Systematická mineralogie I

Podobné dokumenty
Přednáška č. 6. Systematická mineralogie. Vybrané minerály z třídy: Sulfidů, halogenidů a karbonátů

Přednáška č. 5. Systematický přehled nejdůležitějších minerálů ze skupin prvků, sulfidů, halogenidů, oxidů a hydroxidů, karbonátů, sulfátů, fosfátů.

Přednáška č. 7. Systematická mineralogie. Vybrané minerály z třídy: Oxidů, karbonátů, sulfátů a fosfátů

Přírodopis 9. Přehled minerálů SIRNÍKY

Mineralogie. pro Univerzitu třetího věku VŠB-TUO, HGF. 3. Systematická mineralogie. Prvky až fosfáty

PRVKY. Kovy skupiny mědi Cu, Ag, Au

Přírodopis 9. Přehled minerálů PRVKY

HORNINA: Agregáty (seskupení) různých minerálů, popř. organické hmoty, od minerálů se liší svojí látkovou a strukturní heterogenitou

Úvod do praktické geologie I

Základy geologie pro geografy František Vacek

Přírodopis 9. Přehled minerálů UHLIČITANY, SÍRANY, FOSFOREČNANY. Mgr. Jan Souček Základní škola Meziměstí. 15. hodina

SULFIDY Sulfidy jsou sloučeniny S 2- s kovy (jedním nebo více).

PRVKY. Kovy skupiny mědi Cu, Ag, Au

Mikroskopie minerálů a hornin

Horniny a minerály II. část. Přehled nejdůležitějších minerálů

MINERALOGICKÁ SOUSTAVA I

SULFÁTY (SÍRANY) - krystaluje v soustavě rombické, na krátce sloupcovitých krystalech vyvinuta prizmata a pinakoidy. Agregáty jsou zrnité.

Fyzikální vlastnosti: štěpnost dle klence, tvrdost 3.5, hustota 3 g/cm 3. Je různě zbarven - bílý, šedý, naţloutlý, má skelný lesk.

HÁDANKY S MINERÁLY. Obr. č. 1

2. MINERALOGICKÁ TŘÍDA- SULFIDY:

PETROLOGIE =PETROGRAFIE

Přednáška č. 5. Optická krystalografie, metody určování optických vlastností, polarizační mikroskop.

Mineralogie systematická /soustavná/

1. PRVKY kovové nekovové ZLATO (Au) TUHA (GRAFIT) (C)

Horniny a minerály II. část. Přehled nejdůležitějších minerálů

Testové otázky ke zkoušce z předmětu Mineralogie

Inovace profesní přípravy budoucích učitelů chemie

- Jsou to sloučeniny halových prvků s dalším prvkem. Za halové prvky - halogeny jsou označovány

OXIDY A HYDROXIDY. Systém oxidů - starší učebnice (např. Slavík a kol. 1974) řadí oxidy podle rostoucího podílu kyslíku ve vzorci

Vnitřní geologické děje

Mineralogie I. Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty Osnova přednášky: 1. Strukturní a chemický základ pro klasifikaci

Mineralogie. 2. Vlastnosti minerálů. pro Univerzitu třetího věku VŠB-TUO, HGF. Ing. Jiří Mališ, Ph.D. tel. 4171, kanc.

Mineralogie 4. Přehled minerálů -oxidy

Číslo klíčové aktivity: V/2

Cyklus přednášek z mineralogie pro Jihočeský mineralogický klub. Jihočeský Mineralogický Klub

4. MINERALOGICKÁ TŘÍDA OXIDY. - jedná se o sloučeniny kyslíku s jiným prvkem (křemíkem, hliníkem, železem, uranem).

Oxidy. Křemen. Křišťál bezbarvá odrůda křemene. Růženín růžová odrůda. křemene. Záhněda hnědá odrůda křemene. Ametyst fialová odrůda.

Oceánské sedimenty jako zdroj surovin

Anotace: Materiál je určen k výuce přírodopisu v 9. ročníku ZŠ. Seznamuje žáky s fyzikálními vlastnostmi nerostů. Materiál je plně funkční pouze s

Přírodopis 9. Fyzikální vlastnosti nerostů. Mgr. Jan Souček Základní škola Meziměstí. 8. hodina

Kovy V rámci kovů rozlišujeme krystalochemicky příbuzné skupiny kovů.

Mineralogický systém skupina V - uhličitany

SOLI A JEJICH VYUŽITÍ. Soli bezkyslíkatých kyselin Soli kyslíkatých kyselin Hydrogensoli Hydráty solí

Mineralogie II. Prof. RNDr. Milan Novák, CSc. Mineralogický systém silikáty II. Osnova přednášky: 1. Cyklosilikáty 2. Inosilikáty pyroxeny 3.

5. MINERALOGICKÁ TŘÍDA UHLIČITANY

SULFIDY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: Ročník: osmý

Kovy a metody jejich výroby

Cyklus přednášek z mineralogie pro Jihočeský mineralogický klub. Jihočeský Mineralogický Klub

MINERÁLY I Minerály I

Přechodné prvky, jejich vlastnosti a sloučeniny

Mineralogický systém skupina I - prvky

Chemické složení Země

SOROSILIKÁTY Málo významná skupina, mají nízký stupeň polymerizace, dva spojené tetraedry Si2O7, někdy jsou ve struktuře přítomny SiO4 i Si2O7.

SYSTEMATICKÁ MINERALOGIE

Registrační číslo projektu: CZ.1.07/1.4.00/ Název projektu: Investice do vzdělání - příslib do budoucnosti

Inovace profesní přípravy budoucích učitelů chemie

MINERÁLY (NEROSTY) PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

Mineralogie I Prof. RNDr. Milan Novák, CSc.

ZÁKLADY GEOLOGIE. Úvod přednáška 1. RNDr. Aleš Vaněk, Ph.D. č. dveří: 234, FAPPZ

Poznávání minerálů a hornin. Cvičení 2 Fyzikální vlastnosti minerálů

NEROSTY. Anotace: Materiál je určen k výuce přírodovědy v 5. ročníku ZŠ. Seznamuje žáky se základními nerosty a jejich využitím.

PŘECHODNÉ PRVKY - II

Podle vlastností rozdělujeme chemické prvky na. Periodická soustava prvků

1. Co je to mineralogie = věda o minerálech (nerostech), podmínkách jejich vzniku, stavbě a chemickém složení

Hlavní činitelé přeměny hornin. 1. stupeň za teploty 200 C a tlaku 200 Mpa. 2.stupeň za teploty 400 C a tlaku 450 Mpa

Výuková pomůcka pro cvičení ze geologie pro lesnické a zemědělské obory. Úvod do mineralogie

Opakování hydroxidy, halogenidy, oxidy; sulfidy Druh učebního materiálu: Prezentace s interaktivitou Časová náročnost:

VÝUKOVÝ MATERIÁL zpracovaný v rámci projektu

Geologie-Minerály I.

K O V Y. 4/5 všech prvků

PERIODICKÁ TABULKA. Všechny prvky v tabulce můžeme rozdělit na kovy, nekovy a polokovy.

Nejrozšířenější kov V přírodě se vyskytuje v sloučeninách - jsou to zejména magnetovec a krevel Ve vysokých pecích se z těchto rud,koksu a přísad

Optické vlastnosti horninotvorných minerálů IV

EU peníze středním školám digitální učební materiál

Laboratorní práce č. 4

Určování hlavních horninotvorných minerálů

Fyzikální a chemické vlastnosti minerálů. Cvičení 1GEPE + 1GEO1

Přednáška č. 4. Reálné krystaly přirozený vývin krystalových tvarů (habitus minerálů, zákonité a nahodilé krystalové srůsty).

Malý atlas minerálů. jméno minerálu chemické složení zařazení v systému minerálů. achát

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější.

