Voice over IP Fundamentals



Podobné dokumenty
Voice over IP Fundamentals

Telekomunikační sítě Protokolové modely

Počítačová síť. je skupina počítačů (uzlů), popřípadě periferií, které jsou vzájemně propojeny tak, aby mohly mezi sebou komunikovat.

vysokých škol na projektu IP telefonie

Přednáška 3. Opakovače,směrovače, mosty a síťové brány

Identifikátor materiálu: ICT-3-03

Počítačové sítě. Miloš Hrdý. 21. října 2007

Směrovací protokoly, propojování sítí

SIP Session Initiation Protocol

JAK ČÍST TUTO PREZENTACI

TECHNICKÉ PRINCIPY IP TELEFONIE

Počítačové sítě internet

H.323 standard. Specifikace H.323 byla schválena v roce 1996 skupinou Study Group 16 (součást ITU). Verze 2 byla schválena v lednu 1998.

Počítačové sítě Transportní vrstva. Transportní vrstva

Analýza komunikace při realizaci VoIP spojení

Internet protokol, IP adresy, návaznost IP na nižší vrstvy

Základy Voice over IP (VoIP) pro IT techniky

RTP = real=time protocol ST-II = Internet Stream Protocol (náhrada TCP pro streamy, řídicí protokol, datový přenos)

Model ISO - OSI. 5 až 7 - uživatelská část, 1 až 3 - síťová část

A7B36PSI Úvod 1/29. Jan Kubr. Honza Kubr - 1_uvod

Y36SPS QoS Jan Kubr - Y36SPS 1 5/2008

4. Síťová vrstva. Síťová vrstva. Počítačové sítě I. 1 (6) KST/IPS1. Studijní cíl. Představíme si funkci síťové vrstvy a jednotlivé protokoly.

PB169 Operační systémy a sítě

Počítačové sítě. Počítačová síť. VYT Počítačové sítě

Přednáška 9. Síťové rozhraní. Úvod do Operačních Systémů Přednáška 9

Komunikace systémů s ostatními multimediálními sítěmi

HiPath HG 1500 Multimediální komunikace ve společnostech střední velikosti

Principy ATM sítí. Ing. Vladimír Horák Ústav výpočetní techniky Univerzity Karlovy Operační centrum sítě PASNET

3.17 Využívané síťové protokoly

Inovace bakalářského studijního oboru Aplikovaná chemie

metodický list č. 1 Internet protokol, návaznost na nižší vrstvy, směrování

B4. Počítačové sítě a decentralizované systémy Jakub MÍŠA (2006)

Počítačové sítě Implementace RM OSI. Počítačové sítě - Vrstva datových spojů 1

Architektura TCP/IP je v současnosti

Měření kvality služeb. Kolik protlačíte přes aktivní prvky? Kde jsou limitní hodnoty ETH spoje? Data Hlas Video. Black Box Network Infrastructure

Pohled telekomunikačního. ního operátora na možnosti přenosu hlasu přes integrované datové sítě. Praha

POČÍTAČOVÉ SÍTĚ Metodický list č. 1

Počítačové sítě. Lekce 4: Síťová architektura TCP/IP

7. Aplikační vrstva. Aplikační vrstva. Počítačové sítě I. 1 (5) KST/IPS1. Studijní cíl. Představíme si funkci aplikační vrstvy a jednotlivé protokoly.

Semestrální práce do předmětu TPS (Technologie Počítačových Sítí).

íta ové sít TCP/IP Protocol Family de facto Request for Comments

1. Integrované služby (Integrated services IntServ) 2. Rozlišované služby (Differentiated services diffserv)

Vlastnosti podporované transportním protokolem TCP:

Protokoly: IP, ARP, RARP, ICMP, IGMP, OSPF

Telekomunikační sítě LAN sítě

Výukový program: Moderní komunikační technologie. Modul 7: Přenos hlasu prostřednictvím datových sítí. Ing. Miroslav Vozňák, Ph.D.

QoS na L2/L3/L4. Jak prokazovat kvalitu přípojky NGA. Ing. Martin Ťupa Ing. Jan Brouček, CSc. PROFiber Networking CZ s.r.o.

POČÍTAČOVÉ SÍTĚ 1. V prvním semestru se budeme zabývat těmito tématy:

X.25 Frame Relay. Frame Relay

Počítačové sítě pro V3.x Teoretická průprava II. Ing. František Kovařík

Obsah. O autorech 9. Předmluva 13. KAPITOLA 1 Počítačové sítě a Internet 23. Jim Kurose 9 Keith Ross 9

X36PKO Úvod Jan Kubr - X36PKO 1 2/2006

Aktivní prvky: brány a směrovače. směrovače

Rodina protokolů TCP/IP, verze 2.6. Část 11: VOIP, IP telefonie

Inovace bakalářského studijního oboru Aplikovaná chemie

Směrování VoIP provozu v datových sítích

Přepínaný Ethernet. Virtuální sítě.

