Klima měst a ve střední Evropě a globální změna klimatu (Urban climate in Central European cities and global climate change)

Podobné dokumenty
11. PROJEKCE BUDOUCÍHO KLIMATU NA ZEMI

Rozvoj adaptačních strategií ve městech s využitím přírodě blízkých řešení

Jak se projevuje změna klimatu v Praze?

Možné dopady klimatické změny na dostupnost vodních zdrojů Jaroslav Rožnovský

5. hodnotící zpráva IPCC. Radim Tolasz Český hydrometeorologický ústav

Tepelný ostrov v Praze a možnosti zmírnění jeho negativních dopadů. Michal Žák (Pavel Zahradníček) Český hydrometeorologický ústav

Vliv emisí z měst ve střední Evropě na atmosférickou chemii a klima

Odhad vývoje agroklimatických podmínek v důsledku změny klimatu

Průběh průměrných ročních teplot vzduchu (ºC) v období na stanici Praha- Klementinum

Mezinárodní konference Mikroklima a mezoklima krajinných struktur a antropogenních prostředí Skalní mlýn, Moravský kras,

Klimatické modely a scénáře změny klimatu. Jaroslava Kalvová, MFF UK v Praze

Vliv Mosteckého jezera na teplotu a vlhkost vzduchu a rychlost větru. Lukáš Pop Ústav fyziky atmosféry v. v. i. AV ČR

KLIMATICKÝ DOWNSCALING. ZOO76 Meteorologie a klimatologie Petr Kolář PřF MU Brno

Práce s větším objemem meteorologických a klimatologických dat v rámci projektů ve vědeckém centru CzechGlobe

Vliv města na interakce mezi klimatem a kvalitou ovzduší

Klimatické podmínky výskytů sucha

Pasivní domy v době klimatické změny

Mapování urbanizovaných ploch a úrovně jejich zastavění

Projevy klimatické změny v západních Čechách (podle sekulární stanice Klatovy v období )

Možné dopady měnícího se klimatu na území České republiky

NEDÁVNÉ HORKÉ VLNY VE STŘEDNÍ EVROPĚ V KONTEXTU KLIMATICKÉ ZMĚNY

Hodnocení zranitelnosti hl.m. Prahy vůči dopadům klimatické změny

Monitoring a předpověď zemědělského sucha

Hodnocení roku 2013 a monitoring sucha na webových stránkách ČHMÚ možnosti zpracování, praktické výstupy

ZMĚNA KLIMATU - HROZBA A PŘÍLEŽITOST PRO ČESKÉ ZEMĚDĚLSTVÍ

Změna klimatu a české zemědělství

Rozvoj adaptačních strategií ve městech s využitím přírodě blízkých řešení

Český hydrometeorologický ústav Pobočka České Budějovice Antala Staška 32, PSČ REGIONÁLNÍ PŘEDPOVĚDNÍ PRACOVIŠTĚ

Změna klimatu dnes a zítra

Pravděpodobný vývoj. změn n klimatu. a reakce společnosti. IPCC charakteristika. Klimatický systém m a. Teplota jako indikátor. lní jev.

Zranitelnost vůči dopadům klimatické změny v Praze

Sucho a klimatický vývoj v ČR

DATA Z ATMOSFÉRICKÉ A EKOSYSTÉMOVÉ STANICE KŘEŠÍN U PACOVA VYUŽITELNÁ PŘI STUDIU CHEMICKÝCH PROCESŮ V ATMOSFÉŘE

Seminář I Teplota vzduchu & Městský tepelný ostrov..