5. Třída - karbonáty

NEROSTNÉ ZDROJE PRO JEDNOTLIVÉ PRVKY

VLASTNOSTI KOVŮ. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: Ročník: osmý

Stavba Země. pro poznání stavby Země se používá výzkum šíření = seizmických vln Země má tři hlavní části kůra,, jádro

5. Nekovy sı ra. 1) Obecná charakteristika nekovů. 2) Síra a její vlastnosti

Mineralogie systematická /soustavná/

Střední škola obchodu, řemesel a služeb Žamberk

135GEMZ Jan Valenta Katedra geotechniky K135 (5. patro budova B) Místnost B502

Moravský PísekP. Číslo projektu: : CZ.1.07/1.4.00/ Název. ové aktivity: Název DUM: : Nerosty prvky, halogenidy, sulfidy (prezentace)

VY_32_INOVACE_05_PYRIT_27

Optické vlastnosti horninotvorných minerálů I

EU peníze středním školám digitální učební materiál

Geologie Horniny vyvřelé a přeměněné

Fylosilikáty: tetraedry [SiO 4 ] 4- vázány do dvojrozměrných sítí

NEROSTY A HORNINY. Anotace: Materiál je určen k výuce přírodovědy ve 4. ročníku ZŠ. Seznamuje žáky se základními znaky a rozdělením nerostů a hornin.

SOLI. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: Ročník: osmý

Přednáška č. 8. Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur.

Environmentální geomorfologie

Nabídka vzorků hornin a minerálů pro účely školní výuky

Mineralogický systém skupina VIII - křemičitany

Transkript:

Systematická mineralogie I Princip mineralogického systému. Systematický přehled nejdůležitějších minerálů ze skupiny prvků, sulfidů, halogenidů, oxidů, karbonátů, sulfátů a fosfátů. Základní vlastnosti těchto minerálů, možnosti jejich technického použití a významu, jejich ložiska a výskyty.

Klasifikace minerálů 1735 C. Linné - první mineralogický systém založený na fyzikálních vlastnostech nerostů 1750 A. Cronstedt - mineralogický systém podle chemických vlastností 1854 J. D. Dana - chemický systém minerálů, téměř nezměněn vydržel 100 let Od dvacátých let 20. století se rozvíjí rentgenometrie krystalů a na jejím základě se provádí určování krystalových struktur minerálů. Čistě chemický systém se mění na tzv. krystalochemický. 1941 H. Strunz - jediný úplný krystalochemický systém.

Klasifikace minerálů Principy členění minerálů podle Strunzova krystalochemického systému. Minerály rozděleny do deseti tříd podle příbuznosti aniontů nebo aniontových skupin. Minerály se stejnou aniontovou skupinou mají podobné vlastnosti a vyskytují se ve stejných nebo podobných paragenezích. Třídy se dělí na oddělení podle poměru hlavních prvků, přítomnosti cizích aniontů nebo podle krystalové struktury. Oddělení mohou být rozdělena na minerální řady nebo skupiny minerálů podle podobného složení. Nejnižším stupněm dělení je minerální druh.

Klasifikace minerálů Nejpoužívanější klasifikace minerálů zahrnuje tyto třídy (zjednodušený přehled): 1. Třída prvků 2. Třída sulfidů 3. Třída halogenidů 4. Třída oxidů a hydroxidů 5. Třída karbonátů 6. Třída borátů 7. Třída sulfátů 8. Třída fosfátů 9. Třída silikátů 10. Třída organických minerálů

Klasifikace minerálů 9. Třída silikátů obsahuje nejvíce minerálních druhů, silikáty tvoří větší část zemské kůry, jednotlivá oddělení se vyčleňují na základě struktury. a) oddělení nesosilikátů b) oddělení sorosilikátů c) oddělení cyklosilikátů d) oddělení inosilikátů e) oddělení fylosilikátů f) oddělení tektosilikátů

Třída prvků Kromě vzácných plynů se vyskytuje v elementárním stavu ještě dalších asi 20 prvků. Tyto pak rozdělujeme na kovy, polokovy a nekovy. Kovy mají jednoduchou strukturu a rozdělují se do tří skupin: 1. skupina zlata zlato, stříbro, měď a olovo 2. skupina platiny - platina, palladium, iridium a osmium 3. skupina železa - v závislosti na podílu Ni Kromě toho se v kovovém stavu nacházejí rtuť, tantal, cín a zinek. Polokovy se dělí do dvou skupin: 1. arsen, antimon, bismut 2. selen, telur Důležitými nekovy jsou síra a uhlík (grafit, diamant).

ZLATO Au Symetrie: kubická Forma výskytu: Krystaly jsou vzácné, častější jsou drátky, valounky nebo plíšky s charakteristickými trojúhelníčkovými výrůstky Obsah v zemské kůře: 0,004 ppm Diagnostické znaky: vysoká hustota, vysoký lesk, měkký a kujný kov Zlato - velikost 5 cm, lokalita Brusson (zdroj Lapis)

ZLATO Fyzikální vlastnosti: T 2,5-3; H 19,3; typický je hákovitý lom, intenzivně žlutá barva. Složení a struktura: Téměř vždy je přítomna příměs stříbra, nad 20% Ag se mluví o elektru. Ryzost se vyjadřuje jako počet dílků zlata z 1000. Vznik a výskyt: Nejčastěji se vyskytuje na hydrotermálních křemenných žilách spjatých s granitickými horninami Velkou skupinu tvoří hydrotermální a metamorfogenní ložiska zlata. Častá je kombinace zlata s Sb minerály. Velmi častá a z ekonomického hlediska výhodná jsou rozsypová ložiska, vzniklá zvětrávacími pochody. Naleziště: Roudný u Vlašimi (křemenné žíly), Mokrsko (granitické horniny), Zlaté Hory, Zlatý Chlum (metamorfogenní ložiska), Otava (rýžoviště), Witwatersrand - Jihoafrická republika (zlatonosné metakonglomeráty) Použití: Platidlo, zubní lékařství, elektroprůmysl, kosmický výzkum, šperkařství.

STŘÍBRO Ag Symetrie: kubická Forma výskytu: Velmi vzácné krystaly, zpravidla deformované nebo jednosměrně vyvinuté. Nejčastější formou výskytu jsou drátky, dendritické agregáty, povlaky nebo celistvé masy. Fyzikální vlastnosti: T 2,5-3; H = 10,5; hákovitý lom, barva stříbrně bílá, oxidací rychle černá. V dalších vlastnostech se velmi podobá zlatu (např. vodivost, kujnost). Stříbro - drátek 1 cm lokalita Příbram (zdroj Ďuďa, 1990)

STŘÍBRO Složení a struktura: Stříbro běžně obsahuje příměsi Au, mohou být přítomny i další prvky jako Bi, Cu, Hg nebo Sb. Vznik a výskyt: Stříbro je téměř výhradně vázáno na hydrotermální rudní žíly. Naleziště: Příbram, Vrančice (polymetalické rudní žíly), Jáchymov, Freiberg (asociace Ag- As-Bi-Co-Ni), Kongsberg v Norsku (asociace Ag-Co-Ni). Použití: fotografický průmysl, elektronika, šperkařství Diagnostické znaky: forma výskytu (drátky), kujnost, za čerstva bílá barva, povrch rychle oxiduje (černá)

MĚĎ Cu Symetrie: kubická. Forma výskytu: Kubické krystaly jsou zpravidla zdeformované, většinou se vyskytuje ve větvených agregátech, drátcích nebo plíšcích. Fyzikální vlastnosti: H = 8,9; T = 2,5-3; na čerstvém lomu měděně červená barva, oxidací tmavne. Ostatní fyzikální vlastnosti jsou přibližně shodné se zlatem a stříbrem. Plíšek mědi lokalita Nandraž (zdroj Herčko, 1984)

MĚĎ Složení a struktura: Běžné jsou příměsi Ag, Bi, Hg nebo As. Vznik a výskyt: Ryzí měď je vázána na bazická efuzíva, převážně bazalty nebo je vázána na zvětrávací zóny Cu ložisek, kde se vyskytuje spolu s kupritem. Naleziště: Hořejší jezero v Michiganu (bazalty), Studenec u Nové Paky, Lomnice nad Popelkou (bazalty), Borovec u Štěpánova (vznik na Cu ložisku)

MĚĎ Použití: elektrické dráty, plechy, výroba bronzu Diagnostické znaky: charakteristická forma výskytu a fyzikální vlastnosti (kujnost)

SÍRA S Symetrie: rombická Forma výskytu: Krystaly bývají dipyramidální méně tabulkovité. Agregáty jsou celistvé, krápníkovité, práškovité nebo ledvinité. Fyzikální vlastnosti: H = 2,05; T = 1,5-2,5; barva nejčastěji žlutá, může být i zelená nebo červená. Štěpnost nedokonalá, lesk diamantový, vryp bílý, je křehká. Síra je špatným vodičem tepla a rozpadá se po zahřátí v dlani. Vznik a výskyt: Je to nerost spojený s vulkanickou činností - sráží se z vulkanických par. V sedimentech může vznikat síra redukcí sulfátů za přispění baktérií. V neposlední řadě vzniká síra spalováním pyritem bohatého uhlí (požáry slojí, hořící haldy). Naleziště: Radvanice u Trutnova, Oslavany, Kladno (hořící haldy), Tarnobrzeg - Polsko (sedimentární ložisko), Sicílie (sopečný původ).