Kvalita služeb datových sítí z hlediska VoIP

SIGNALIZAČNÍ A KOMUNIKAČNÍ PROTOKOLY V IP TELEFONII

Registrační číslo projektu: CZ.1.07/1.5.00/ Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

Registrační číslo projektu: CZ.1.07/1.5.00/ Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

MPLS MPLS. Label. Switching) Michal Petřík -

Registrační číslo projektu: CZ.1.07/1.5.00/ Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

Registrační číslo projektu: CZ.1.07/1.5.00/ Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

Inovace bakalářského studijního oboru Aplikovaná chemie

Aktivní prvky: přepínače

Y36PSI QoS Jiří Smítka. Jan Kubr - 8_rizeni_toku Jan Kubr 1/23

Hodinový rozpis kurzu Správce počítačové sítě (100 hod.)

H.323/SIP VoIP GSM Gateway VIP-281GS

Specifikace QoS v IP. Vladimír Smotlacha, Sven Ubik CESNET

Všechno přes IP, IP přes všechno. Propustnost včetně agregace (kolik je agregace?) Nabízená rychlost vs garantovaná rychlost. VoIP

Topologie počítačových sítí Topologie = popisuje způsob zapojení sítí, jejich architekturu adt 1) Sběrnicová topologie (BUS)

Úvod Bezpečnost v počítačových sítích Technologie Ethernetu


IVT 2. ročník INFORMAČNÍ SÍTĚ

CCNA I. 3. Connecting to the Network. CCNA I.: 3. Connecting to the network

Vytváření vln: přeměna hlasu na jedničky a nuly 17 Co se naučíte 17. Případová studie: Navrhněte telefonní síť 32 Navrhované řešení 36

Řízení datového toku, QoS

Počítačové sítě :06 1 z 29

WELL 8820IP. VoIP telefon, 2xEth., SIP, H.323, MGCP, IAX2. Uživatelská příručka

6. Transportní vrstva

Témata profilové maturitní zkoušky

Univerzita Jana Evangelisty Purkyně Automatizace Téma: Datová komunikace. Osnova přednášky

Komunikace v sítích TCP/IP (1)

Studium protokolu Session Decription Protocol. Jaroslav Vilč

Architektura TCP/IP v Internetu

Technologie počítačových sítí 2. přednáška

Distribuované systémy a počítačové sítě

REALIZACE SIP/H.323 BRÁNY S POUŽITÍM ÚSTŘEDNY ASTERISK

Datum vytvoření. Vytvořeno 18. října Očekávaný výstup. Žák chápe pojmy URL, IP, umí vyjmenovat běžné protokoly a ví, k čemu slouží

Realizace a zabezpečení telefonního centra s využitím technologie Voice Over Internet Protocol. Implementation of secure VOIP call center

InternetovéTechnologie

Provisioning VoIP koncových zařízení

Alcatel OmniPCX 4400 Základní vlastnosti

Systémy pro sběr a přenos dat

MATURITNÍ OTÁZKY ELEKTROTECHNIKA - POČÍTAČOVÉ SYSTÉMY 2003/2004 TECHNICKÉ VYBAVENÍ POČÍTAČŮ

Schéma elektronické pošty

Informatika Počítačové sítě Mgr. Jan Jílek

1. Standardizace na fyzické vrstvě OSI (vodiče, koncovky...)

Počítačové sítě Systém pro přenos souborů protokol FTP

Transkript:

Voice over IP Fundamentals Miroslav Vozňák Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra elektroniky a telekomunikační techniky

program kurzu: Související doporučení s H.323 a postavení H.323 ve vztahu k alternativně vyvíjeným standardům (srovnání s protokolem SIP, MGCP,...). 2 Úvod do IP sítí. Současnost a budoucnost komunikačních technologií, koncepce NGN (Next Generation Network), úvod do IP telefonie základní pohledy na problematiku hlasové komunikace v datových sítích. Srovnání vlastností protokolů IP TCP, UDP, RTP, komprimovaný crtp. Standard H.323, evoluce od verze 1 v roce 1996 až k verzi 4 v roce 2001. Základní prvky H.323 - Gatekeeper, Voice Gateway, Terminal, MCU. Přehled kódovacích technik, výkonnost vs. kvalita G.711, G.726, G.728, G.729, G.729 Annex A, G.729 Annex B, G.723.1, G.723.1 Annex A, LPC, GSM, atd... Voice Gateway s CISCO VIC moduly FXS, FXO, EM, BRI a NM-HDV E1, známé problémy a zkušenosti. Zprávy signalizace RAS a Q.931 v doporučení H.225.0. Režimy provozu prvku Gatekeeper DRC (Direct Routed Call) a GRC (Gatekeeper Routed Call). Služby dle doporučení H.450 (H.450.1 H.450.12).

program kurzu: 3 SIP protokol koncepce, řešení interoperability s H323. QoS přehled nástrojů pro zajištění kvality služby, aneb Problémy s kvalitou začínají tam, kde končí možnosti QoS, technika Intesrv a Diffserv. Zpoždění uplatňující se při hovoru v IP sítích (obslužné, přístupové, přenosové). Optimalizace nastavení QoS nástrojů, prokládání paketů (LFI) s LLQ (Low Latency Queuing) nebo PQ (Priority Queuing), Hodnocení kvality hovoru v sítích VoIP. IP telefony optipoint přehled evoluce, optipoint 300Basic, 300Advance, 400Standard, 600Office, optipoint100 - jejich možnosti. SW klient Netmeeting, optipoint330, optipoint360, srovnání s HW řešením. Praktické zkušenosti s optipointy režimy provozu, služby, postup při upgrade.

