signály (adrenalin, serotonin, prostaglandiny atd.).

B9, 2015/2016, I. Literák, V. Oravcová CYTOSKELETÁLNÍ PRINCIP BUŇKY

B9, 2015/2016, I. Literák, V. Oravcová CYTOSKELETÁLNÍ PRINCIP BUŇKY B9, 2015/2016, I. Literák, V. Oravcová CYTOSKELETÁLNÍ PRINCIP BUŇKY CYTOSKELETÁLNÍ PRINCIP BUŇKY mikrotubuly střední filamenta aktinová vlákna CYTOSKELETÁLNÍ PRINCIP BUŇKY funkce cytoskeletu - udržovat

Více

B4, 2007/2008, I. Literák

B4, 2007/2008, I. Literák B4, 2007/2008, I. Literák ENERGIE, KATALÝZA, BIOSYNTÉZA Živé organismy vytvářejí a udržují pořádek ve světě, který spěje k čím dál většímu chaosu Druhá věta termodynamiky: Ve vesmíru nebo jakékoliv izolované

Více

VAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost

VAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost VAKUOLA membránou ohraničený váček membrána se nazývá tonoplast běžná u rostlin, zvířata specializované funkce či její nepřítomnost VAKUOLA Funkce: uložiště odpadů a uskladnění chemických látek (fenolické

Více

Energetický metabolizmus buňky

Energetický metabolizmus buňky Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie

Více

Otázka: Metabolismus. Předmět: Biologie. Přidal(a): Furrow. - přeměna látek a energie

Otázka: Metabolismus. Předmět: Biologie. Přidal(a): Furrow. - přeměna látek a energie Otázka: Metabolismus Předmět: Biologie Přidal(a): Furrow - přeměna látek a energie Dělení podle typu reakcí: 1.) Katabolismus reakce, při nichž z látek složitějších vznikají látky jednodušší (uvolňuje

Více

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ METABOLISMUS SAHARIDŮ A. Odbourávání sacharidů - nejdůležitější zdroj energie pro heterotrofy - oxidací sacharidů až na. získávají aerobní organismy energii ve formě. - úplná oxidace glukosy: složitý proces

Více

BUŇKA A ENERGIE. kajman brýlový Caiman crocodilus Kostarika, 2004. Biologie 6, 2015/2016, Ivan Literák

BUŇKA A ENERGIE. kajman brýlový Caiman crocodilus Kostarika, 2004. Biologie 6, 2015/2016, Ivan Literák BUŇKA A ENERGIE kajman brýlový Caiman crocodilus Kostarika, 2004 Biologie 6, 2015/2016, Ivan Literák ENERGIE, KATALÝZA, BIOSYNTÉZA Živé organismy vytvářejí a udržují POŘÁDEK VE SVĚTĚ, KTERÝ SPĚJE K ČÍM

Více

ANABOLISMUS SACHARIDŮ

ANABOLISMUS SACHARIDŮ zdroj sacharidů: autotrofní org. produkty fotosyntézy heterotrofní org. příjem v potravě důležitou roli hraje GLUKÓZA METABOLISMUS SACHARIDŮ ANABOLISMUS SACHARIDŮ 1. FOTOSYNTÉZA autotrofní org. 2. GLUKONEOGENEZE

Více

Fyziologie buňky. RNDr. Zdeňka Chocholoušková, Ph.D.

Fyziologie buňky. RNDr. Zdeňka Chocholoušková, Ph.D. Fyziologie buňky RNDr. Zdeňka Chocholoušková, Ph.D. Přeměna látek v buňce = metabolismus Výměna látek mezi buňkou a prostředím Buňka = otevřený systém probíhá výměna látek i energií s prostředím Některé

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání

Více

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ SPOLEČNÉ ZNAKY ŽIVÉHO - schopnost získávat energii z živin pro své životní potřeby - síla aktivně odpovídat na změny prostředí - možnost růstu, diferenciace a reprodukce

Více

Předmět: KBB/BB1P; KBB/BUBIO

Předmět: KBB/BB1P; KBB/BUBIO Předmět: KBB/BB1P; KBB/BUBIO Energie z mitochondrií a chloroplastů Cíl přednášky: seznámit posluchače se základními principy získávání energie v mitochondriích a chloroplastech Klíčová slova: mitochondrie,

Více

Přeměna chemické energie v mechanickou

Přeměna chemické energie v mechanickou Přeměna chemické energie v mechanickou Molekulám schopným této energetické přeměny se říká molekulární motory. Nejklasičtějším příkladem je svalový myosin (posouvá se po aktinu), ale patří sem i ATP-syntáza

Více

BUNĚČNÁ MOTILITA A MOLEKULÁRNÍ MOTORY

BUNĚČNÁ MOTILITA A MOLEKULÁRNÍ MOTORY BUNĚČNÁ MOTILITA A MOLEKULÁRNÍ MOTORY 1 VÝZNAM BUNĚČNÉ MOTILITY A MOLEKULÁRNÍCH MOTORŮ V MEDICÍNĚ Příklad: Molekulární motor: dynein Onemocnění: Kartagenerův syndrom 2 BUNĚČNÁ MOTILITA A MOLEKULÁRNÍ MOTORY