SÍRA Použití: Základní surovina chemického průmyslu. Používá se pro např. výrobu insekticidů a při vulkanizaci gumy. Síra ze Sicílie, velikost 2 cm (zdroj Ďuďa, 1990)

SÍRA Výskyt elementární síry v přírodě: nadloží solných dómů v USA a Mexiku - síra vznikla redukcí usazenin síranů působením anaerobních baktérií. sedimentární ložiska v Polsku - síra vznikla redukcí usazenin síranů působením anaerobních baktérií. ložiska sopečného původu - vznik sublimací ze sopečných plynů. Těžba: Do počátku 20. století převážně z ložisek sopečného původu. Vyskytují se v hornatých oblastech kolem Tichého oceánu (Amerika, Nový Zéland, Filipíny, Kamčatka) a v oblasti Středozemního moře (Sicílie, Turecko). Dnes se z těchto ložisek těží v Japonsku, Turecku, Mexiku, Jižní Americe. Z nadloží solných dómů se síra těží v Louisianě, Texasu a Mexiku. Sedimentární (evaporitní) ložiska se vyskytují v jihovýchodním Polsku (Tarnobrzeg) a na Ukrajině, Uzbekistánu, Tadžikistánu, Iráku.

SÍRA Síra jako prvek se nezískává jen z ložisek elementární krystalické síry, ale i z jiných nerostů.

UHLÍK C Vyskytuje se ve dvou modifikacích - grafit a diamant. Symetrie: diamant je kubický, grafit je hexagonální, Forma výskytu: Diamant krystaluje převážně v osmibokých krystalech, časté jsou zaoblené plochy a hrany. U grafitu jsou krystaly vzácné, zpravidla se vyskytuje v jemně až hrubě lupenitých agregátech nebo celistvých či zemitých masách. Diamant, krystal 0,5 cm, Kimberley (zdroj Ďuďa, 1990)

UHLÍK C Fyzikální vlastnosti: Diamant H = 3,5; T = 10; dokonalá štěpnost podle (111), diamantový až mastný lesk (závisí na kvalitě ploch), vysoký index lomu se silnou disperzí světla (tzv. oheň ). Barva je zpravidla šedá, světle žlutavá nebo je bezbarvý. Grafit H = 2,1-2,3; T = 1; dokonalá štěpnost podle (001), lesk zemitý až polokovový. Barva je černá, snadno se otírá. Dobře vodí teplo a elektrický proud.

UHLÍK C Obě polymorfní modifikace mohou existovat za běžných pokojových podmínek. Důvodem je, že rekonstruktivní přeměna mezi oběma probíhá velmi pomalu. Diamant vzniká za vysokých tlaků, grafit vzniká zpravidla z organických látek postupným zvyšováním teploty. Vznik a výskyt: Primárním zdrojem diamantů jsou kimberlitové trubky (peridotity ze spodní části kontinentální kůry). Díky značné odolnosti přecházejí i do náplavů. Výskyty grafitu jsou spjaty převážně s metamorfovanými horninami. Naleziště: Nejznámější naleziště diamantů jsou v JAR, Indii nebo v jakutské oblasti v Rusku. Grafit se u nás vyskytuje v rulách u Velkého Vrbna a v okolí Českého Krumlova.

UHLÍK C Použití: Zlomek diamantů lze využít na šperkařské účely, ostatní těžba je využita k výrobě brusných materiálů nebo řezání skla. Z velké části se ale používají synteticky vyrobené diamanty. Grafit se využívá ve slevárenství jako tavné kelímky, přidává se do olejů a samomazných ložisek, používá se i v elektrotechnice. Diagnostické znaky: Diamant má vysokou tvrdost, grafit je měkký a snadno otiratelný.

Třída sulfidů Převážně rudní minerály, které jsou charakteristické svými fyzikálními vlastnostmi (vysokým leskem a opakností). Obecný vzorec pro tuto třídu minerálů je X m Z n, kde X představuje kovový prvek a Z nekovový prvek. Poměr X : Z se používá i při rozdělení do jednotlivých oddělení.

Některé sulfidické minerály (minerály vytištěné tučně se vyskytují hojně nebo jsou důležité jako rudy)

CHALKOZÍN Cu 2 S Symetrie: Vysokoteplotní fáze nad 105 C je hexagonální, nízkoteplotní pod touto teplotou stabilní monoklinická. Forma výskytu: Tvoří tlustě tabulkovité, dipyramidální nebo sloupcovité krystaly, tabulkovité bývají někdy rýhované na ploše (001). Podle plochy (110) bývá často zdvojčatělý nebo ztrojčatělý. Může pseudomorfovat bornit nebo pyrit. Zpravidla je však kusový v celistvých agregátech nebo v povlacích. Krystal a dvojče chalkozínu; m (110), v (112), c (001), b (010), d (011) (zdroj Klein a Hurlbut, 1993)

CHALKOZÍN Fyzikální vlastnosti: H = 5,8; T = 2,5-3; barva černavě modrošedá na čerstvém lomu s kovovým leskem, který se rychle stává matným a černá. Je křehký, štěpnost (110) velmi nezřetelná. Složení a struktura: Může obsahovat malá množství Fe a Ag. Vznik a výskyt: Může vznikat na Cu bohatých hydrotermálních žilách, většinou je však vázán na cementační zóny sulfidických ložisek různých typů. Typický je v sedimentárních permských ložiscích typu red beds. Naleziště: Vrančice, Jáchymov (rudní žíly), Tsumeb (Namibia), Rio Tinto (oxidační zóna Fe-Cu ložiska, Španělsko), Horní Kalná (podkrkonošské pískovce) Použití: důležitá měděná ruda Diagnostické znaky: barva, tvar některých krystalů

GALENIT PbS Symetrie: kubická Forma výskytu: Krystaly kubického méně kubooktaedrického typu, může dvojčatět podle (111) nebo (114). Běžné jsou zrnité nebo celistvé agregáty. Spojky galenitu, zleva {110} a {111}, {100} a {110}, {100} a {110} (zdroj Slavík, 1974)

GALENIT PbS Fyzikální vlastnosti: H = 7,5; T = 2,5; barva olověně šedá se silným kovovým leskem. Štěpnost dokonalá podle krychle (100), kruchý. Složení a struktura: Tvoří izomorfní řadu se selenidem olova clausthalitem, přítomno je často velké množství jiných prvků jako Ag, Bi, Cd, Te, As a další. Galenit zpravidla obsahuje velké množství inkluzí, takže některé stopové prvky prokázané analýzou nemusí nutně vstupovat do struktury galenitu. Struktura galenitu je typu NaCl. Každý atom Pb je obklopen šesti atomy síry. Lze si to představit jako tělesově centrované kubické buňky atomů S a Pb, posunuté navzájem o 1/4 tělesové úhlopříčky.

GALENIT PbS Velikost krystalů cca 3 cm.

GALENIT PbS Vznik a výskyt: Galenit (často doprovázený sfaleritem) se vyskytuje na hydrotermálních žilách Pb-Zn, na žilách a metasomatických ložiscích mladých pásemných pohoří, je častým sulfidem fluorit - barytových žil, vyskytuje se na ložiscích Pb-Zn vulkanosedimentárního typu. Naleziště: Příbram, Vrančice, Stříbro (hydrotermální žilná ložiska), Harrachov (fluorit - barytové žíly), Mežica (Slovinsko), Tri State - Oklahoma (obě v karbonátových horninách). Použití: Důležitá ruda olova a stříbra, přičemž olovo se používá např. pro výrobu baterií, ve zbrojařském průmyslu, nebo se využívá při ochraně před RTG ionizujícím zářením. Diagnostické znaky: kovový lesk, dokonalá štěpnost

SFALERIT (Fe, Zn)S Symetrie: kubická Forma výskytu: Krystaly zpravidla tetraedrického vzhledu nebo zdvojčatělá podle (111) nebo (112). Kontaktní a penetrační srůsty způsobují rýhování štěpných ploch. Agregáty kusové, jemně až hrubě zrnité. Krystal sfaleritu a dvojčata podle (111); o (111), h (100), d (110), zdroj Ježek, 1932.