SOUČASNÉ TENDENCE VYBRANÝCH METEOROLOGICKÝCH PRVKŮ VE STŘEDNÍ A JIHOVÝCHODNÍ EVROPĚ

Jan Pretel Český hydrometeorologický ústav. Workshop on Atopic Dermatitis Hvězdárna a púlanetarium hl.m.prahy

Verifikace modelu Symos. Mgr. Ondřej Vlček Mgr. Zdenka Chromcová, Ph.D. Oddělení modelování a expertiz Úsek ochrany čistoty ovzduší, ČHMÚ

Indikátory zranitelnosti vůči dopadům změny klimatu

Pozemský klimatický systém a jeho proměny

Hodnocení úrovně koncentrace PM 10 na stanici Most a Kopisty v průběhu hydrologické rekultivace zbytkové jámy lomu Most Ležáky 1

Koncentrace tuhých částic v ovzduší v bezesrážkových epizodách

Vyjádření k oznámení záměru Letiště Vodochody pro zjišťovací řízení v rámci posuzování vlivů na životní prostředí (EIA)

METODIKA PRO PŘEDPOVĚĎ EXTRÉMNÍCH TEPLOT NA LETECKÝCH METEOROLOGICKÝCH STANICÍCH AČR

Rozvoj metodiky tvorby map znečištění. Jan Horálek Pavel Kurfürst, Nina Benešová, Roman Juras, Jana Ďoubalová

Metody hodnocení sucha v lesních porostech. Kateřina N. Hellebrandová, Vít Šrámek, Martin Hais

Věc: Posouzení potenciálních environmentálních dopadů silniční dopravy v lokalitě Spořilov po zavedení NEZ v Praze v roce 2015

Hodnocení let 2013 a 2014 a monitoring sucha na webových stránkách ČHMÚ možnosti zpracování, praktické výstupy

Změny bonitačního systému půd v kontextu změny klimatu. Bonitační systém v ČR. Využití bonitačního systému. Struktura kódu BPEJ - ČR

Změny klimatu a jejich vliv na zajištění krmivové základny

Klimatická změna minulá, současná i budoucí: Příčiny a projevy

Změny klimatu a jejich vliv na zajištění krmivové základny

Zkušenosti s využíváním dat Urban Atlasu pro potřeby územního plánování v Praze

Rozvoj urbánních adaptačních strategií s využitím ekosystémově založených přístupů

Využití profilových manuálních a automatických měření sněhu pro výpočet zásob vody ve sněhové pokrývce

Klimatická změna, zemědělství a produkce potravin , Poslanecká Sněmovna Parlamentu ČR, Praha

SOUBOR ADAPTAČNÍCH OPATŘENÍ VE MĚSTĚ BRNĚ

Podpora prostorového rozhodování na příkladu vymezení rizika geografického sucha

Podnebí a počasí všichni tyto pojmy známe

VEGETAČNÍ BARIÉRY Mgr. Jan Karel

VLIV METEOROLOGICKÝCH PODMÍNEK NA KONCENTRACE PM 2,5 V BRNĚ ( ) Dr. Gražyna Knozová, Mgr. Robert Skeřil, Ph.D.

Adaptační strategie statutárního města Ostravy na dopady a rizika vyplývající ze změny klimatu

Simulace letního a zimního provozu dvojité fasády

Petr Štěpánek, Pavel Zahradníček, Aleš Farda, Petr Skalák, Miroslav Trnka, Jan Meitner, Kamil Rajdl. Ústav výzkumu globální změny AV ČR, v.v.

Vláhová bilance jako ukazatel možného zásobení krajiny vodou

aktivita A0705 Metodická a faktografická příprava řešení regionálních disparit ve fyzické dostupnosti bydlení v ČR

Současné možnosti dálkového průzkumu pro hodnocení heterogenity půd a porostů na orné půdě

Tvorba map znečišťujících látek se zaměřením na benzo(a)pyren. Jan Horálek

Vláhová bilance krajiny jako ukazatel možného zásobení. podzemní vody

Pražský tepelný ostrov

Monitoring sucha z pohledu ČHMÚ. RNDr. Filip Chuchma Český hydrometeorologický ústav pobočka Brno

Očekávané projevy změny klimatu a vliv na budovy v ČR

Dopady změny klimatu na zemědělství

Využití dat Urban Atlas v oblasti územního plánování v Praze

Hodnocení lokálních změn kvality ovzduší v průběhu napouštění jezera Most

GIS ANALÝZA VLIVU DÁLNIČNÍ SÍTĚ NA OKOLNÍ KRAJINU. Veronika Berková 1

ROZPTYLOVÉ PODMÍNKY A JEJICH VLIV NA KONCENTRACI AEROSOLOVÝCH ČÁSTIC PM 10 V LOKALITĚ MOSTECKÉHO JEZERA

Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země

Představení tématu. Viktor Třebický CI2, o. p. s.