Více

Nejmenší jednotka živého organismu schopná samostatné existence. Výměnu látek Růst Pohyb Rozmnožování Dědičnost

Nejmenší jednotka živého organismu schopná samostatné existence. Výměnu látek Růst Pohyb Rozmnožování Dědičnost BUŇKA Nejmenší jednotka živého organismu schopná samostatné existence Buňka je schopna uskutečňovat základní funkce organismu: obrázky použity z Nečas: BIOLOGIE LIDSKÉ TĚLO Alberts: ZÁKLADY BUNĚČNÉ BIOLOGIE

Více

BUŇKA A ENERGIE. kajman brýlový Caiman crocodilus Kostarika, Biologie 8, 2017/2018, Ivan Literák

BUŇKA A ENERGIE. kajman brýlový Caiman crocodilus Kostarika, Biologie 8, 2017/2018, Ivan Literák BUŇKA A ENERGIE kajman brýlový Caiman crocodilus Kostarika, 2004 Biologie 8, 2017/2018, Ivan Literák ENERGIE, KATALÝZA, BIOSYNTÉZA Živé organismy vytvářejí a udržují POŘÁDEK VE SVĚTĚ, KTERÝ SPĚJE K ČÍM

Více

FYZIOLOGIE ROSTLIN VÝŽIVA ROSTLIN 1) AUTOTROFNÍ VÝŽIVA ROSTLIN 2) HETEROTROFNÍ VÝŽIVA ROSTLIN

FYZIOLOGIE ROSTLIN VÝŽIVA ROSTLIN 1) AUTOTROFNÍ VÝŽIVA ROSTLIN 2) HETEROTROFNÍ VÝŽIVA ROSTLIN FYZIOLOGIE ROSTLIN Fyziologie rostlin, Biologie, 2.ročník 25 Podobor botaniky, který studuje životní funkce a individuální vývoj rostlin. Využívá poznatků z dalších odvětví biologie jako je morfologie,

Více

základem veškerého aktivního pohybu v živočišné říši je interakce proteinových vláken CYTOSKELETU

základem veškerého aktivního pohybu v živočišné říši je interakce proteinových vláken CYTOSKELETU Lukáš Hlaváček, Katedra zoologie Přf UP Olomouc, 2010 POHYB je jeden ze základních životních projevů pro život je nezbytný POHYB na všech úrovních: subcelulární (pohyb v rámci buňky) celulární (pohyb buňky)

Více

Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení

Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Autor Tematická oblast Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení Ročník 1.

Více

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ METABOLISMUS SACHARIDŮ PRINCIP Rozštěpené sacharidy vstřebávání střevní sliznicí do krevního oběhu dopraveny vrátnicovou žílou do jater. V játrech enzymaticky hexózy štěpeny na GLUKÓZU vyplavována do krve

Více

Eva Benešová. Dýchací řetězec

Eva Benešová. Dýchací řetězec Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ

Více

Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková

Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková Registrační číslo projektu: CZ.1.07/1.1.38/02.0025 Název projektu: Modernizace výuky na ZŠ Slušovice, Fryšták, Kašava a Velehrad Tento projekt je spolufinancován z Evropského sociálního fondu a státního

Více

Fotosyntéza (2/34) = fotosyntetická asimilace

Fotosyntéza (2/34) = fotosyntetická asimilace Fotosyntéza (2/34) = fotosyntetická asimilace FOTO - protože k fotosyntéze je třeba fotonů Jedná se tedy o zachycování sluneční energie a přeměnu jednoduchých anorganických látek (CO 2 a H 2 O) na složitější

Více

Bp1252 Biochemie. #11 Biochemie svalů

Bp1252 Biochemie. #11 Biochemie svalů Bp1252 Biochemie #11 Biochemie svalů Úvod Charakteristickou funkční vlastností svalu je schopnost kontrakce a relaxace Kontrakce následuje po excitaci vzrušivé buněčné membrány je přímou přeměnou chemické

Více

Energetika a metabolismus buňky

Energetika a metabolismus buňky Předmět: KBB/BB1P Energetika a metabolismus buňky Cíl přednášky: seznámit posluchače s tím, jak buňky získávají energii k životu a jak s ní hospodaří Klíčová slova: energetika buňky, volná energie, enzymy,

Více

základem veškerého aktivního pohybu v živočišnéříši je interakce proteinových vláken CYTOSKELETU

základem veškerého aktivního pohybu v živočišnéříši je interakce proteinových vláken CYTOSKELETU POHYB je jeden ze základních životních projevů pro život je nezbytný POHYB na všech úrovních: subcelulární (pohyb v rámci buňky) celulární (pohyb buňky) orgánový pohyb (pohyb orgánu) organizmální pohyb