SFALERIT (Fe, Zn)S Fyzikální vlastnosti: H = 4,0; T = 3,5-4; barva je závislá na chemickém složení (obsah Fe) od téměř čirých sfaleritů přes žluté, červené, hnědé až k černým. Dokonalá štěpnost podle (110), lesk na krystalech až diamantový. V UV záření jeví různé luminiscenční barvy - modrou, žlutou nebo oranžovou. Složení a struktura: Sfalerit nikdy nebývá čistý, obsahuje poměrně značné množství izomorfních příměsí: Fe, Cd, Mn, Hg, Cu, In, As, Ag a další. Struktura sfaleritu je příbuzná se strukturou diamantu. Atomy Zn jsou obklopeny čtyřmi atomy síry v tetraedrické koordinaci, přičemž Zn atomy tvoří plošně centrovanou kubickou mřížku.

SFALERIT (Fe, Zn)S Vznik a výskyt: Sfalerit často doprovází galenit a i jejich podmínky vzniku jsou podobné, takže se vyskytuje na stejných typech ložisek. Naleziště: Kutná Hora, Příbram, Nová Ves u Rýmařova, Zlaté Hory, Horní Benešov Světová naleziště leží v Kanadě, USA, Austrálii Použití: důležitá ruda zinku( přes 90% Zn se získává ze sfaleritu), kadmia a india. Zinek se využívá při galvanizaci Fe (antikorozní povlaky 35-40% produkce), na výrobu slitin, v elektrických bateriích nebo k výrobě barev (ZnO), skla, emailů, glazur, důležitý biogenní prvek (tělo dospělého člověka obsahuje asi 2 g Zn) Příprava: Ruda se praží na ZnO, který se dále upravuje elektrolyticky nebo se taví s koksem. Přitom získáváme také Cd nebo Pb (rudy PbS a ZnS se často vyskytují společně). Světová produkce Zn je asi 6 mil.tun ročně. Diagnostické znaky: tvar krystalů, dokonalá štěpnost

CHALKOPYRIT CuFeS 2 Symetrie: tetragonální, oddělení tetragonálně disfenoidické Forma výskytu: Krystaly mívají sfenoidický nebo pseudotetraedrický habitus, často deformovaný tvar s rýhovanými plochami. Dvojčata podle (112) nebo (102). Agregáty jsou jemnozrnné nebo celistvé, často zarostlé. Nejběžnější tvary krystalů chalkopyritu (zdroj Bernard, 1992)

CHALKOPYRIT CuFeS 2 Fyzikální vlastnosti: T = 3,5-4; H = 4,1-4,3; barva velmi sytě žlutá, která může nabíhat až do modrofialova. Lesk je kovový, lom nerovný, štěpnost nezřetelná. Složení a struktura: Vytváří pevné roztoky s pyrhotinem v různých poměrech a se sfaleritem je neomezeně mísitelný nad teplotu 450 C. Jeho strukturu lze odvodit od sfaleritu, kdy atomy Zn jsou střídavě nahrazeny atomy Fe a Cu.

CHALKOPYRIT CuFeS 2 Vznik a výskyt: Je to jeden z nejběžnějších rudních minerálů. Při vzniku za vysokých teplot (magmatity, pegmatity) obsahuje odmíšeniny cubanitu a sfaleritu. Ložiska může tvořit odmíšením v bazických intruzívních horninách, zrudňuje kontaktní skarny, je hlavním minerálem ložisek porfyrových rud spjatých s intruzívním vulkanismem, běžný je na polymetalických ložiscích, baryt - sideritových žilách, stratiformních ložiscích a uplatňuje se i v sedimentárních ložiscích. Naleziště: Staré Ransko, Sudbury - Kanada (v bazických magmatitech), Kutná Hora, Příbram, Borovec, Banská Štiavnica (polymetalická ložiska), Použití: důležitá měděná ruda Diagnostické znaky: typická barva, nízká tvrdost

PYRHOTIN FeS Symetrie: hexagonální při teplotách nad 254 C, pro teploty nižší monoklinický. Forma výskytu: Prizmatické hexagonální krystaly jsou vzácné, zpravidla tvoří zrnité nebo celistvé agregáty, často bývá vtroušený. Fyzikální vlastnosti: T = 4; H = 4,6 (závisí na složení); barva je světle až tmavě bronzově hnědá s kovovým leskem. Zvláště monoklinické polymorfy jsou silně magnetické. Složení a struktura: Rovný poměr síry a železa mají pyrhotiny pouze za vysokých teplot ( 400-1190 C). Složení běžného monoklinického pyrhotinu se pohybuje kolem stechiometrie Fe 7 S 8. Časté jsou příměsi niklu.

PYRHOTIN FeS

PYRHOTIN FeS Vznik a výskyt: Pyrhotin vzniká zpravidla za vysokých teplot, proto je charakteristický pro bazické vyvřelé horniny (gabra, diority), dále vzniká na kyzových polymetalických asociacích, objevuje se na siderit - sulfidických žilách, méně častý je ve skarnech a pegmatitech, vzácný je v sedimentech. Naleziště: Staré Ransko, Norilsk - Rusko, Sudbury - Kanada (vše bazické vyvřeliny), Kutná Hora (polymetalická asociace), Měděnec (skarn) Použití: je ruda Ni, těží se zpravidla spolu s minerály Ni, Cu a Pt Diagnostické znaky: významný magnetismus, bronzová barva

CINABARIT HgS Symetrie: nízkoteplotní modifikace pod 344 C hexagonální, vysokoteplotní modifikace kubická, zpravidla se označuje jako metacinabarit Forma výskytu: Krystaly jsou klencové nebo sloupcovité, často zdvojčatělé podle bazální plochy. Agregáty jsou jemně zrnité až zemité, častá je forma povlaků. Krystal rumělky a dvojče podle (0001) (zdroj Ježek, 1932)

CINABARIT HgS Fyzikální vlastnosti: T = 2-2,5; H = 8,09; barva jasně červená s diamantovým leskem na krystalových plochách, agregáty mají lesk slabší. Dokonalá štěpnost. Složení a struktura: Síra může být nahrazována Se nebo Te, Hg může být mírně deficitní, časté jsou mechanické příměsi bitumenů, jílových minerálů a oxidů Fe. Rumělka (1cm krystal) Almaden, Španělsko (Ďuďa, 1990)

CINABARIT HgS Vznik a výskyt: Je nízkoteplotním minerálem, vznikajícím při teplotách kolem 100 C. Největší ložiska jsou na rudních žilách v mladých pásemných pohořích, často v asociaci s Sb a As. Hojné jsou i impregnace ve vápencích a bitumenózních břidlicích. Naleziště: Dědova hora u Komárova (ordovické sedimenty), Horní Luby (ordovické fylity), Nižná Slaná, Rudňany (polymetalické žíly), Almadén (Španělsko), Idria (Slovinsko) Použití: Důležitá ruda rtuti. Ta se využívá v elektrotechnice, stomatologii, při získávání zlata a stříbra. Diagnostické znaky: červená barva, často zemitý charakter, hustota

PYRIT FeS 2 Symetrie: kubická Forma výskytu: Krystaly pyritu se vyskytují až v 60-ti různých krystalových tvarech, z nichž nejběžnější je krychle a pentagondodekaedr. S typickým rýhováním krystalových ploch se setkáváme hlavně u krychle. Typická jsou i dvojčata podle (110) - tzv. železný kříž. Běžně se vyskytuje v kusových, zrnitých nebo vtroušených agregátech. Je častým fosilizačním materiálem. Krystaly pyritu: (a) rýhovaná krychle, (b) pentagon dodekaedr, (c) spojka krychle a pentagon dodekaedru, (d)(e) spojky oktaedru a pentagon dodekaedru (f) penetrační dvojče (110) - železný kříž (zdroj Klein a Hurlbut, 1993)

Krystal pyritu (2 cm) Španělsko (zdroj Ďuďa, 1990) Krystal pyritu Hnúšťa (Herčko, 1984)