Výstupy regionálních klimatických modelů na území ČR pro období 2015 až 2060

Martin Hanel DOPADY ZMĚN KLIMATU NA NEDOSTATKOVÉ OBJEMY A MOŽNOST JEJICH KOMPENZACE POMOCÍ TECHNICKÝCH OPATŘENÍ

Růstové modely a agrometeorologický monitoring

Dálkový průzkum Země DPZ. Zdeněk Janoš JAN789

VEGETAČNÍ BARIÉRY Mgr. Jan Karel

Výstupy regionálních klimatických modelů na území ČR pro období 2015 až 2060

Porovnání výsledků viditelnosti získaných z topografických map a z digitálních modelů reliéfu

Matematické modelování proudění podzemních vod a jeho využití ve vodárenské praxi

Měření znečištění ovzduší, transhraniční přenos

Popis metod CLIDATA-GIS. Martin Stříž

Mapování Země z vesmíru (úvod do metod dálkového průzkumu Země) Petr Dobrovolný Geografický ústav přírodovědecké fakulty Masarykovy univerzity v Brně

MÍSTNÍ KLIMATICKÉ ZÓNY PŘI STUDIU SOUČASNÉHO A BUDOUCÍHO KLIMATU MĚSTA

Souhrn nejdůležitějších výstupů Studie vlivu klimatu projektu GRACE

UNIVERZÁLNÍ TEPELNÝ KLIMATICKÝ INDEX UTCI PRVNÍ TESTY

Centrum pro rozvoj dopravních systémů

Geografie. Tematické okruhy státní závěrečné zkoušky. bakalářský studijní obor

Sledování a hodnocení kvality ovzduší v ČR

Management lesů význam pro hydrologický cyklus a klima

Příloha P.1 Mapa větrných oblastí

METODIKA PRÁCE S TOUTO APLIKACÍ

INFORMAČNÍ SYSTÉMY PRO KRIZOVÉ ŘÍZENÍ POUŽITÍ INFORMAČNÍCH SYSTÉMŮ PRO MODELOVÁNÍ A SIMULACE KRIZOVÝCH SITUACÍ - T5 ING.

Vliv protiprašných sítí na dispersi pevných částic v blízkosti technologického celku (matematické modelování - předběžná zpráva)

Transkript:

Informační den projektu: Klima měst a ve střední Evropě a globální změna klimatu (Urban climate in Central European cities and global climate change) Petr Dobrovolný 1,2, Jan Geletič 1,2 1 Centrum výzkumu globální změny AV ČR, v. v. i., Brno 2 Geografický ústav přírodovědecké fakulty Masarykovy univerzity Brno, 9. září 2015 International Visegrad Fund Standard Grant No. 21410222

Obsah prezentace 1. Základní informace o projektu 2. Motivace 3. Klima Brna současný stav poznání 4. Data a metody 5. Modelování současného klimatu 6. Budoucí klima 7. Shrnutí, výhledy,

O projektu Projekt je realizován v letech 2014 2015 za účasti: - Jagiellonian University, Institute of Geography and Spatial Management, Krakow, Poland (koordinátor) - Institute of Meteorology and Water Management, Branch Krakow, Poland - Centrum výzkumu globální změny AV ČR, v. v. i., Brno, Česká republika - Palackého univerzita, Olomouc, Česká republika - University of Szeged, Hungary - Slovenský hydrometeorologický ústav, Bratislava, Slovenská republika - Central Institute for Meteorology and Geodynamics, Vienna, Austria