Více

Název: Fotosyntéza, buněčné dýchání

Název: Fotosyntéza, buněčné dýchání Název: Fotosyntéza, buněčné dýchání Výukové materiály Autor: Mgr. Blanka Machová Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: Biologie, chemie Ročník: 2. Tematický

Více

Pohyb buněk a organismů

Pohyb buněk a organismů Pohyb buněk a organismů Pohybové buněčné procesy: Vnitrobuněčný transpost organel, membránových váčků Pohyb chromozómů při dělení buněk Cytokineze Lokomoce buněk (améboidní a řasinkový pohyb) Svalový pohyb

Více

Úvod do biologie rostlin Buňka ROSTLINNÁ BUŇKA

Úvod do biologie rostlin Buňka ROSTLINNÁ BUŇKA Slide 1a ROSTLINNÁ BUŇKA Slide 1b Specifické součásti ROSTLINNÁ BUŇKA Slide 1c Specifické součásti ROSTLINNÁ BUŇKA buněčná stěna Slide 1d Specifické součásti ROSTLINNÁ BUŇKA buněčná stěna plasmodesmy Slide

Více

FOTOSYNTÉZA Správná odpověď:

FOTOSYNTÉZA Správná odpověď: FOTOSYNTÉZA Správná odpověď: 1. Mezi asimilační barviva patří 1. chlorofyly, a) 1, 2, 4 2. antokyany b) 1, 3, 4 3. karoteny c) pouze 1 4. xantofyly d) 1, 2, 3, 4 2. V temnostní fázi fotosyntézy dochází

Více

Metabolismus příručka pro učitele

Metabolismus příručka pro učitele Metabolismus příručka pro učitele Obecné informace Téma Metabolismus je určeno na čtyři až pět vyučovacích hodin. Toto téma je zpracováno jako jeden celek a záleží na vyučujícím, jak jej rozdělí. Celek

Více

NEMEMBRÁNOVÉ ORGANELY. Ribosomy Centrioly (jadérko) Cytoskelet: aktinová filamenta (mikrofilamenta) intermediární filamenta mikrotubuly

NEMEMBRÁNOVÉ ORGANELY. Ribosomy Centrioly (jadérko) Cytoskelet: aktinová filamenta (mikrofilamenta) intermediární filamenta mikrotubuly NEMEMBRÁNOVÉ ORGANELY Ribosomy Centrioly (jadérko) Cytoskelet: aktinová filamenta (mikrofilamenta) intermediární filamenta mikrotubuly RIBOSOMY Částice složené z rrna a proteinů, skládají se z velké kulovité

Více

Buňky, tkáně, orgány, soustavy

Buňky, tkáně, orgány, soustavy Lidská buňka buněčné organely a struktury: Jádro Endoplazmatické retikulum Goldiho aparát Mitochondrie Lysozomy Centrioly Cytoskelet Cytoplazma Cytoplazmatická membrána Buněčné jádro Jadérko Karyoplazma

Více

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu Test pro přijímací řízení magisterské studium Biochemie 2019 1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná

Více

Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech

Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech Citrátový cyklus Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech 1. stupeň: OXIDACE cukrů, tuků a některých aminokyselin tvorba Acetyl-CoA a akumulace elektronů v NADH a FADH 2 2.

Více

Rozdělení svalových tkání: kosterní svalovina (příčně pruhované svaly) hladká svalovina srdeční svalovina (myokard)

Rozdělení svalových tkání: kosterní svalovina (příčně pruhované svaly) hladká svalovina srdeční svalovina (myokard) Fyziologie svalstva Svalstvo patří ke vzrušivým tkáním schopnost kontrakce a relaxace veškerá aktivní tenze a aktivní pohyb (cirkulace krve, transport tráveniny, řeč, mimika, lidská práce) 40% tělesné

Více

Charakteristika složky 3) cytochrom-c NADH-Q-reduktasa cytochrom-c- oxidasa ubichinon cytochromreduktasa

Charakteristika složky 3) cytochrom-c NADH-Q-reduktasa cytochrom-c- oxidasa ubichinon cytochromreduktasa 8. Dýchací řetězec a fotosyntéza Obtížnost A Pomocí následující tabulky charakterizujte jednotlivé složky mitochondriálního dýchacího řetězce. SLOŽKA Pořadí v dýchacím řetězci 1) Molekulový typ 2) Charakteristika

Více

Energie fotonů je předávána molekulám chlorofylu A, který se zachyceným fotonem excituje (uvolní se energeticky bohatý elektron).