PYRIT FeS 2 Fyzikální vlastnosti: T = 6-6,5; H = 4,9-5,2; barva je mosazně žlutá, ale může pestře nabíhat, vryp je hnědočerný. Lesk je kovový, lom lasturnatý, štěpnost nezřetelná. Vznik a výskyt: Pyrit je jeden z nejběžnějších sulfidických minerálů, který vzniká za nejrůznějších podmínek od magmatického procesu, přes pegmatitovou fázi, hydrotermální vznik, vzniká v sedimentech i v metamorfním procesu. Běžný je i ve skarnech, alpských žilách a mořských sedimentech. Naleziště: Kutná Hora (hydrotermální vznik), Dolní Bory (pegmatit), Horní Benešov, Zlaté Hory (metamorfogenní ložiska) a řada dalších. Použití: Používal se pro výrobu kyseliny sírové, často se těží pro obsahy zlata. Diagnostické znaky: vysoká tvrdost, snadno se mění na limonit

MARKAZIT FeS 2 Symetrie: rombická Forma výskytu: Krystaly mohou být tabulkovité podle (001), pyramidální nebo sloupcovité podle a, typická jsou kopinatá dvojčata podle (110) příp. jejich polysyntetické opakování či hřebenovité prorůstání. Tvoří velké bohatství agregátových forem - ledvinité, krápníkovité, kulovité a další. Srostlice markazitu (2,5 cm) Komořany (zdroj Ďuďa, 1990) Krystal markazitu, cyklická a kopinatá srostlice; c (001), m (110), l (011), r (014), zdroj Slavík, 1974

MARKAZIT FeS 2 Fyzikální vlastnosti: T = 6-6,5; H = 4,85-4,9; barva zpravidla mosazně žlutá s výraznými náběhovými barvami. Štěpnost dokonalá podle (110), lesk kovový. Složení a struktura: Nad 450 C se mění na pyrit. Základem struktury jsou nejtěsněji uspořádané atomy síry s Fe v šestičetné koordinaci. Vztahy markazit - pyrit nejsou v některých ohledech dostatečně známé. Struktura markazitu (zdroj Klein a Hurlbut, 1993)

MARKAZIT FeS 2 Vznik a výskyt: Je nízkoteplotním minerálem, vznikajícím i za povrchových podmínek, a při stoupající teplotě se mění na pyrit. Může vznikat jako pozdní minerál v pegmatitech a na hydrotermálních žilách. Významné jsou i akumulace v sedimentech - uhlí nebo jílech. Naleziště: Příbram, Stříbro, Chvaletice, sokolovská pánev Použití: podobné jako u pyritu, ale v menším měřítku Diagnostické znaky: krystalové tvary, přeměna na limonit nebo melanterit

MOLYBDENIT MoS 2 Symetrie: hexagonální Forma výskytu: Tvoří slabě nebo tlustě tabulkovité krystaly s nedokonale vyvinutými plochami, častěji se vyskytuje ve formě lístkovitých nebo šupinkatých agregátů, někdy i radiálně paprsčitě uspořádaných. Molybdenit v křemeni (2 cm), Altenberg (zdroj Ďuďa, 1990) Krystaly molybdenitu (zdroj Bernard, 1992)

MOLYBDENIT MoS 2 Fyzikální vlastnosti: T = 1-1,5; H = 4,62-4,8; barva je olověně modrošedá s vysokým kovovým leskem, dokonale štěpný podle báze. Lupínky jsou ohebné neelastické. Složení a struktura: Může obsahovat desetiny procent Re. Struktura je složena z vrstev atomů Mo, které jsou uloženy mezi vrstvami atomů S, mezi jednotlivými vrstvami jsou slabší vazby, což podmiňuje dokonalou bazální štěpnost. Vznik a výskyt: Je převážně vysokoteplotním minerálem, běžně se vyskytuje na puklinách granitoidních hornin, v pegmatitech, kontaktně metamorfovaných skarnech a greisenech. Největší ekonomické akumulace pocházejí z tzv. ložisek porfyrových rud. Nachází se i v sedimentech - bitumenových břidlicích. Naleziště: Černá Voda, Černá Hora (na puklinách granitoidů), Horní Slavkov, Krupka (greiseny). Použití: důležitá ruda Mo Diagnostické znaky: vysoký lesk, barva, tvrdost

ANTIMONIT Sb 2 S 3 Symetrie: rombická Forma výskytu: Krystaly jsou sloupcovité, jehlicovité nebo stébelnaté, často mají charakteristické rýhování podle osy c. Kusové agregáty jsou jemně zrnité, na plochách štěpnosti rýhované. Krystaly antimonitu (zdroj Bernard, 1992) Antimonit (agregát 3 cm) s barytem, Baia sprie, Rumunsko (zdroj Ďuďa, 1990)

ANTIMONIT Sb 2 S 3 Fyzikální vlastnosti: T = 2; H = 4,5-4,6; barva je olověně až ocelově šedá s namodralým odstínem, štěpnost dokonalá podle (010), lesk kovový. Relativně nízký bod tání 546 C. Složení a struktura: Chemismus může vykazovat příměsi Au, Ag, Fe, Pb a Cu. Základem struktury jsou řetězce ve směru osy c. Řetězce jsou tvořeny atomy S a Sb, vzdálenost atomů v řetězci je 2,5-3,1. 10-10 m, což odpovídá kovalentním vazbám. Vzdálenost mezi řetězci je až 3,6. 10-10 m. Existence řetězců ve struktuře způsobuje výše uvedenou dokonalou štěpnost.

ANTIMONIT Sb 2 S 3 Vznik a výskyt: Vyskytuje se ve středně- nebo nízkoteplotních paragenezích, často na křemenných žilách a v asociaci se zlatem. Méně častá jsou metasomatická ložiska. Významná ložiska jsou na žilách v mladých pásemných pohořích. Naleziště: Hynčice pod Sušinou, Krásná Hora, Bohutín, Kremnica, Baia Sprie (Rumunsko) Použití: důležitá ruda Sb, jehož některé sloučeniny se používají jako pigmenty a při výrobě skla Diagnostické znaky: vysoký lesk, dokonalá štěpnost

Třída halogenidů V této třídě minerálů je dominantní přítomnost silně elektronegativního prvku ze 7.sloupce periodické tabulky (Cl -, F -, I - a Br - ). Tyto poměrně velké anionty lehce vytvářejí sloučeniny s poměrně velkými jednomocnými kationty a výsledkem je zpravidla strukturní uspořádání s vysokou symetrií. Vazby v těchto sloučeninách jsou převážně iontové, sloučeniny jsou zpravidla měkké, nevodivé, se středním nebo vyšším bodem tání. Některé jsou velmi dobře rozpustné ve vodě.

HALIT NaCl Symetrie: kubická Forma výskytu: Krystaly jsou převážně kubické. Agregáty jsou celistvé, drobně zrnité, stébelnaté, může tvořit kůry a povlaky. Krystal halitu (3,5 cm), Searles Lake, Kalifornie (zdroj Lapis)

HALIT NaCl Fyzikální vlastnosti: T = 2; H = 2,16; barva bílá, hnědá, červená nebo modrá (je to vše výsledkem přítomnosti nečistot), čistá přírodní sůl je bezbarvá. Štěpnost dokonalá podle krychle, lesk skelný, slabě hygroskopický, ve vodě dobře rozpustný. Průměrný podíl v mořské vodě je 3,5%. Složení a struktura: Izomorfně může do struktury halitu místo Na vstupovat draslík (za vyšších teplot), často obsahuje heterogenní nečistoty jílových minerálů nebo hematitu, které jsou zodpovědné za zbarvení halitu. Struktura NaCl (zdroj Klein a Hurlbut, 1993)

HALIT NaCl Vznik a výskyt: Obrovská ložiska halitu vznikají evaporizací (odpařováním) mořské vody, kdy jsou těžena hlavně fosilní ložiska tohoto typu často spolu se sádrovcem a anhydritem. Halit může vznikat i na sopečných fumarolách, nebo tvoří výkvěty na půdách v aridních oblastech. Naleziště: Ostrava (v dolech krápníky vznikající ze solného obsahu nadloží), Prešov; Hallstadt, Bad Ischel (Rakousko - trias), Wieliczka (Polsko), záliv Karabogaz (Kaspické moře), oblast Hannoveru (Dolní Sasko) Použití: halit je důležitá biogenní sloučenina, používá se v potravinářství a chemickém průmyslu Diagnostické znaky: tvrdost, barva, forma výskytu

HALIT NaCl Nejvýznamnější naleziště soli na světě

HALIT NaCl Použití NaCl v USA (1974, 42,5 mil tun)