Úvod do IP sítí protokolový graf - vrstva rozhraní sítě: přístup k fyzickému přenosovému médiu, specifická pro každou síť dle implementace, drtivou převahu má standard IEEE 802.3 (Ethernet, Fast Ethernet, Gigabit Ethernet) 4 - aplikační vrstva : FTP - File Transfer Protocol HTTP - Hypertext Transfer Protocol SMTP - Simple Mail Transfer protocol DNS - Domain Name System TFTP - Trivial File Transfer Protocol - transportní vrstva: TCP - transmission control protocol UDP - user datagram protocol - vrstva mezisíťová: IP internet protocol TCP/IP model

Úvod do IP sítí model OSI 5 ISO International Organization for Standartization OSI otevřený model propojování (r.84), konec chaotického vývoje síťových protokolů historie TCP/IP a Internetu: 1969 ARPANET (University of California LA, Standford, Santa Barbara a Utah) 1972 zahájení provozu aplikace e-mail 1973-1979 vývoj základů TCP/IP (Standford) 1980 implementace TCP/IP pod BSD Unix (Berkley Software Distribution), IPv4 1984 DNS (Domain Name System) 1986 vznik IETF (Internet Engineering Task Force), RFC de facto norma (Request for Comments) 1992 Mosaic (WWW browser) a za rok Netscape 1992 odpovědnost za normy je v rukou IETF 1994 Internet se komercializuje

Úvod do IP sítí prvky sítě 6 NIC (Network Interface Card) Ethernet/IEEE 802.3 (síť typu sběrnice) založen na principu náhodného přístupu CSMA/CD (Carrier Sense Multiple Access with Collision Detection), stanice detekující kolizi vysílá signál jam, ihned se zastavuje vysílání a pokračuje se po náhodné době na fyzické vrstvě 802.3 je specifikován pro koaxiální kabel, UTP, STP a optiku další standardy : IEEE 802.4 Token Bus (sběrnice) IEEE 802.5 Token Ring (kruh) IEEE 802.9 IsoEthernet (hvězda) IEEE 802.12 100VG-AnyLAN (hvězda) ANSI X3T9.5 FDDI (dvojitý kruh) IEEE 802.11 bezdrátové (do 2 Mbps), k rádiové LAN se upírá pozornost 10 BASE-2 10 BASE-T 100 BASE-TX dle EIA 568B - páry 1,2 a 3,6 (p)

Úvod do IP sítí prvky sítě 7 Repeater (opakovač) Délka sběrnice u sítí Ethernet je omezená, např. 100BASE-TX (CAT5 UTP) má max. délku 100 m. Regenerování signálů a vzájemné propojení dvou segmentů zajišťuje Repeater. HUB (multi-port repeater) HUB regeneruje signál jako Repeater a provádí koncentraci (jedním portem odvádí provoz k dalšímu segmentu), protože pracuje na vrstvě 1, způsobuje přístup CSMA/CD vznik kolizní domény a skutečná propustnost v segmentu je 30-40% z celkového pásma.

Úvod do IP sítí prvky sítě 8 Bridge (most) Je určen pro propojení dvou segmentů sítě LAN jako Repeater, ale neopakuje mechanicky všechny rámce. Obsahuje propojovací tabulku, kde je seznam linkových adres (MAC) všech síťových rozhraní LAN. U adresy má poznamenáno, za kterým síťovým rozhraním mostu se nachází. Objeví-li se datový rámec na nějakém síťovém rozhraní mostu, z propojovací tabulky zjistí, za jakým rozhraním se adresát nachází. V případě sítí, kde se klade velký důraz na bezpečnost, pak správce tabulkou řekne, kdo kam může, mosty se mohou doplnit i o tabulku vyjadřující, kdo kam nemůže. Většinou se používá automatické plnění tabulky, algoritmus je jednoduchý. Most se každému příchozímu rámci podívá na adresu odesilatele a zapíše jako novou položku k příslušnému rozhraní. Switch (multi-port bridge) Pro propojení více segmentů sítě, zabraňuje vzniku kolizních domén, přepínané sítě zabraňují i odposlechům paketů a zvyšují nejen propustnost, ale i bezpečnost sítě.