Energie fotonů je předávána molekulám chlorofylu A, který se zachyceným fotonem excituje (uvolní se energeticky bohatý elektron). Otázka: Fotosyntéza a biologické oxidace Předmět: Biologie Přidal(a): Ivana Černíková FOTOSYNTÉZA = fotosyntetická asimilace: Jediný proces, při němž vzniká v přírodě kyslík K přeměně jednoduchých látek

Více

Konsultační hodina. základy biochemie pro 1. ročník. Přírodní látky Úvod do metabolismu Glykolysa Krebsův cyklus Dýchací řetězec Fotosynthesa

Konsultační hodina. základy biochemie pro 1. ročník. Přírodní látky Úvod do metabolismu Glykolysa Krebsův cyklus Dýchací řetězec Fotosynthesa Konsultační hodina základy biochemie pro 1. ročník Přírodní látky Úvod do metabolismu Glykolysa Krebsův cyklus Dýchací řetězec Fotosynthesa Přírodní látky 1 Co to je? Cukry (Sacharidy) Organické látky,

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická oblast Odborná biologie, část biologie organismus

Více

Mitochondrie Buněčné transporty Cytoskelet

Mitochondrie Buněčné transporty Cytoskelet Přípravný kurz z biologie Mitochondrie Buněčné transporty Cytoskelet 5. 11. 2011 Mgr. Kateřina Caltová Mitochondrie Mitochondrie semiautonomní organely vlastní mtdna, vlastní proteosyntetický aparát a

Více

14. Fyziologie rostlin - fotosyntéza, respirace

14. Fyziologie rostlin - fotosyntéza, respirace 14. Fyziologie rostlin - fotosyntéza, respirace Metabolismus -přeměna látek a energií (informací) -procesy: anabolický katabolický autotrofie Anabolismus heterotrofie Autotrofní organismy 1. Chemoautotrofy

Více

FOTOSYNTÉZA. soubor chemických reakcí,, probíhaj v rostlinách a sinicích. z CO2 a vody jediný zdroj kyslíku ku pro život na Zemi

FOTOSYNTÉZA. soubor chemických reakcí,, probíhaj v rostlinách a sinicích. z CO2 a vody jediný zdroj kyslíku ku pro život na Zemi Fotosyntéza FOTOSYNTÉZA soubor chemických reakcí,, probíhaj hajících ch v rostlinách a sinicích ch zachycení a využit ití sluneční energie k tvorbě složitých chemických sloučenin z CO2 a vody jediný zdroj

Více

Inovace profesní přípravy budoucích učitelů chemie

Inovace profesní přípravy budoucích učitelů chemie Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

Svalová tkáň, kontraktilní aparát, mechanismus kontrakce

Svalová tkáň, kontraktilní aparát, mechanismus kontrakce Svalová tkáň, kontraktilní aparát, mechanismus kontrakce Ústav pro histologii a embryologii Předmět: Histologie a embryologie 1, B01131, obor Zubní lékařství Datum přednášky: 22.10.2013 Svalová tkáň má

Více

Základy buněčné biologie

Základy buněčné biologie Maturitní otázka č. 8 Základy buněčné biologie vypracovalo přírodozpytné sympózium LP, AM & DK na konferenci v Praze, 1. Máje 2014 Buňka (cellula) je nejmenší známý útvar, který je schopný všech životních

Více

Otázka: Základní děje na buněčné úrovni. Předmět: Biologie. Přidal(a): Growler. - příjem látek buňkou

Otázka: Základní děje na buněčné úrovni. Předmět: Biologie. Přidal(a): Growler. - příjem látek buňkou Otázka: Základní děje na buněčné úrovni Předmět: Biologie Přidal(a): Growler - příjem látek buňkou difúze prostá usnadněná transport endocytóza pinocytóza fagocytóza - výdej látek buňkou difúze exocytóza

Více

FOTOSYNTÉZA. Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_07_BI1

FOTOSYNTÉZA. Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_07_BI1 FOTOSYNTÉZA Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_07_BI1 Fotosyntéza (z řec. phos, photós = světlo) je anabolický děj probíhající u autotrofních organismů (řasy,

Více

DÝCHÁNÍ. uložená v nich fotosyntézou, je z nich uvolňována) Rostliny tedy mohou po určitou dobu žít bez fotosyntézy

DÝCHÁNÍ. uložená v nich fotosyntézou, je z nich uvolňována) Rostliny tedy mohou po určitou dobu žít bez fotosyntézy Dýchání 2/38 DÝCHÁNÍ Asimiláty vzniklé v rostlinných buňkách fotosyntézou mají různé funkce: stavební, zásobní, enzymatické aj. Zásobní látky jsou v případě potřeby využívány (energie, uložená v nich fotosyntézou,

Více

FOTOSYNTÉZA. Princip, jednotlivé fáze

FOTOSYNTÉZA. Princip, jednotlivé fáze FOTOSYNTÉZA Princip, jednotlivé fáze FOTOSYNTETICKÉ PIGMENTY - chlorofyl a modrozelený - chlorofyl b žlutozelený + karoteny, xantofyly žluté a oranžové zbarvení CHLOROFYL a, b CHLOROFYL a - nejdůležitější

Více

BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA:

BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA: BUNĚČ ĚČNÁ STAVBA ŽIVÝCH ORGANISMŮ KLÍČOVÁ SLOVA: Prokaryota, eukaryota, viry, bakterie, živočišná buňka, rostlinná buňka, organely buněčné jádro, cytoplazma, plazmatická membrána, buněčná stěna, ribozom,

Více

Praktické cvičení č. 11 a 12 - doplněno

Praktické cvičení č. 11 a 12 - doplněno Praktické cvičení č. 11 a 12 - doplněno Téma: Metabolismus eukaryotické buňky Pomůcky: pracovní list, učebnice botaniky Otázky k opakování: Co je anabolismus a co je katabolisimus? Co jsou enzymy a jak

Více

MITÓZA V BUŇKÁCH KOŘÍNKU CIBULE

MITÓZA V BUŇKÁCH KOŘÍNKU CIBULE Cvičení 6: BUNĚČNÝ CYKLUS, MITÓZA Jméno: Skupina: MITÓZA V BUŇKÁCH KOŘÍNKU CIBULE Trvalý preparát: kořínek cibule obarvený v acetorceinu V buňkách kořínku cibule jsou viditelné různé mitotické figury.

Více

pátek, 24. července 15 BUŇKA

pátek, 24. července 15 BUŇKA BUŇKA ŽIVOČIŠNÁ BUŇKA mitochondrie ribozom hrubé endoplazmatické retikulum cytoplazma plazmatická membrána mikrotubule lyzozom hladké endoplazmatické retikulum Golgiho aparát jádro jadérko chromatin volné

Více

1 (2) CYTOLOGIE stavba buňky

1 (2) CYTOLOGIE stavba buňky 1 (2) CYTOLOGIE stavba buňky Buňka základní stavební a funkční jednotka všech živých organismů. (neexistuje život mimo buňku!) buňky se liší tvarem i velikostí - záleží při tom hlavně na jejich funkci.

Více

- metabolismus soubor chemických reakcí probíhajících v živých organismech a mezi organismy a jejich životním prostředím

- metabolismus soubor chemických reakcí probíhajících v živých organismech a mezi organismy a jejich životním prostředím Otázka: Obecné rysy metabolismu Předmět: Chemie Přidal(a): Bára V. ZÁKLADY LÁTKOVÉHO A ENERGETICKÉHO METABOLISMU - metabolismus soubor chemických reakcí probíhajících v živých organismech a mezi organismy

Více

Sacharidy a polysacharidy (struktura a metabolismus)

Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy Živočišné tkáně kolem 2 %, rostlinné 85-90 % V buňkách rozličné fce: Zdroj a zásobárna energie (glukóza, škrob, glykogen) Výztuž a ochrana

Více

DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal

DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal DYNAMICKÁ BIOCHEMIE Daniel Nechvátal :: www.gymzn.cz/nechvatal Energetický metabolismus děje potřebné pro zabezpečení života organismu ANABOLISMUS skladné reakce, spotřeba E KATABOLISMUS rozkladné reakce,

Více

Biosyntéza sacharidů 1

Biosyntéza sacharidů 1 Biosyntéza sacharidů 1 S a c h a r id y p o tr a v y (š k r o b, g ly k o g e n, sa c h a r o sa, a j.) R e z e r v n í p o ly sa c h a r id y J in é m o n o sa c h a r id y Trávení (amylásy - sliny, pankreas)

Více

Stavba dřeva. Základy cytologie. přednáška

Stavba dřeva. Základy cytologie. přednáška Základy cytologie přednáška Buňka definice, charakteristika strana 2 2 Buňky základní strukturální a funkční jednotky živých organismů Základní charakteristiky buněk rozmanitost (diverzita) - např. rostlinná

Více

Struktura a funkce biomakromolekul

Struktura a funkce biomakromolekul Struktura a funkce biomakromolekul KBC/BPOL 3. Enzymy a proteinové motory Ivo Frébort Enzymová katalýza Mechanismy enzymové katalýzy o Ztráta entropie při tvorbě komplexu ES odestabilizace komplexu ES

Více

Látky jako uhlík, dusík, kyslík a. z vnějšku a opět z něj vystupuje.

Látky jako uhlík, dusík, kyslík a. z vnějšku a opět z něj vystupuje. KOLOBĚH LÁTEK A TOK ENERGIE Látky jako uhlík, dusík, kyslík a voda v ekosystémech kolují. Energii se do ekosystémů dostává z vnějšku a opět z něj vystupuje. Základní podmínky pro život na Zemi. Světlo

Více

Katabolismus - jak budeme postupovat

Katabolismus - jak budeme postupovat Katabolismus - jak budeme postupovat I. fáze aminokyseliny proteiny polysacharidy glukosa lipidy Glycerol + mastné kyseliny II. fáze III. fáze ETS itrátový cyklus yklus trikarboxylových kyselin, Krebsův