FLUORIT CaF 2 Symetrie: kubická Forma výskytu: Krystaly jsou zpravidla kubické nebo oktaedrické, resp. jejich spojky, plochy krychle mohou být parketované. Dvojčatné penetrační srůsty podle (111), agregáty převážně celistvé. Fyzikální vlastnosti: T = 4, H = 3,18; barva je v důsledku přítomnosti barevných center (obsah vzácných zemin, defekty ve struktuře) různá - modrá, zelená, žlutá, bílá, fialová, černá. V UV záření jeví fluorescenci, zpravidla v zelených odstínech. Lesk skelný, štěpnost podle (111) dokonalá. Zonální krystal fluoritu (2 cm), Annabel Lee mine, Illinois (zdroj Lapis)

FLUORIT CaF 2 Složení a struktura: Vápník mohou zastupovat některé prvky vzácných zemin. Struktura fluoritu je velmi důležitým strukturním typem. Vznik a výskyt: Výskyt fluoritu je poměrně široký - vzniká v magmatickém procesu (granity, pegmatity), na greisenových ložiscích Sn - W, ve skarnech, převážně však tvoří hlušinu na hydrotermálních žilách různého typu, kdy je dokonce vyčleňována fluorit - barytový typ. Dále bývá přítomen na alpských žilách, v kontaktních vápencích nebo i na recentních termálních pramenech. Naleziště: Harrachov, Moldava, Kožlí u Ledče (fluorit - barytová mineralizace), Horní Slavkov (greisen), Litice n. Orlicí (pukliny granitoidů), Jílové u Děčína (ložisková žíla fluoritu) Použití: hutnictví, výroba skla, chemický průmysl, speciální přístroje (monochromátory) atd. Diagnostické znaky: tvar krystalů, barva, štěpnost

Třída oxidů Oxidy tvoří skupinu minerálů s relativně vysokou tvrdostí a hustotou a vyskytují se zpravidla jako akcesorické minerály s vysokou odolností a schopností přecházet do klastických sedimentů. Principielně jsou oxidy sloučeniny kyslíku s kovem a dělí se podle složitosti na oxidy jednoduché a komplexní. Jednoduché oxidy jsou sloučeninou kyslíku a jednoho kovu v různých poměrech (např. CaO, Cu 2 O), zatímco komplexní oxidy obsahují alespoň dva nestejné kovy v různých strukturních pozicích. Další dělení se provádí na základě přítomnosti vody ve struktuře. Vazby jsou v oxidech převážně iontové. Mezi oxidy je řada minerálů, které mají obrovský ekonomický význam pro získávání Fe, Cr, U, Sn, Ti a dalších prvků.

HEMATIT Fe 2 O 3 Symetrie: hexagonální Forma výskytu: Krystaly čočkovité, tabulkovité. Agregáty jsou celistvé, zrnité nebo zemité, ledvinité agregáty s radiálně paprsčitou stavbou se nazývají lebníky, častá je forma oolitického hematitu, lístkovité agregáty se označují jako železná slída (spekularit) a v neposlední řadě jsou to nejrůznější zemité agregáty většinou ve směsi s dalšími oxidy a hydroxidy. Krystal hematitu (2 cm), Švýcarsko (zdroj Ďuďa, 1990)

HEMATIT Fe 2 O 3 Hematit - lebník (7 cm), Ibrg, Harz (zdroj Muller, 1990) Krystaly hematitu r (10-11), n (22-43), u (10-14), e (01-12), c (12-32) (zdroj Ježek, 1932)

HEMATIT Fe 2 O 3 Fyzikální vlastnosti: T = 6-6,5 (u krystalů, agregáty až kolem 1); H = 5,26 (krystaly); barva červená, červenohnědá až černá, vryp světle až tmavě červený, lesk krystalů kovový a u některých agregátů pouze matný. Složení a struktura: Zpravidla mívá příměsi Ti, Mn a inkluze SiO 2. Nad 950 C je zcela mísitelný s ilmenitem. Vznik a výskyt: Vzniká při různých teplotách a je obecně rozšířeným červeným pigmentem minerálů a hornin. Ekonomický význam mají ložiska páskovaných hematitů v jaspilitech (prekambrická ložiska) a metamorfovaná forma těchto ložisek (itabirity). Menší ložiskový význam mají oolitická a detritická sedimentární ložiska hematitu a reziduální ložiska Fe a Al rud v tropických oblastech. Naleziště: Lahn - Dill v Porýní, Krivoj Rog na Ukrajině (hemtit v jaspilitech), Itabira v Brazílii, okolí Železného Brodu (itabirity), Mníšek u Prahy (oolitický hematit), Rudňany, Slovinky (Slovensko, siderit - sulfidické žíly se spekularitem), Horní Blatná, Horní Halže (lebníky na mladých rudních žilách), Příbram (na rudních žilách), Elba (světoznámé krystaly). Použití: Významná ruda Fe Diagnostické znaky: barva vrypu

ILMENIT FeTiO 3 Symetrie: hexagonální Forma výskytu: Tlustě tabulkovité krystaly, celistvé až jemně zrnité agregáty, valounky, zrnka. Dvojčatné srůsty podle klenců. Velmi časté jsou přeměny na leukoxen, což je směs minerálů Fe a Ti. Fyzikální vlastnosti: T = 5-6; H = 4,5-5; barva hnědočerná až černá, lesk mdlý až polokovový, vryp černý až červenohnědý, dělitelný podle klence. Složení a struktura: Izomorfně bývají zastoupeny komponenty pyrofanitová (MnTiO 3 ) a geikelitová (MgTiO 3 ) běžný je i nízký obsah trojmocného železa. Krystaly ilmenitu (zdroj Bernard, 1992)

ILMENIT FeTiO 3 Vznik a výskyt: Je běžnou akcesorií častěji bazických magmatitů, bývá běžně v pegmatitech nebo na alpských žilách. Jako akcesorie se vyskytuje i v regionálně metamorfovaných horninách (ruly, amfibolity). V některých případech se dostává do aluvií - tzv. mořské černé plážové písky. Naleziště: Špičák u Deštného (gabro), kdyňský bazický masív (Orlovice), Pozďátky u Třebíče, Dolní Bory (pegmatity), Markovice u Čáslavi (alpská parageneze), amfibolity kutnohorského krystalinika a Silezika. Použití: ruda Ti, využívá se k výrobě bělob a antikorozivních nátěrů Diagnostické znaky: přeměny na leukoxen, barva vrypu

KASITERIT SnO 2 Symetrie: tetragonální Forma výskytu: Habitus krystalů je závislý na teplotách vzniku: vysokoteplotní krystaly bývají dipyramidální zpravidla zdvojčatělé, hydrotermálně vzniklé krystaly jsou jehličkovité a v epitermálních podmínkách je kolomorfní. Téměř vždy (i zdánlivé monokrystaly) bývá zdvojčatělý podle (101) a to i polysynteticky nebo cyklicky. Agregáty zpravidla zrnité. Kasiterit (2,5 cm), Cínovec (zdroj Ďuďa, 1990) Dvojčata kasiteritu podle (011); a (100), m (110), e (101), s (111) (zdroj Ježek, 1932)

KASITERIT SnO 2 Fyzikální vlastnosti: T = 6-7, H = 6,8-7,1; barva zpravidla hnědá až černá, může být ale i bezbarvý, lesk kovový, štěpnost nedokonalá. V závislosti na příměsích může být polovodičem. Složení a struktura: Izomorfně může být přítomno Fe, Nb a Ta. Vznik a výskyt: Je typickým minerálem cínonosných žul (greiseny) a některých pegmatitů. Je běžný na hydrotermálních Sn - W žilách, vyskytuje se ve skarnech, velký význam mají i subvulkanická ložiska Sn a barevných kovů bolivijského typu. Běžně se těží v náplavech. Naleziště: Cínovec, Krupka, Horní Slavkov (hydrotermální Sn - W mineralizace), Otov, Rožná, Hagendorf - Bavorsko (pegmatity) Použití: základní ruda Sn; používá se pro výrobu slitin, ve zbrojařském průmyslu

MAGNETIT Fe 3 O 4 Symetrie: kubická Forma výskytu: Běžně tvoří oktaedrické krystaly, které mohou být zdvojčatělé podle (111), agregáty hrubě zrnité. Magnetit (2 cm), Švýcarsko (zdroj Ďuďa, 1990) Fyzikální vlastnosti: T = 6, H = 5,18; barva černá, lesk kovový, vryp černý, lom lasturnatý. Je magnetický.