Úvod do IP sítí prvky sítě 9 Router (směrovač) Pracuje na třetí vrstvě, umožňuje propojování na základě síťové (IP) adresy mezi různými sítěmi. Směrovač obdrží IP-datagram a rozhodne, do kterého svého rozhraní jej pošle (next hop), k tomu slouží směrovací tabulka. Směrovač násobí cílovou adresu v IP paketu maskou a pošle na příslušné rozhraní, více specifická adresa má přednost před méně specifickou.

Úvod do IP sítí adresace v IP sítích 10 IPv4 drtivě převažuje nad IPv6 (IPv6 RFC 2460 podporuje zpětně IPv4), IPv6 řeší problémy s adresovým prostorem, pro adresaci je 128 bitů IP adresa (IPv4) má 32 bitů (RFC-796) a obsahuje adresu sítě a adresu počítačeve čtyřech oketech, adresy jsou rozděleny do pěti tříd, třída D je pro multicast (využívá např. protokol RIP, OSPF nebo NTP), třída E je experimentální Třída A: MSB bit prvního oketu má hodnotu 0, zbylých sedm tvoří adresu sítě, ostatní bity třech oktetů tvoří host Třída B: první dva bity prvního oketu mají hodnotu 10, zbylých šest a další oktet tvoří adresu sítě, ostatní bity dvou oktetů host Třída C: první tři bity prvního oketu mají hodnotu 110,zbylých pět a další dva oktety tvoří adresu sítě, poslední oktet host

Úvod do IP sítí adresace v IP sítích 11 Síťová maska slouží k určení adresy sítě. Adresa sítě je částí IP adresy. Standardní síťová maska pro adresy třídy A má tvar 11111111.00000000.00000000.00000000 což je 255.0.0.0, pro třídu B 255.255.0.0 a pro třídu C: 255.255.255.0. Adresu sítě získáme vynásobíme-li IPadresu bit po bitu se síťovou maskou. Máme-li adresu170.85.255.248 s maskou 255.255.0.0: 10101010.01010101.11111111.11111000 (170.85.255.248) host x 11111111.11111111.00000000.00000000 (255.255.0.0) mask -------------------------------------------------------- 10101010.01010101.00000000.00000000 (170.85.0.0) net V roce 1993 RFC 1517 až 1520 změnily pohled na síť (ne přes třídy) ale výhradně přes síťové masky. příklad dělení sítě 192.168.0.0 Subnetting mechanizmus podsíťování

Úvod do IP sítí adresace v IP sítích 12 Příklad IP adresa 195.113.113.155, síťová maska 255.255.255.240 11000011.01110001.01110001.10011011 (195.113.113.155) host x 11111111.11111111.11111111.11100000 (255.255.255.224) mask -------------------------------------------------------- 11000011.01110001.01110001.10000000 (195.113.113.128/27) net Agregace IP adres Supernetting (nadsíťování) Příklad - ISP má přidělen interval adres sítí 194.149.96.0 až 194.149.128.0, použitím síťové masky 255.255.224.0 je možná agregace na adresu supersítě 194.149.96.0 v síti 194.149.96.0/19 a rozsahem IP 194.149.96.0 až 194.149.127.255: 11000010.10010101.01100000.00000000 (194.149.96.0) host x 11111111.11111111.11100000.00000000 (255.255.224.0) mask -------------------------------------------------------- 11000011.01110001.0110000.00000000 (194.149.96.0/19) net až 11000010.10010101.01111111.11111111 (194.149.127.255) host x 11111111.11111111.11110000.00000000 (255.255.224.0) mask -------------------------------------------------------- 11000011.01110001.0110000.00000000 (194.149.96.0/19) net

Úvod do IP sítí VLAN a porty 13 VLAN Virtual Local Area Network - dovoluje seskupit stanice do jediné VLAN bez ohledu na jejich fyzické umístění (stanice jsou na různých segmentech sítě, ale komunikují stejně, jako by byli na jediném segmentu) - využívá se značení rámců (frame tagging), do každého záhlaví rámce (za cíl. a zdr. adresu) přenášeného mezi přepínači se vkládá hlavička jednoznačně určující, do které virtuální sítě rámec patří (IEEE 802.1Q). Základním prvkem pro budování VLAN jsou přepínače. Porty rozhraní SAP (Service Access Point) mezi transportní a aplikační vrstvou se označuje číslem portu (aplikační protokol), uspořádaná dvojice IP adresa port se nazývá Socket. typy portů: známé (0 až 1023, dle RFC 1700), registrované (1024 až 49151) a dynamické porty (49152 až 65535) well known ports HTTP - RFC2616, port 80 FTP RFC959, port 20/21 TELNET RFC854, port 23 SMTP RFC821, port 25 DNS RFC1035, port 53 TFTP RFC1350, port 69 NTP RFC1305, port 123 DHCP RFC2131 port 546/547 SNMP RFC1157, port 161/162 SSH port 22