Projekt je financován Visegrádským fondem jako standardní Grant No. 21410222 http://www.klimat.geo.uj.edu.pl/urbanclimate/

Cíle projektu Hlavním cílem je zvýšit obecné povědomí o možných dopadech změny klimatu na životní podmínky obyvatel měst ve střední Evropě Jednou z hlavních aktivit projektu je predikce nárůstu tzv. teplotní zátěže vyjádřené např. počtem letních či tropických dní ve Vídni (Rakousko, 1,8 mil. obyvatel) a ve čtyřech městech reprezentujících státy Visegrádské skupiny: Krakow (Polsko), 760,000 obyvatel Brno (Česká republika), 380,000 obyvatel Bratislava (Slovenská republika), 500,000 obyvatel Szeged (Maďarsko), 170,000 obyvatel

Motivace Globální změna klimatu: změna průměrné globální teploty vzduchu při povrchu v období let 2016-2035 v porovnání s obdobím 1986-2005 bude pravděpodobně v rozsahu 0,3 C až 0,7 C Zvýšení průměrné globální teploty v období 2081-2100 v porovnání s obdobím let 1986-2005 bude pravděpodobně v rozsahu 0,3 C až 1,7 C (RCP2.6), 2,6 C až 4,8 C (RCP8.5) (IPCC 2013) Je velmi pravděpodobné, že se zvýší frekvence a intenzita hydrometeorologických extrémů Průměrná roční teplota vzduchu na území ČR (Brázdil et al. 2012) v období 1856 2005 a odhady lineárního trendu pro posledních 150, 100, 50 a 25 roků.

Motivace Vyšší teplotní zátěž a nárůst extremity počasí mohou v následujících letech negativně ovlivňovat především životní podmínky ve městech s přímými dopady na kvalitu života či zdravotní stav obyvatelstva Důkladnější poznání příčin a mechanismů, které formují klima měst je nezbytné pro zmírňování negativních dopadů změny klimatu a realizaci případných adaptačních opatření a) b) Kolísání ročního počtu letních (a) a tropických (b) dnů na stanici Brno, Tuřany v období 1961 2010 doplněné hodnotami shlazenými Gaussovým filtrem pro 10 let a odhadem lineárního trendu

Současný stav poznání klimatu Brna

Poloha meteorologických stanic použitých pro sestavení kompilované brněnské teplotní řady (1 Dominikánské náměstí, 2 klášter Minoritů, 3 Staré Brno, nemocnice u Svaté Anny, 4 Staré Brno, Pekařská ulice č. 100, 5 Staré Brno, augustiniánský klášter, 6 c. k. vysoká škola technická, 7 Pisárky, vodárna, 8 Pisárky, Květná, 9 Tuřany, letiště) a kolísání průměrné roční a sezónní teploty vzduchu v Brně v období 1800 2010.

Účelová síť meteorologických stanic v Brně a okolí, geografická databáze a Prostorová diferenciace průměrných denních teplot vzduchu (T avg ), teplotních minim (T min ) a intenzity tepelného ostrova (ΔT) v oblasti Brna ve dnech s radiačním režimem počasí v letním období; teploty jsou vyjádřeny v odchylkách od průměrné denní teploty vzduchu studovaného území a vypočteny na základě měření na šestnácti stanicích účelové sítě ve 41 dnech s radiačním režimem počasí v létě r. 2009 až 2011.

a) c) b) 8. 7. 2011 31. 1. 2012 Trasa mobilních měření (a), variabilita teploty vzduchu podél trasy měření (b) a typická prostorová diferenciace teploty vzduchu v Brně a okolí během první poloviny noci v letním období za radiačního typu počasí (c); teploty jsou vyjádřeny v podobě odchylek od průměru.