MAGNETIT Fe 3 O 4 Složení a struktura: Běžné jsou příměsi - Cr, Mg, Al nebo V, za vyšších teplot Ti. Struktura je inverzní spinelová. Vznik a výskyt: Převážně vysokoteplotní minerál, vzniká ale i za pokojových teplot. V magmatických horninách (hlavně bazických a ultrabazických) tvoří akumulace, hojný je ve skarnech. Na hydrotermálních žilách spíše vzácný, na alpských žilách běžný. Pěkné krystaly bývají v chloritických a mastkových břidlicích, vzniká i v sedimentech za nízkých teplot. Naleziště: Obří důl - Krkonoše, Vlastějovice, Měděnec, Nedvědice (skarny), Bushveldský komplex - JAR (magmatity), Sobotín (v mastkových břidlicích), Použití: ruda Fe Diagnostické znaky: magnetismus, vryp

Třída karbonátů Základem struktury karbonátů jsou aniontové skupiny (CO 3 ) -2, které mezi sebou navzájem nesdílí kyslíkové atomy. Vazba mezi uhlíkem a kyslíky je poměrně pevná, ne však tolik jako v CO 2. Důležité bezvodé karbonáty spadají do tří strukturních skupin: řada kalcitu, řada aragonitu a řada dolomitu.

KALCIT CaCO 3 Forma výskytu: U kalcitu bylo popsáno přes 500 krystalových tvarů a 1500 spojek těchto tvarů. Mezi nejběžnější patří: sloupcovité krystaly, klenec, skalenoedr. Agregáty kalcitu jsou kusové, zrnité, stébelnaté, tvoří oolity, konkrece a krápníky. Kalcitová drůza, Nižná slaná (zdroj Herčko, 1984)

KALCIT CaCO 3 Fyzikální vlastnosti: T = 3; H = 2,71; barva je bílá, šedá, žlutá, hnědavá, růžová nebo je bezbarvý, lesk skelný, dokonale štěpný podle klence. Složení a struktura: Ca může být izomorfně zastupováno Fe, Mn nebo Mg (dokonalá izomorfní mísitelnost je za vyšších teplot). Krystaly kalcitu horní řada: klenec pozitivní a negativní, prostřední řada: různé spojky klenců, dolní řada zleva skalenoedr, spojka skalenoedru a klence a spojka dvou skalenoedrů (zdroj Ježek, 1932)

KALCIT CaCO 3 Vznik a výskyt: Velmi rozšířený minerál, vznikající během mnoha nejrůznějších procesů. Může vznikat v magmatickém cyklu - je součástí karbonatitů, je velmi častou hlušinovou výplní hydrotermálních žil nejrůznějších typů, vzniká na termálních pramenech, vzniká přímým srážením z mořské vody, je tedy podstatnou součástí sedimentů (vápence, slínovce) a při metamorfóze je součástí mramorů. Často fosilizuje organické zbytky. Velmi časté je nahrazování kalcitu jinými minerály (pseudomorfózy) např. křemenem, limonitem a naopak - kalcit tvoří pseudomorfózy po aragonitu, barytu, fluoritu a dalších. Naleziště: Příbram, Stříbro (krystaly na rudních žilách), Černý důl v Krkonoších, Štramberk (krystaly ve vápencích) a mnoho dalších. Použití: výroba cementu, čiré krystaly se používají jako nikoly Diagnostické znaky: štěpnost

MAGNEZIT MgCO 3 Symetrie: hexagonální Forma výskytu: Vzácně tvoří krystaly, agregáty jsou hrubě až jemně zrnité, křídovité, zemité nebo hrubě vláknité. Fyzikální vlastnosti: T = 3,5-5; H = 3-3,2; barva bílá, žlutavá, hnědavá nebo i bezbarvý, lesk skelný až matný, štěpnost dokonalá podle klence. Složení a struktura: Existuje neomezená mísitelnost se sideritem (FeCO 3 ). Izostrukturní s kalcitem. Vznik a výskyt: Tvoří hydrotermálně metasomatická tělesa v karbonatických horninách, vzniká při autometamorfóze v hadcích a ultrabazických horninách. Vznikat může i metamorfně. Naleziště: Věžná, Nová Ves u Oslavan (hadce), Hnúšťa, Jelšava - Slovensko (metasomatická ložiska) Použití: zdroj Mg pro chemický průmysl Diagnostické znaky: barva, agregace, štěpnost

SIDERIT FeCO 3 Symetrie: hexagonální Forma výskytu: Krystaly klencové nebo tence až tlustě tabulkovité. Agregáty kusové hrubozrnné a ve formě konkrecí. Fyzikální vlastnosti: T = 3,5-4; H = 3,96; barva žlutá, světle i tmavě hnědá, černá, lesk skelný, vryp nažloutle bílý, dokonale štěpný podle klence. Složení a struktura: Neomezeně mísitelný s magnesitem a rodochrozitem (MnCO 3 ). Izostrukturní s kalcitem. Vznik a výskyt: Je středně nebo nízkoteplotním minerálem. Velký význam má na hydrotermálních žilných ložiscích, kde může tvořit převážnou část hlušiny, tvoří ložiska v karbonatických horninových komplexech, tvoří sedimentární ložiska v bitumenózních a jílových břidlicích nebo se nachází na oceánských ložiscích Fe. Naleziště: Příbram, Kutná Hora, Freiberg - Sasko (hlušina na hydrotermálních žilách), Rudňany, Rožňava (slovenské siderit-sulfidické žíly), Zdice, Nučice (oceánské oolitické rudy) Použití: zřídka jako surovina Fe Diagnostické znaky: štěpnost, barva

ARAGONIT CaCO 3 Symetrie: rombická Forma výskytu: Sloupcovité krystaly (někdy zploštělé podle (010)), jehlicovité krystaly podle osy c. Dvojčatí podle (110) často i cyklicky tak, že vzniká pseudohexagonální symetrie. Agregáty stébelnaté, paprsčité, vřídlovcovité, keříčkovité nebo krápníkovité. Fyzikální vlastnosti: T = 3,5-4; H = 2,94; barva bílá, šedá, žlutá, nazelenalá nebo je bezbarvý, lesk skelný až mastný, štěpnost podle (010) málo zřetelná.

ARAGONIT CaCO 3 Složení a struktura: Omezeně může na pozici Ca vstupovat Sr a Pb. Třením v achátové misce může kalcit přecházet na aragonit - ten je stabilnější za vyšších tlaků. Vznik a výskyt: Vzniká za nízkých teplot v připovrchových podmínkách. Objevuje se v pozdních fázích na něktrých hydrotermálních žilách, vzniká během supergenních pochodů na mnoha ložiscích, je běžný produkt vylučování z horkých pramenů (vřídlovec), zvětráváním Ca minerálů v bazaltech nebo se tvoří v jílových sedimentech. Naleziště: Hřídelec u Nové Paky, Hořenec u Bíliny (v bazaltech), Příbram, Špania Dolina (supergenní zóna ložiska) Diagnostické znaky: štěpnost, hustota

DOLOMIT CaMg(CO 3 ) 2 Symetrie: hexagonální Forma výskytu: Krystaly klencové, sedlovitě prohnuté, zrnité agregáty. Fyzikální vlastnosti: T = 3,5; H = 2,85; barva šedá, červená nebo hnědá, lesk perleťový nebo skelný, dokonale štěpný podle klence. Složení a struktura: Poměr Ca : Mg kolísá okolo 1 : 1. Struktura popsána výše.