14 NGN Next Generation Network r. 2000 - vyrovnání datového a telefonního provozu r. 2003 - VoIP asi 7% z celkového objemu tel. provozu r. 2005 - telefonní provoz pouze 15% IP telefonní služby v Evropě - studie IDC (International Data Corporation) prognózy ovlivňují charakter konverentních sítí a komunikačních technologií společná platforma IP nebo ATM? ATM garance QoS, přenos buněk, vzrůstá režie IP vysoce standardizovaný, problém s QoS koncepce NGN dosud počítá s VoIP i s ATM

RTP RFC RFC 1889/1890 15 Real Time Protocol TCP není vhodný pro přenos hlasu, koncová zařízení řeší zabezpečení přenosu, TCP/IP bude přenášet signalizaci, vlastní hovor bude obsloužen pomocí RTP RTP rozšiřuje datagramový UDP o časové značky, V / verze, P / doplnění X / rozšiřující bit CSRC count / číslo CSRC identifikátoru M/ značka Payload type / formát užitečného zatížení RTP Sequence number / inkrementace s odeslaným paketem Timestamp / vzorkovací značka SSRC / identifikuje synchronizační zdroj

RTP RFC RFC 1889/1890 16 Real Time Protocol hlavička : 40 oktetů payload : 20 160 oketů crtp komprimuje hlavičku ze 40 na 2-3 oktety 12 oktetů RTP 8 oktetů UDP 20 oktetů IP

H.323 zastřešuje řadu standardů 17 řeší multimediální komunikaci přes paketové sítě standard ITU-T ( reakce IETF vypracovala SIP ) H.323 v1 (r. 96) H.323 v2 (r. 98) H.323 v3 (r. 99) H.323 v4 (r.2001) dominatní postavení dané evolucí VoIP, alternativním protokolem je SIP

18 H.323 zastřešuje řadu standardů řízení a uživatelské rozhraní Video Audio Data T.120 řízení H.245 řízení spojení H.225.0 signalizace, autentizace, RAS Video kodek H.261, H263 Audio kodek G.711, G.726, G.728, G.729, G.723.1 vyrovnání zpoždění H.225.0 Layer LAN Stack

kodeky, výkonnost, náročnost, kvalita 19

20 řídící protokoly specifikované v H.323 H.323 Annexes H.225.0 (Call Signaling and RAS) H.245 (Media control) H.235 (security) H.341 (SNMP) H.450 (Supplementary Services) H.246 (Interworking Gateways) H.248 Gateway Control protocol

21 H.323 vztahy k dalším standardům RTP/RTCP : RFC 1889 and 1890 DTMF přes RTP řeší RFC 2833 T.120 - data conferencing Audio Codecs: G.711, G.726, G.728, G.729, G.723.1 Video Codecs: H.261, H.263 T.38: Realtime FAX Q.931, Call signaling E.164 (1997), číslování

22 H.450 Supplementary Services A few more services defined with each H.323 vers. H.450.1 (1998) Call Signaling H.450.2 (1998) Call Transfer H.450.3 (1998) Call Forward H.450.4 (1999) Call Hold H.450.5 (1999) Call Park and Pickup H.450.6 (1999) Call Waiting H.450.7 (1999) Message Waiting Indication (MWI) H.450.8 (2000) Name Identification H.450.9 (2000) Call Completion H.450.10 (2001) Call Offer H.450.11 (2001) Call Intrusion H.450.12 (2001) Common Information Additional Network Services

23 H.450 doporučení ve vztahu k ISDN služba LAN ISDN ISDN Basic Call - incl. Conference Generic Functions ASN.1 Notation ASN.1 Encoding ROSE Call Transfer Call Diversion Call Hold Call Park/Pickup Call Waiting Message Waiting Number Identific. Name Identification CCBS/CCNR Call Offering Call Intrusion Common Information H.323 H.323,H.225,H.245 H.450.1 (2/98) X.680-X.683 X.691 (PER) X.880 H.450.2 (2/98) H.450.3 (2/98) H.450.4 (5/99) H.450.5 (5/99) H.450.6 (5/99) H.450.7 (5/99) H.225 H.450.8 (3/00) H.450.9 (11/00) H.450.10 (11/00) H.450.11 (11/00) H.450.12 (11/00) ISO QSIG (PSS1) ISO 11572 n.a. ISO 11582 X.208 X.209(BER) X.229 ISO 13860 ISO 13873 ISO 11582 n.a. ISO 11582 ISO 15506 ISO 11572 ISO 13868 ISO 13870 ISO 1... ISO 1... ISO 1... DSS1 (Euro-ISDN) ETS 300 102 ETS 300 185-1 EN 300 196-1, EN 301 061-1 X.208 X.209 (BER) X.229 ETS 300 369-1 ETS 300 207-1 ETS 300 141-1 n.a. ETS 300 058-1 ETS 300 745-1, EN 300 899-1 ETS 300 092-1, ETS 300 093-1 ETS 300 097-1, ETS 300 098-1 EN 301 065-1 n.a. n.a. n.a.