Více

Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách

Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách Buňka Historie 1655 - Robert Hooke (1635 1703) - použil jednoduchý mikroskop k popisu pórů v řezu korku. Nazval je, podle podoby k buňkám včelích plástů, buňky. 18. - 19. St. - vznik buněčné biologie jako

Více

1- Úvod do fotosyntézy

1- Úvod do fotosyntézy 1- Úvod do fotosyntézy Prof. RNDr. Petr Ilík, Ph.D. KBF a CRH, PřF UP FS energetická bilance na povrch Země dopadá 2/10 10 energie ze Slunce z toho 30% odraz do kosmu 47% teplo 23% odpar vody 0.02% pro

Více

FOTOSYNTÉZA. CO 2 a vody. - soubor chemických reakcí. - probíhá v rostlinách a sinicích. - zachycení a využití světelné energie

FOTOSYNTÉZA. CO 2 a vody. - soubor chemických reakcí. - probíhá v rostlinách a sinicích. - zachycení a využití světelné energie Fotosyntéza FOTOSYNTÉZA - soubor chemických reakcí - probíhá v rostlinách a sinicích - zachycení a využití světelné energie - tvorba složitějších chemických sloučenin z CO 2 a vody - jediný zdroj kyslíku

Více

PŘEHLED OBECNÉ HISTOLOGIE

PŘEHLED OBECNÉ HISTOLOGIE PŘEDMLUVA 8 1. ZÁKLADY HISTOLOGICKÉ TECHNIKY 9 1.1 Světelný mikroskop a příprava vzorků pro vyšetření (D. Horký) 9 1.1.1 Světelný mikroskop 9 1.1.2 Zásady správného mikroskopování 10 1.1.3 Nejčastější

Více

Vymezení biochemie moderní vědní obor, který chemickými metodami zkoumá biologické děje (bios = řecky život) spojuje chemii s biologií poznatky velmi

Vymezení biochemie moderní vědní obor, který chemickými metodami zkoumá biologické děje (bios = řecky život) spojuje chemii s biologií poznatky velmi Základy biochemie Vymezení biochemie moderní vědní obor, který chemickými metodami zkoumá biologické děje (bios = řecky život) spojuje chemii s biologií poznatky velmi významné pro medicínu a farmacii

Více

ení k tvorbě energeticky bohatých organických sloučenin

ení k tvorbě energeticky bohatých organických sloučenin Fotosyntéza mimořádně významný proces, využívající energii slunečního zářenz ení k tvorbě energeticky bohatých organických sloučenin (sacharidů) z jednoduchých anorganických látek oxidu uhličitého a vody

Více

fce jater: (chem. továrna, jako 1. dostává všechny látky vstřebané GIT) METABOLICKÁ (jsou metabolicky nejaktivnější tkání v těle)

fce jater: (chem. továrna, jako 1. dostává všechny látky vstřebané GIT) METABOLICKÁ (jsou metabolicky nejaktivnější tkání v těle) JÁTRA ústřední orgán intermed. metabolismu, vysoká schopnost regenerace krevní oběh játry: (protéká 20% veškeré krve, 10-30% okysl.tep.krve, která zajišťuje výživu buněk, zbytek-portální krev) 1. funkční

Více

Současná formulace: Buňka je minimální jednotka, která vykazuje všechny znaky živých soustav

Současná formulace: Buňka je minimální jednotka, která vykazuje všechny znaky živých soustav Buněčná teorie: Počátky formování: 1840 a dále, Jan E. Purkyně myšlenka o analogie rostlinného a živočišného těla (buňky zrníčka) Schwann T. Virchow R. nové buňky vznikají pouze dělením buněk již existujících

Více

- význam: ochranná funkce, dodává buňce tvar. jádro = karyon, je vyplněné karyoplazmou ( polotekutá tekutina )

- význam: ochranná funkce, dodává buňce tvar. jádro = karyon, je vyplněné karyoplazmou ( polotekutá tekutina ) Otázka: Buňka a dělení buněk Předmět: Biologie Přidal(a): Štěpán Buňka - cytologie = nauka o buňce - rostlinná a živočišná buňka jsou eukaryotické buňky Stavba rostlinné (eukaryotické) buňky: buněčná stěna

Více

Metabolismus krok za krokem - volitelný předmět -

Metabolismus krok za krokem - volitelný předmět - Metabolismus krok za krokem - volitelný předmět - Vladimíra Kvasnicová pracovna: 411, tel. 267 102 411, vladimira.kvasnicova@lf3.cuni.cz informace, studijní materiály: http://vyuka.lf3.cuni.cz Sylabus

Více

Biochemie, Makroživiny. Chemie, 1.KŠPA

Biochemie, Makroživiny. Chemie, 1.KŠPA Biochemie, Makroživiny Chemie, 1.KŠPA Biochemie Obor zabývající se procesy uvnitř organismů a procesy související s organismy O co se biochemici snaží Pochopit, jak funguje život Pochopit, jak fungují