DOLOMIT CaMg(CO 3 ) 2 Vznik a výskyt: Je častým hydrotermálně žilným a metasomatickým nerostem, tvoří hlušinu na rudních žilách, je hlavním minerálem obrovských horninových komplexů (dolomity), vzniká v mocných vrstvách během sedimantárního procesu, méně častý je na pegmatitech a alpských žilách. Naleziště: Kutná Hora, Příbram (na rudních žilách), Dolomity (Itálie) Použití: stavební kámen Diagnostické znaky: rozpustnost v horké HCl, tvar krystalů

MALACHIT Cu 2 CO 3 (OH) 2 Symetrie: monoklinická Forma výskytu: Krystaly sloupcovité nebo jehlicovité, zpravidla zdvojčatělé podle (100). Agregáty ledvinité s vrstevnatou stavbou, krápníky, povlaky nebo výplně. Fyzikální vlastnosti: T = 3,5-4; H = 3,9-4,03; barva v různých odstínech zelené, někdy až do černa. Lesk podle formy výskytu skelný až zemitý, dokonale štěpný podle báze, vryp zelený. Řez kolomorfním agregátem malachitu, Zair (zdroj Ďuďa, 1990)

MALACHIT Cu 2 CO 3 (OH) 2 Složení a struktura: Základem struktury jsou koordinační oktaedry CuO 2 (OH) 4 a CuO 4 (OH) 2. Ty jsou hranami propojeny do řetězců ve směru osy c. Jednotlivé řetězce jsou pak prostorově provázány pomocí skupin CO -2 3. Vznik a výskyt: Běžný produkt oxidace Cu rud v gosanech nejrůznějších typů ložisek. Naleziště: Tsumeb (Namíbie), Špania Dolina (Slovensko), Nová Ves u Rýmařova, Borovec u Štěpánova, Ludvíkov u Vrbna Diagnostické znaky: barva, agregace

AZURIT Cu 3 (CO 3 ) 2 (OH) 2 Symetrie: monoklinická, oddělení monoklinicky prizmatické Forma výskytu: Sloupcovité nebo tabulkovité krystaly, agregáty práškovité nebo kůrovité. Fyzikální vlastnosti: T = 3,5-4; H = 3,77; barva modrá až černě modrá, vryp modrý. Lesk na krystalech vyšší než na agregátech, štěpnost (100) dokonalá. Azuritový povlak, Piesky (zdroj Herčko, 1984)

AZURIT Cu 3 (CO 3 ) 2 (OH) 2 Složení a struktura: Ionty Cu jsou v koordinaci se dvěma kyslíky a dvěma hydroxylovými skupinami. Tyto "tetragonální" skupiny jsou propojeny do řetězců podél osy b, které jsou provázány skupinami CO 3. Každá OH skupina je sdílena třemi ionty Cu a každý kyslík z CO 3 skupiny je vázán na jeden atom Cu. Vznik a výskyt: Běžný produkt oxidace Cu sulfidických rud, doprovázející malachit. Naleziště: Špania Dolina, Tsumeb (Namíbie) Diagnostické znaky: barva, štěpnost

Třída sulfátů Základem struktury sulfátů je malý kationt síry v tetraedrické koordinaci s kyslíky - aniontová skupina (SO4)-2.

BARYT BaSO 4 Symetrie: rombická Forma výskytu: Krystaly jsou převážně tabulkovité podle báze nebo sloupcovité (rakve) podle osy a, často hojnoploché. Agregáty bývají zrnité. Fyzikální vlastnosti: T = 3-3,5; H = 4,5; barva šedá, žlutá, nazelenalá, modrá, červená, lesk na krystalových plochách skelný, jinak matný, dokonale štěpný podle báze, zřetelně štěpný podle (210). Baryt, Banská Štiavnica (zdroj Herčko, 1984) Různé typy krystalů barytu (zdroj Bernard, 1992)

BARYT BaSO 4 Složení a struktura: Běžně bývá izomorfně přimíšeno Sr nebo Pb, mechanickou nečistotou bývá Fe 2 O 3. Vznik a výskyt: Je to běžný středně až nízce teplotní minerál postmagmatického a sedimentárního původu. Běžný je na některých hydrotermálních žilách (asociace fluorit-barytová), je součástí hydrotermálně sedimentárních ložisek, vzniká i krystalizací z termálních vod, a na řadě typů sedimentárních ložisek (reziduální zvětraliny, evaporitová ložiska nebo ve vápencích). Naleziště: Příbram, Jihlava, Stříbro, Harrachov, Moldava (hydrotermální žíly), Štěpánovice a Květnice u Tišnova (čočky ve vápencích), Kladno (na trhlinách pelosideritů), Kozákov, Studenec (dutiny bazaltů) Použití: při těžbě ropy na výplach vrtů, ve stavebniství na RTG absorbující omítky, výroba barev, plnidlo v papírenství a gumárenství Diagnostické znaky: hustota

ANHYDRIT CaSO 4 Symetrie: rombická, oddělení dipyramidální Forma výskytu: Izometrické nebo sloupcovité krystaly jsou poměrně vzácné. Agregáty zrnité až celistvé. Fyzikální vlastnosti: T = 3-3,5; H = 2,89-2,98; bývá bezbarvý, bílý, šedý, namodralý, červený nebo hnědý, lesk perleťový až skelný. Složení a struktura: Mívá řadu mechanických příměsí. Vznik a výskyt: Je naprosto převládající na ložiskách mořských evaporitů, jinde jen podružně (hydrotermální ložiska, dutiny bazaltů). Naleziště: Bad Ischl - Rakousko, Wieliczka - Polsko, Stassfurt - Německo (sedimentární ložiska), České Hamry (v dutinách vyvřelin) Použití: cementářský průmysl Diagnostické znaky: štěpnost

SÁDROVEC CaSO 4. 2H 2 O Symetrie: monoklinická Forma výskytu: Je známo asi 70 jednoduchých tvarů krystalů sádrovce, z nichž nejčastější jsou krystaly tabulkovité podle (010), sloupcovité nebo čočkovité. Zcela běžné jsou také srůsty podle (100) tzv. "vlaštovčí ocas" nebo podle (001) tzv. "pařížská dvojčata". Agregáty bývají zrnité, celistvé, vláknité (selenit) nebo lupenité. Fyzikální vlastnosti: T = 2; H = 2,32; zpravidla bezbarvý bílý, šedý nebo nažloutlý, lesk skelný na štěpných plochách perleťový. Štěpný velmi dokonale podle (010). Krystaly sádrovce (a) a dvojče (b) podle (100); n (111), f (110), b (010), e (001) (zdroj Klein a Hurlbut, 1993)

SÁDROVEC CaSO 4. 2H 2 O Složení a struktura: Se zvyšující se teplotou postupně ztrácí vodu (přes bassanit až k anhydritu), zpravidla obsahuje řadu mechanických příměsí. Vznik a výskyt: Typický minerál sedimentárních a zvětrávacích procesů (evapority, jílové sedimenty, zvětrávací kůry ložisek), méně často vzniká na fumarolách. Naleziště: Hromnice, Chvaletice (zvětrávání kyzových ložisek), Kateřinky a Kobeřice u Opavy (v sedimentech), v hnědouhelných pánvích Použití: výroba sádry Diagnostické znaky: štěpnost, krystalové tvary a srůsty Postupná dehydratace sádrovce se zvyšující se teplotou zdroj Klein a Hurlbut, 1993)

Třída fosfátů Základní jednotkou struktury fosfátů je aniontová skupina (PO 4 ) -3.

APATIT Ca 5 (PO 4 ) 3 (F, Cl, OH) Symetrie: hexagonální Forma výskytu: Krystaly jsou velmi rozmanitých forem - krátce i dlouze sloupcovité, jehlicovité nebo tabulkovité podle báze. Většinou převažuje prizma, báze nebo dipyramida. Agregáty nejčastěji zrnité nebo celistvé, ale i oolitické, vláknité či zemité. Krystaly apatitu (0,5 cm) Gunheath Pit, Cornwall (zdroj Lapis) Fyzikální vlastnosti: T = 5; H = 3,15-3,2; barva šedá, žlutá, zelená, modrá, hnědá někdy i čirý, lesk skelný, nezřetelně štěpný podle báze.

APATIT Ca 5 (PO 4 ) 3 (F, Cl, OH) Složení a struktura: Ve struktuře se běžně zastupují F, Cl, (OH) a CO 3. Skupina PO 4 může být nahrazována SO 4 nebo i SiO 4. Za vápník nejčastěji substituují Sr a Mn. Vznik a výskyt: Běžný akcesorický minerál hornin nejrůznějšího genetického typu. Zcela běžný je v magmatických a metamorfovaných horninách, krystalovaný bývá v pegmatitech a greisenech. Vzácněji se objevuje na hydrotermálních žilách a alpských žilách. Naleziště: alkalické horniny na poloostrově Kola, Rožná, Dobrá Voda (pegmatity), Horní Slavkov, Krupka (greiseny) Použití: zdroj fosforu, surovina pro přípravu syntetických hnojiv. Diagnostické znaky: barva, krystalové tvary