Průměrné povrchové teploty (LST) vybraných kategorií základních druhů povrchů a odhad intenzity povrchového tepelného ostrova Brna definované jako rozdíl mezi teplotami základních druhů povrchů (LST) charakterizujících městskou zástavbu a přirozené povrchy (1 obytná zástavba, 2 průmyslové a transportní plochy, 3 parky a rekreační plochy, 4 zemědělská půda, 5 lesy a sady, 6 vodní plochy). Variabilita povrchových teplot (LST) střední části Brna sestavená na základě termálního snímku LANDSAT TM 5 pořízeného 15. června 2006. Hodnoty LST jsou vyjádřeny barevnými odstíny, černými obrysy je znázorněn rozsah zástavby. Letecké snímky prezentují charakter zástavby s nejvyššími hodnotami: 1 Výstaviště, 2 průmyslová zóna JV od centra města; 3 areál bývalé Zbrojovky; 4 areál bývalé Královopolské strojírny.

Shrnutí dosavadních poznatků Při radiačním režimu počasí jsou městské stanice v průběhu celého dne teplejší než stanice venkovské, teplotní rozdíl je největší v nočních a v poledních hodinách v létě, kdy přesahuje 2,5 C Z analýzy mobilních měření vyplývá, že v létě za jasného a klidného počasí může být teplota vzduchu během noci v centru Brna až o 5 C vyšší než v okolí města Při typickém radiačním režimu počasí mohou být hodnoty povrchových teplot (LST) zastavěných ploch v průměru až o 7 C teplejší než okolní krajina

Všechny provedené analýzy identifikují v prostoru Brna jako nejteplejší stejné oblasti; ty jsou typické nejvyšší hustotou zástavby a minimálním podílem vegetačního krytu Jaké jsou možnosti predikce do budoucna?

Klimatické modely Globální klimatické modely (GCM) (~100 km), GCM + IPCC scenáre Regionální klimatické modely (RCM) (~10 km) REMO, CCLM, RCM, WRF Modely městského klimatu (~100 m) e.g. MUKLIMO_3

Metody Model MUKLIMO_3 Vstupní data Metoda CUBOID u Validace modelu

1. MUKLIMO_3 Mikroskaliges Urbanes Klima-Modell, 3-dim Vyvinut Německou a Rakouskou meteorologickou službou (DWD a ZAMG). Nehydrostatický mikroklimatický model Simuluje pole teploty vzduchu, pole vlhkosti vzduchu a vektorové 3D pole rychlosti a směru větru Horizontální rozlišení: 100 m (je možné upravit), vertikální: 10-100 m (vyšší blíže k zemskému povrchu)

1. MUKLIMO_3 Model zohledňuje následující parametry budov: hustota zástavby, poměr rozlohy zdí k objemu budovy, průměrná výška budov V případě absence vstupní vrstvy se data parametrizují na základě Land Use Table viz dále Atmosférické srážky, oblačnost a antropgenní produkce tepla se v modelu nezohledňují Interakce vegetace - atmosféra jsou modelovány na 3 hladinách; interakcie půda atmosféra na 15 hladinách

MUKLIMO - aplikace Příklad výstupu pro oblast Frankfurtu nad Mohanem Mapa teploty vzduchu a horizontílního směru větru ve výšce 5 metrů nad povrchem v čase 2:00 CEST. Proudění NE, T c.max = 25 C, rh c,min = 42%, v c,min = 0.7 m s -1 (Fruh et al. 2011)

Vstupy modelu DEM Land Use (LCZ) Land Use Table (vlastnosti) MUKLIMO Počáteční stav atmosféry

Výstupy modelu Teplota vzduchu Vertikální profil teploty vzduchu Vlhkost vzduchu MUKLIMO Vertikální profil vlhkosti vzduchu Rychlost a směr větru Fyzikální parametry (NDVI, WAI, LAI, emisivita, atd.) Vertikální profil rychlosti a směru větru