Více

- pro učitele - na procvičení a upevnění probírané látky - prezentace

- pro učitele - na procvičení a upevnění probírané látky - prezentace Číslo projektu Název školy Autor Tematická oblast CZ.1.07/1.5.00/34.0743 Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková Biologie 10 obecná biologie Organely eukaryotní buňky Ročník 1. Datum tvorby

Více

umožňují enzymatické systémy živé protoplazmy, nezbytný je kyslík,

umožňují enzymatické systémy živé protoplazmy, nezbytný je kyslík, DÝCHÁNÍ ROSTLIN systém postupných oxidoredukčních reakcí v živých buňkách, při kterých se z organických látek uvolňuje energie, která je zachycena jako krátkodobá energetická zásoba v ATP, umožňují enzymatické

Více

Buňka buňka je základní stavební a funkční jednotka živých organismů

Buňka buňka je základní stavební a funkční jednotka živých organismů Buňka - buňka je základní stavební a funkční jednotka živých organismů - je pozorovatelná pouze pod mikroskopem - na Zemi existuje několik typů buněk: 1. buňky bez jádra (prokaryotní buňky)- bakterie a

Více

sloučeniny C, H, O Cukry = glycidy = sacharidy staré názvy: uhlohydráty, uhlovodany, karbohydráty

sloučeniny C, H, O Cukry = glycidy = sacharidy staré názvy: uhlohydráty, uhlovodany, karbohydráty sloučeniny C, H, O Cukry = glycidy = sacharidy staré názvy: uhlohydráty, uhlovodany, karbohydráty triviální (glukóza, fruktóza ) vědecké (α-d-glukosa) organické látky nezbytné pro život hlavní zdroj energie

Více

Metabolismus. Source:

Metabolismus. Source: Source: http://www.roche.com/ http://www.expasy.org/ Metabolismus Source: http://www.roche.com/sustainability/for_communities_and_environment/philanthropy/science_education/pathways.htm Metabolismus -

Více

Didaktické testy z biochemie 2

Didaktické testy z biochemie 2 Didaktické testy z biochemie 2 Metabolismus Milada Roštejnská Helena Klímová br. 1. Schéma metabolismu Zažívací trubice Sacharidy Bílkoviny Lipidy Ukládány jako glykogen v játrech Ukládány Ukládány jako

Více

Univerzita Karlova v Praze, 1. lékařská fakulta

Univerzita Karlova v Praze, 1. lékařská fakulta Univerzita Karlova v Praze, 1. lékařská fakulta Tkáň svalová. Obecná charakteristika hladké a příčně pruhované svaloviny (kosterní a srdeční). Funkční morfologie myofibrily. Mechanismus kontrakce. Stavba

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Transport elektronů a oxidativní fosforylace

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Transport elektronů a oxidativní fosforylace Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Transport elektronů a oxidativní fosforylace Oxidativní fosforylace vs. fotofosforylace vyvrcholení katabolismu Všechny oxidační degradace

Více

Buňka. Autor: Mgr. Jitka Mašková Datum: Gymnázium, Třeboň, Na Sadech 308

Buňka. Autor: Mgr. Jitka Mašková Datum: Gymnázium, Třeboň, Na Sadech 308 Buňka Autor: Mgr. Jitka Mašková Datum: 27. 10. 2012 Gymnázium, Třeboň, Na Sadech 308 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0702 VY_32_INOVACE_BIO.prima.02_buňka Škola Gymnázium, Třeboň, Na Sadech

Více

Prokaryota x Eukaryota. Vibrio cholerae

Prokaryota x Eukaryota. Vibrio cholerae Živočišná buňka Prokaryota x Eukaryota Vibrio cholerae Dělení živočišných buněk: buňky jednobuněčných organismů (volně žijící samostatné jednotky) buňky mnohobuněčných větší morfologické i funkční celky

Více

Cukry (Sacharidy) Sacharidy a jejich metabolismus. Co to je?

Cukry (Sacharidy) Sacharidy a jejich metabolismus. Co to je? Sacharidy a jejich metabolismus Co to je? Cukry (Sacharidy) Organické látky, které obsahují karbonylovou skupinu (C=O) a hydroxylové skupiny (-O) vázané na uhlících Aldosy: karbonylová skupina na konci

Více

METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI

METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI Obsah Formy organismů Energetika reakcí Metabolické reakce Makroergické sloučeniny Formy organismů Autotrofní x heterotrofní organismy Práce a energie Energie

Více

Buněčný metabolismus. J. Vondráček

Buněčný metabolismus. J. Vondráček Buněčný metabolismus J. Vondráček Téma přednášky BUNĚČNÝ METABOLISMUS základní dráhy energetického metabolismu buňky a dynamická podstata jejich regulací glykolýza, citrátový cyklus a oxidativní fosforylace,

Více

Číslo a název projektu Číslo a název šablony

Číslo a název projektu Číslo a název šablony Číslo a název projektu Číslo a název šablony DUM číslo a název CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT SSOS_ZE_1.05

Více

Anotace: Materiál je určen k výuce přírodopisu v 6. ročníku ZŠ. Seznamuje žáky se základní stavbou rostlinné a živočišné buňky.