H.323 Network Elements 24 H.323 Terminal H.323 MCU H.323 Gatekeeper H.323 Gateway H.323 Terminal H.323 Terminal PSTN QoS LAN N-ISDN B-ISDN

25 Koncepce komunikace v H.323 V H.323 GW Signalizační část Setup Connect Capabilities Exchange H.225 (TCP) (Q.931) V H.323 GW Open Logical Channel Open Logical Channel Acknowledge H.245 (TCP) hovorové spojení RTP Stream RTP Stream RTCP Stream (UDP)

uplatnění GK při řízení spojení 26 Gatekeeper Q.931/H.245 Gatekeeper RAS Endpoint Q.931/ H.245 Signalling (Q.931) H.245 RTP/RTCP Q.931/ H.245 RAS Endpoint Gatekeeper Routed Signaling Direct Routed Signaling

27

28 zprávy H.225/RAS RAS Registration, Admission A and Status zprávy mezi koncovým zařízením a GK RRQ/RCF/RRJ - Registration Request/Confirm/Reject URQ/UCF/URJ Unregister Request/Confirm/Reject ARQ/ACF/ARJ Admission Request/Confirm/Reject IRQ/IRR/ - Information Request/Request Response,, Status LRQ/LCF/LRJ Location Request/Confirm/Reject BRQ/BCF/BRJ Bandwidth Request/Confirm/Reject DRQ/DCF/DRJ Disengage Request/Confirm/Reject

29 zprávy H.225/Q. Q.931 Q.931 podobné, ale ne stejné jako v ISDN SETUP CALL PROCEEDING ALERTING CONNECT RELEASE inicializace spojení - sestavování spojení - vyzvánění - přihlášení - ukončení spojení Facility, Information, Progress, Status - další typy zpráv

30 H.323 Registration Endpoint Gatekeeper RRQ RCF or RRJ URQ UCF/URJ Endpoint initiated Unregister Request URQ UCF Gatekeeper initiated Unregister Request T1524050-96

31 H.323 Call Signaling Call Signalling Routing Direct (endpoint) routed Call signalling Gatekeeper Routed Call signalling (DRC) (GRC) Including H.245 (GK Routed H.245) Excluding H.245 (Direct H.245)

32 DRC - Direct Endpoint Call Signaling Gatekeeper cloud 1 ARQ 2 ACF/ARJ 3 Setup 4 ARQ 5 ACF/ARJ 6 Connect Call Signalling Channel Messages 1 2 4 5 3 Endpoint 1 6 Endpoint 2 T1521290-96 RAS Channel Messages

33 GRC - GK Routed Call signaling 1 ARQ 2 ACF/ARJ 3 Setup 4 Setup 5 ARQ 6 ACF/ARJ 7 Connect 8 Connect Gatekeeper cloud 1 2 3 8 4 5 6 7 Endpoint 1 Endpoint 2 Call Signalling Channel Messages T1521280-96 RAS Channel Messages

34 GRC with Direct H.245 Gatekeeper cloud 1 ARQ 2 ACF/ARJ 3 Setup 4 Setup 5 ARQ 6 ACF/ARJ 7 Connect 8 Connect 9 H.245 Channel 1 2 3 8 4 5 6 7 9 Endpoint 1 Endpoint 2 H.245 Control Channel Messages T1521300-96 Call Signalling Channel Messages RAS Channel Messages

35 H.323 version 1 bez garantované kvality služby Recommendations H.323 (1996) H.225.0 (1996) protocolidentifier= {itu-t (0) recommendation (0) h (8) 2250 version (0) 1} H.245 (1997) protocolidentifier= {itu-t (0) recommendation (0) h (8) 245 version (0) 2} chybně je u H.245 uváděna verze.

36 H.323 version 2 pro paketově založené multimediální komunikační systémy Recommendations H.323 (1998) H.225.0 (1998) protocolidentifier= {itu-t (0) recommendation (0) h (8) 2250 version (0) 2} H.245 (1998) protocolidentifier= {itu-t (0) recommendation (0) h (8) 245 version (0) 3} (or higher) H.235 (1998) H.246 (1998) QoS : RSVP H.450.1 (1998) Call Signaling H.450.2 (1998) Call Transfer H.450.3 (1998) Call Forward

37 H.323 version 3 Recommendations H.323 (1999) H.225.0 (1999) protocolidentifier= {itu-t (0) recommendation (0) h (8) 2250 version (0) 3} H.245 (1999) protocolidentifier= {itu-t (0) recommendation (0) h (8) 245 version (0) 5} (or higher) H.450.1 (1998) H.235 (1998) H.246 (1998) H.341 (1999) H.450.2 (1998) H.450.3 (1998) H.450.4 (1999) Call Hold H.450.5 (1999) Call Park and Pickup H.450.6 (1999) Call Waiting H.450.7 (1999) MWI