Vstupní podmínky: 1D (vertikální) profil atmosféry z venkovské meteorologicé stanice Výstupy: prostorová diferenciace teploty vzduchu, vlhkosti vzduchu, směru a rychlosti větru pro zvolený časový interval (max. 24 hodin) Vnitřní struktura pixelu definovaná pomocí Land Use Table (Zuvela-Aloise et al. 2014)

2. Vstupní data Meteorologická měření ze stanice Brno, Tuřany Údaje o druzích povrchů zpracované podle jednotné metodiky do podoby tzv. místních klimatických zón (Local Climate Zones - LCZ), která umožňuje porovnání výsledků mezi městy. Jednotlivé třídy LCZ byly vyčleněny prostřednictvím metodiky WUDAPT (World Urban Database and Access Portal Tools), do které vstupují družicové snímky Landsat 8 Pro každou LCZ byly nastaveny stejné obecné hodnoty popisných atributů, které vstupují do modelu

Vídeň 140-580 m n.m. grid: 316x247x39 Krakov 145-460 m n.m. grid: 389x275x39 Bratislava 120-450 m n.m. grid: 160x160x39 Brno 200-525 m n.m. grid: 250x250x39 LCZ classification: Stewart and Oke, 2012; Method: Bechtel and Daneke, 2012 Szeged 45-145 m n.m. grid: 213x181x25

LCZ Brno Stewart et al. 2014

3. Metoda CUBOID Model MUKLIMO dokáže předpovídat jen na 12 hodin dopředu, proto byla vyvinuta metoda MUKLIMO CUBOID, která na podkladu polí z modelu MUKLIMO statisticky předpovídá chování klimatu na 30 let dopředu Na rozdíl od klasického modelu MUKLIMO dokáže model MUKLIMO CUBOID počítat dlouhé časové řady za relativně krátký čas Jedná se o 3D interpolaci Násobně náročnější na výkon než MUKLIMO

Postup metody CUBOID 1. Meteorologická data z referenční stanice (Brno- Tuřany) umístěné ve zkoumaném městě (nebo v jeho blízkosti) determinuje rozsah hodnot průměrné denní teploty vzduchu (T), relativní vlhkosti (r H ) a rychlosti větru (v), v případě, že průměrná teplota vzduchu je 25 C, která definuje nadměrnou tepelnou zátěž 135 315 NE and SW 15,0 25,0 T 40,0 80,0 r H 0,3 3,0 v

2. Hraniční hodnoty jsou využity pro výpočet 8 kombinací parametrů (T, r H a v), které definují rozsah povětrnostní situace; tyto hraniční hodnoty mohou být zobrazeny jako hrany CUBOIDu (krychle)

3. Pro každou hraniční hodnotu se provede simulace prostřednictvím modelu MUKLIMO. Pro každý bod v rámci CUBOIDu je možné vypočítat hodnoty T, r H a v pro zvolený časový interval. Simulace jsou vypočteny pro dva směry větru (celkem 16 simulací). 4. Následně jsou spočítané hodnoty meteorologických prvků T, r H a v pro jakýkoli stav systému v rámci CUBOIDu. Výpočet probíhá prostřednictvím interpolace pomocí vážených průměrů.

5. Následně je možné prostřednictvím numerických předpovědí pro jednotlivé klimatologické scenáře vypočítat sérii průměrných denních hodnot T, r H, a v pro 30-leté časové řady. 6. CUBOID generuje tyto charakteristické dny: Charakteristický den Summer Day Hot Day Beergarden Day Summer night Day Tropical night Day Warm night Day Podmínka T max 25 C T max 30 C T 20 20 C T 22 20 C T min 20 C T min 17 C

Dosavadní výstupy Modelování teplotního pole a pole větru pro všechna města a pro tzv. idealizovaný případ, kdy může vznikat teplotní zátěž pro obyvatelstvo Referenční meze (vrchol CUBOIDu 101): Průměrná denní teplota vzduchu: 25 C Průměrná denní relativní vlhkost vzduchu: 40% Průměrná rychlost větru: 3 m s -1 Převládající směr proudění: NW