Anotace: Materiál je určen k výuce přírodopisu v 6. ročníku ZŠ. Seznamuje žáky se základní stavbou rostlinné a živočišné buňky. Anotace: Materiál je určen k výuce přírodopisu v 6. ročníku ZŠ. Seznamuje žáky se základní stavbou rostlinné a živočišné buňky. Materiál je plně funkční pouze s použitím internetu. základní projevy života

Více

4. Eukarya. - plastidy, mitochondrie, cytoskelet, vakuola

4. Eukarya. - plastidy, mitochondrie, cytoskelet, vakuola 4. Eukarya - plastidy, mitochondrie, cytoskelet, vakuola Plastidy odděleny dvojitou membránou (u vyšších rostlin) - bezbarvé leukoplasty (heterotrofní pletiva) funkce: zásobní; proteinoplasty, - barevné

Více

Efektivní adaptace začínajících učitelů na požadavky školské praxe

Efektivní adaptace začínajících učitelů na požadavky školské praxe Mezipředmětová integrace tělesná výchova biologie chemie Biochemie pro učitele tělesné výchovy III.: aerobní metabolismus (průvodce studiem) Filip Neuls, Ph.D. Průvodce studiem Z pohledu tělesného zatížení

Více

Projekt realizovaný na SPŠ Nové Město nad Metují

Projekt realizovaný na SPŠ Nové Město nad Metují Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 Přírodovědné předměty Hana Gajdušková 1 Viry

Více

Cytologie. Přednáška 2010

Cytologie. Přednáška 2010 Cytologie Přednáška 2010 Buňka 1.Velikost 6 200 µm, průměrná velikost 20um 2. JÁDRO a CYTOPLAZMA 3. ORGANELY (membránové) 4. CYTOPLAZMATICKÉ INKLUZE 5. CYTOSKELET 6. Funkční systémy eukaryotické buňky:

Více

od eukaryotické se liší svou výrazně jednodušší stavbou a velikostí Dosahuje velikosti 1-10 µm. Prokaryotní buňku mají bakterie a sinice skládá se z :

od eukaryotické se liší svou výrazně jednodušší stavbou a velikostí Dosahuje velikosti 1-10 µm. Prokaryotní buňku mají bakterie a sinice skládá se z : Otázka: Buňka Předmět: Biologie Přidal(a): konca88 MO BI 01 Buňka je základní stavební jednotka živých organismů. Je to nejmenší živý útvar schopný samostatné existence a rozmnožování. Každá buňka má svůj

Více

12-Fotosyntéza FRVŠ 1647/2012

12-Fotosyntéza FRVŠ 1647/2012 C3181 Biochemie I 12-Fotosyntéza FRVŠ 1647/2012 Petr Zbořil 10/6/2014 1 Obsah Fotosyntéza, světelná fáze. Chlorofyly, struktura fotosyntetického centra. Komponenty přenosu elektronů (cytochromy, chinony,

Více

II. SVALOVÁ TKÁŇ PŘÍČNĚ PRUHOVANÁ (ŽÍHANÁ) = svalovina kosterní

II. SVALOVÁ TKÁŇ PŘÍČNĚ PRUHOVANÁ (ŽÍHANÁ) = svalovina kosterní II. SVALOVÁ TKÁŇ PŘÍČNĚ PRUHOVANÁ (ŽÍHANÁ) = svalovina kosterní základní stavební jednotkou svalové vlákno, představující mnohojaderný útvar (soubuní) syncytiálního charakteru; vykazuje příčné pruhování;

Více

Ukázky z pracovních listů z biochemie pro SŠ A ÚVOD

Ukázky z pracovních listů z biochemie pro SŠ A ÚVOD Ukázky z pracovních listů z biochemie pro SŠ A ÚVD 1) Doplň chybějící údaje. Jak se značí makroergní vazba? Kolik je v ATP makroergních vazeb? Co je to ADP Kolik je v ADP makroergních vazeb 1) Pojmenuj

Více

Přehled energetického metabolismu

Přehled energetického metabolismu Přehled energetického metabolismu Josef Fontana EB 40 Obsah přednášky Důležité termíny energetického metabolismu Základní schéma energetického metabolismu Hlavní metabolické dráhy energetického metabolismu

Více

Autor: Katka Téma: fyziologie (fotosyntéza) Ročník: 1.

Autor: Katka  Téma: fyziologie (fotosyntéza) Ročník: 1. Fyziologie Fotosyntéza Celým názvem: fotosyntetická asimilace - vznikla při ohrožení, že již nebudou anorg. l. rostliny začaly dělat fotosyntézu v atmosféře vzrostl počet O 2 = 1. energetická krize - nejdůležitější

Více