38 H.323 version 4 Recommendations H.323 (2000) H.225.0 (2000) protocolidentifier= {itu-t (0) recommendation (0) h (8) 2250 version (0) 4} H.245 (2000) protocolidentifier= {itu-t (0) recommendation (0) h (8) 245 version (0) 7} H.235 (1998) H.246 (1998) H.248 (2000) H.450.1 (1998) H.450.2 (1998) H.450.3 (1998) H.450.4 (1999) H.450.5 (1999) H.450.6 (1999) H.450.7 (1999) H.450.8 (2000) Name Identification H.450.9 (2000) Call Completion

39 ENUM nový IETF protokol ol [RFC 2916] - využívá DNS pro překlad tel.čísla a URL +420 69 699 1699 DNS $ORIGIN 9.9.6.1.9.9.6.9.6.0.2.4.e164.arpa. IN NAPTR 100 10 "u" h323" "!^.*$!h323:voznak@vsb.cz!". IN NAPTR 100 20 "u" "mailto" "!^.*$!mailto:voznak@vsb.cz!". h323:voznak@vsb.cz

QoS Quality of Service 40 pro měření kvality hovoru: MOS Mean Opinion Score, P.800, subjektivní 0 až 5, PSQM Perceptual Speech Quality Measure, P.861, objektivní 6,5 až 0 - připravuje se H.323 Annex N (2002) nástroje, dva pohledy: - intserv: QoS end to end, RSVP (Resource Reservation Protocol, r.1997), musí podporovat všechny prvky na trase - diffserv: využívá TOS (Type of Service, 3 bity) v hlavičce IP paketu, prioritizace hlasového provozu, nové metody perspektiva vývoje : cesta diffserv technologií

VoIP Gateway 41 analogové řešení : modul FXO (rozhraní U, funkce TE) modul FXS (rozhraní U, funkce SLC) modul EM (provolba) digitální řešení : modul BRI/ISDN (DSS1/QSIG) modul PRI/ISDN (DSS1/QSIG) modul E1/CAS (K+MFC-R2) FXS VoIP Gateway ISDN/PRI QoS? IP síť VoIP Gateway ISDN/PRI Telephone Exchange ISDN/PSTN Telephone Exchange

- klient naváže spojení s proxy nebo redirect serverem, ten prostřednictvím lokalizační služby zjistí IP adresu serveru volaného uživatele - informace, kde se uživatel nachází, předává lokalizační službě registrar server, uživatelé mají obvykle registrovaný SIP telefon u registrar serveru (registrar server i lokalizační služba jsou většinou v jedné aplikaci). SIP (Session Initiation Protocol) 42 - textový, svojí strukturou obdobný protokolu HTTP, posloupnosti textových hlaviček - - SIP je protokol typu klient-server, klient navazuje spojení se serverem, jedno zařízení obvykle pracuje současně jako klient i server (volající i přijímající volání) - zprávy protokolu SIP jsou dvojího druhu (žádosti a odpovědi) a jsou následujících typů: INVITE žádost o navázání spojení nebo o změnu parametrů již existujícího spojení BYE žádost o rozpojení spojení ACK žádost, kterou klient potvrzuje, že obdržel odpověď na žádost INVITE REGISTER žádost o registraci klienta na registrar serveru CANCEL žádost o zrušení probíhající žádosti INVITE OPTIONS žádost o zaslání podporovaných funkcí na serveru INFO přenos informací během hovoru (rozšíření protokolu SIP popsané v RFC2976)

SIP (Session Initiation Protocol) 43 - Proxy server sám naváže spojení se serverem volaného uživatele a potvrdí navázání spojení - Redirect server narozdíl od Proxy sdělí volajícímu klientu IP adresu serveru volaného uživatele a klient musí navázat spojení přímo se serverem volaného uživatele - Lokalizační služba může vrátit několik různých adres volaného uživatele, proxy server může kontaktovat jednotlivé adresy buď postupně nebo paralelně UAC - user agent client UAS - user agent server UA - user agent (UAC + UAS ) SIP server - Proxy, redirect a registrar server zkombinované v jednom zařízení

Faktory ovlivňující kvalitu hlasu 44 srozumitelnost echo zpoždění srozumitelnost je dána výběrem hlasového kodeku: G.711, MOS=4,1 G.726, MOS=3,8 G.729, MOS=3.92 zpoždění: kompresní zpoždění (kodek, různé nároky na procesorový výkon) algoritmické zpoždění (pevně nastaveno pro řazení zpožděných paketů) proměnné zpoždění ( Jitter vzniká v IP síti na pomalých linkách nebo trasách se saturovaným provozem v místech, kde dochází k řazení paketů do front)

Nástroje QoS - intserv a diffserv 45 IP síť se snaží vyhovět stejně všem požadavkům aplikací - best effort. integrované služby - intserv: zdroj oznámí IP síti své požadavky na přenos dat, neboli přímo požaduje určité QoS počítačové sítě, například určitou minimální průchodnost a určité maximální zpoždění - RSVP (Resource Reservation Protocol), RFC 2205, 1997. rozlišované služby - diffserv: každý paket vstupující do IP sítě je označen značkou, která určuje třídu přenosu poskytnutou paketu, během přenosu paketů IP sítí další směrovače pouze přečtou značku každého paketu a dle této značky se řídí při zpracování paketu., RFC 2474, 1998.