Počet letních dnů v Brně

Simulace pole teploty vzduchu a pole větru, ideální případ, 16 h GMT Vídeň Brno

Krakov Bratislava Szeged

Další možné výstupy Absolutní vlhkost vzduchu (110, 18:00 a 24:00)

Další možné výstupy Relativní vlhkost vzduchu (110, 18:00 a 24:00)

Další možné výstupy Teplota vzduchu (110, 18:00 a 24:00)

Další možné výstupy Minimální teplota vzduchu (110, 24:00 a 8:00)

Další možné výstupy Maximální teplota vzduchu (110, 10:00 a 24:00)

Další možné výstupy Vertikální profil teploty vzduchu (110, 18:00 a 24:00)

Další možné výstupy Příčný profil teploty vzduchu (110, 18:00)

4. Validace modelu Počet letních dní na stanici v Brně-Tuřanech 90 80 70 60 50 40 30 20 10 0 reálná data příměstská 1961-1990 1971-2000 1981-2010

Charakteristický den Verze CUBOIDu 1961-1990 1971-2000 1981-2010 Summer Day reálná data 46,5 50,9 53,8 Hot Day reálná data 7,3 9,4 11,1 Beergarden Day reálná data No Data No Data No Data Summer night Day reálná data No Data No Data No Data Tropical night Day reálná data 0,2 0,5 0,8 Warm night Day reálná data 5,7 8,4 11,8 Summer Day příměstská 69,3 74,6 80,8 Hot Day příměstská 12,7 14,8 19,1 Beergarden Day příměstská 108,6 112,2 118,3 Summer night Day příměstská 71,0 74,4 80,4 Tropical night Day příměstská 1,0 1,3 2,0 Warm night Day příměstská 8,4 9,3 11,2

Budoucí klima Modelování budoucího klimatu je založeno na použití různých scénářů, které odhadují budoucí úroveň emisí (SRES) či koncentrací (RCP) radiačně aktivních plynů. Poslední shrnující zpáva IPCC (2013) využívá tzv. RCP Radiation concentration Pathway. Jedná se o mitigation scénáře, které již předpokládají jistá politická rozhodnutí, kterých bude zapotřebí k dosažení předpokládaných emisních úrovní. Různé RCP dopovídají různým úrovním radiačního působení pro r. 2100 a to v porovnání s před-industriálním obdobím. Tedy RCP8.5 představuje zvýšení radiačního působení na konci 21. století o 8,5 W.m -2. Naproti tomu např. RCP2.6 je označovaný jako peak-and-decay scenario a předpokládá, že radiační působení dosáhne vrcholu již v polovině tohoto století a poté poklesne na nominální úroveň radiačního působení 2,6 W.m -2.

Budoucí klima scénáře

Budoucí klima V prezentovaném projektu byly použity klimatické scénáře RCP2.6, RCP4.5 a RCP8.5, které byly výsledkem projektu EURO-CORDEX - Coordinated Downscaling Experiment - European Domain 1971-2000 2021-2050 2071-2100 IPCC scénář RCP8.5 průměrný roční počet letních dní (T max 25 C), průměr z ansámblu jedenácti regionálních modelů

Budoucí městské klima Na základě výše uvedených scénářů je možné simulovat prostorové rozložení teploty vzduchu, relativní vlhkosti vzduchu, směru a rychlosti větru pro jednotlivá města Výpočet CUBOIDu lze nastavit tak, aby bylo možné modelovat např. průměrný roční počet dní s teplotou nad 25 C pro jednotlivé scénáře Celkem byly použity 2 sady scénářů po 2 scénářích s RCP2.6, 14 scénářů s RCP4.5 a 14 scénářů s RCP8.5 (dohromady 60 simulací)