Řízení front ve směrovačích WFQ - Weighted Fair Queueing jednotlivým frontám je přidělována alikvotní část kapacity výstupní linky 46 CBWFQ - Class-Based Weighted Fair Queuing fronty prezentují třídy, které mají definovanou šířku pásma a provoz je přiřazen do třídy, maximálně 64 tříd WRED - Weighted Random Early Detection metoda prevence zahlcení, přesáhne-li naplnění fronty určitou mez, začne směrovač zahazovat pakety z náhodně vybraných TCP spojení CAR - Commited Access Rate pakety se identifikují na vstupu, hlasový paket ve frontě předběhne ostatní dle svého zařazení ve skupině QoS

Fragmentace paketů 47 rámec Ethernet II - max. velikost paketu je 1500 Bytes zpoždění (paket 1500 Bytes) (paket 128 Bytes) na lince 64 kbit/s - 187 ms 16 ms na lince 512 kbit/s - 23 ms 2 ms

QoS Quality of Service 48 - nástroje QoS používat do 768 kbit/s, na vyšších rychlostech stačí sledovat provoz v HPH a vytížení linek Standardní metoda řazení paketů se označuje jako Best effort : na lince 64 kbit/s budu stahovat soubor FTP protokolem = > výpadky v hovoru ITU-T G.114, High Quality = zpoždění nižší než 150 ms nástroje hrubé síly, sníží propustnost linky: - RSVP (rezervace pásma) -RED (předchází zahlcení)

49 QoS Quality of Service jemné nástroje pouze upřednostní hlasový provoz: LLQ (Low Latency Queuing) označování paketů (diffserv) a zpracování dle priorit LFI - fragmentace dlouhých datových paketů a prokládání hlasovými PQ prioritní fronta pro hlasové pakety, dokud se nevyprázdní, tak se neobsluhuje WBFQ WFQ datovým toků je přiřazena alikvotní část kapacity linky

QoS Quality of Service 50 Graf znázorňuje průběh proměnného zpoždění pro kodek G.711 s RTP na Ethernetu 100 Mbit/s, který byl měřen během provozu (zatížení sítě 14,8 %). Během spojení nebyly zaznamenány ztracené pakety a celkově lze hodnotit zpoždění jako zanedbatelné.

QoS Quality of Service PBX směrovač C1751 51 2703 ISDN / BRI V.35 Ethernet 10/100 Modem Nokia FTP klient 64 kbit/s - synchronní režim Modem Nokia 420696991668 ISDN / PRI PBX směrovač AS5300 Multilink PPP protokol, rozhraní V.35 Ethernet 10/100 směrovač C2610 FTP server H.255/Q.931 H.255/RAS Gatekeeper směrovač C2610 Model sítě, na kterém bylo provedeno měření proměnného zpoždění, kritickým místem je linka WAN s rychlostí 64 kbit/s

QoS Quality of Service 52 Navázání spojení z 2703 na 420696991668. Výměna zpráv signalizace H.225/RAS typu ARQ-ACF probíhá mezi GK na směrovači Cisco 2610 a hlasovou bránou VoGW na směrovači Cisco 1751. ARQ Admission Request, VoGW žádá GK o přístup na tel.č. 420696991668 ACF Admission Confirm, VoGW obdrží od GK odpověď s cílovou IP adresou k požadovanému tel.č., v případě zamítnutí přichází zpráva ARJ (Admission Reject) SETUP inicializace spojení mezi VoGW ALERTING vyzvánění výměna zpráv čas [ms] ARQ <-> ACF 42 SETUP <-> ALERTING 612 celková doba ARQ <-> ALERTING (včetně doby zpracování zpráv na směrovačích) 743

QoS Quality of Service 53 zpoždě ní [ms] 40 30 20 10 0-10 -20-30 jitte r bě hem spojení změře ný pro G.729, 8 kbit/s, pro RTP na PPP Multilink 64 kbit/s zpoždě ní [ms] 40 30 20 10 0-10 -20-30 jitte r bě hem spojení změřený pro G.723.1, 5,3 kbit/s, pro RTP na PPP Multilink 64 kbit/s

IP telefonie v síti sdružení vysokých škol 54

IP telefonie v síti sdružení vysokých škol 55 VoIP síť Cesnet2 GK_Aliatel HSRP GW-CERN 412276xxxxx GK world????? GK_PRG GK_OV GW-SLAC 1650926xxxx GK Kerio cesnet-ext.cesnet.cz GK AARNET 61xxxx

IP telefonie v síti sdružení vysokých škol 56

Siemens IP telefonie koncová zařízení optipoint300basic optipoint300advance opticlient330 AP 1100 a 1140 optipoint400standard opticlient360 57