Počet letních dnů v Brně, RCP4.5 Období MIN MAX AVG 1971-2000 10,5 83,4 37,2 (100 %) 2021-2050 23,9 93,6 51,8 (140 %) 2071-2100 27,4 102,1 59,3 (160 %)

Počet letních dnů v Brně, RCP8.5 Období MIN MAX AVG 1971-2000 10,5 83,4 37,2 (100 %) 2021-2050 17,8 93,2 52,3 (140 %) 2071-2100 40,7 121,3 81,4 (220 %)

Shrnutí Model dokáže simulovat základní rysy prostorového rozložení několika charakteristik, které vyjadřují potenciální teplotní zátěž v prostoru Brna Oblasti s nejvyšší teplotní zátěží se shodují s dosavadními poznatky získanými z reálných měření Simulace budoucího klimatu ukazují na významný nárůst teplotní zátěže (nárůst počtu letních dnů o 40 % v polovině 21. stol.) Výsledky pro Brno jsou srovnatelné s obdobnými studiemi ze zahraničí (Vídeň, Frankfurt) Nezbytná je další validace modelu a úprava vstupních dat (LCZ)

Výhled Vývoj vlastní metody pro klasifikovanými LCZ Bechtelova metoda Geletič-Lehnert metoda

Srovnání metod LCZ 1 2 3 4 5 6 8 9 10 A B C D E F G Geletic, Lehnert 0,10 0,39 0,15 0,59 2,29 3,04 1,36 4,71 0,62 34,34 7,91 0,56 41,05 0,85 1,50 0,55 Bechtel 0,03 0,31 2,19 0,18 5,64 5,01 2,44 5,72 0,07 28,08 3,86 11,09 25,12 0,82 9,11 0,32 45,00 40,00 35,00 30,00 25,00 20,00 15,00 10,00 5,00 0,00 1 2 3 4 5 6 8 9 10 A B C D E F G Geletic, Lehnert Bechtel

Výhled validace modelu POČET LETNÍCH DNÍ 120,0 100,0 80,0 60,0 40,0 20,0 0,0 Průměr všechny roky Průměr jen celé roky MUKLIMO_1x1_1 MUKLIMO_3x3_1 MUKLIMO_5x5_1 MUKLIMO_1x1_2 MUKLIMO_3x3_2 MUKLIMO_5x5_2 ALA_BOTA ALA_FILO ALA_MEND ALA_SCHO ALA_HROZ TURA TURA-KVAZI

Výhled adaptační strategie Modelové simulace s pozměněnými parametry druhů povrchů what if scénáře zelené město zelené střechy bílé město modré město šedé město

Výhled adaptační strategie Analogové scénáře Charakter zástavby na území současného katastrálního území Brna v 70. letech 19. století a 40. letech 20. století

Děkujeme za pozornost

Výhled Vliv okolí na teplotní poměry lokality optimalizace prostorového rozlišení modelu POČET LETNÍCH DNÍ BOTA FILO MEND SCHO HROZ TURA TURA-KVAZI Průměr všechny roky 79,4 82,4 75,7 76,7 81,0 53,8 53,8 Průměr jen celé roky 80,0 88,0 83,6 90,8 82,6 53,8 53,8 MUKLIMO_1x1_1 98,6 95,8 99,3 97,9 106,4 80,8 45,1 MUKLIMO_3x3_1 96,5 97,3 97,9 96,8 101,4 77,5 47,8 MUKLIMO_5x5_1 96,4 98,1 96,2 96,6 99,3 76,7 49,8 MUKLIMO_1x1_2 101,8 97,4 102,7 101,4 110,1 79,1 25,2 MUKLIMO_3x3_2 98,6 99,7 99,2 100,0 103,1 72,9 28,8 MUKLIMO_5x5_2 98,0 100,6 96,4 100,0 100,7 71,4 31,2

Diskuze Jaká je optimální velikost pixelu pro LCZ? 100 m 200 m 300 m

Diskuze Je substruktura pixelu v LandUse table pro jednotlivé kategorie vypovídající?