1 ÚVOD Mikrobiologie je věda, zabývající se zejména mikroskopickými organismy, mezi které patří např. bakterie, viry nebo mikroskopické houby. Název mikrobiologie pochází z řečtiny, mikros znamená malý, bios znamená život a logos znamená slovo. Historicky se mikrobiologie zabývala zejména těmi organismy, které nebyly vidět pouhým okem, moderní mikrobiologie už se tak striktního vymezení nedrží. Mikrobiologie má mnoho podoborů, např. virologie zkoumá viry (nebuněčné parazity buněk), bakteriologie bakterie, algologie prokaryotické řasy, mykologie zejména houby atd. Mikrobiologie jako biologická věda využívá poznatků dalších věd, např. molekulární biologie, ekologie či biochemie. Naopak mnoho aplikovaných oborů využívá mikrobiologických poznatků, např. biotechnologie, lékařská mikrobiologie nebo mikrobiologie potravin. 1.1 STRUČNÁ HISTORIE MIKROBIOLOGIE Historii mikrobiologie můžeme datovat už do starověku. Např. římský filozof Lucretius se domníval, že nemoci jsou způsobovány neviditelnými organismy. Těžko říci, jak se dobral tohoto závěru, nicméně je obecně správný. Středověk pak znamenal pro mikrobiologii, stejně jako pro většinu ostatních věd období temna. Z hlediska mikrobiologického je tak středověk zajímavý jen častými výskyty epidemií nejrůznějších smrtelných chorob, nejničivější byly zejména mor a cholera. Za začátek novodobé mikrobiologie lze považovat práci Roberka Hooka Micrographia (1665) ve které poprvé použil termínu buňka v dnes chápaném významu základní jednotky živé hmoty. Skutečnou revoluci v mikrobiologii pak přinesl vynález mikroskopu Antonym van Leeuwenhoekem v roce 1673. Leeuwenhoek byl pravděpodobně prvním člověkem, který spatřil na vlastní oči bakterie. Od tohoto okamžiku se začala mikrobiologie rozvíjet jako skutečná věda, která shromažďovala, utřiďovala a zobecňovala získané poznatky. Z doby po Leuwenhoekovi pak pocházejí nejznámější mikrobiologická jména minulosti. Německý biolog Ferdinand Cohn (1828-1898) navrhl první systém klasifikace bakterií a objevil bakteriální spory (u rodu Bacillus). Jeho současník Louis Pasteur (1822-1895) se zapsal do dějin mikrobiologie velmi výrazně např. objevem techniky likvidace bakterií teplem, která dodnes nese jeho jméno pasterace. Pomocí pasterace se mu také podařilo vyvrátit do té doby uznávanou teorii samoplození a upevnit tak jeden základní biologický zákon, že živé vzniká vždy jen z živého. Pasteurův přínos mikrobiologii byl i v oblasti metodické, zavedl např. očkování mikroorganismů dodnes používaným způsobem. Další mohutnou vlnou rozvoje mikrobiologie byl přelom 19. a 20. století. V roce 1892 popsal Dmitrij Ivanovský první virus (tabákové mozaiky), čímž fakticky založil další podobor mikrobiologie. Do tohoto období spadá pravděpodobně i nejslavnější mikrobiologický objev všech dob. V roce 1929 objevil Alexander Fleming první antibiotikum penicilin. Milióny lidí vděčí penicilinu za svůj život, farmaceutické firmy na něm vydělaly miliardy dolarů, paradoxem ale zůstává, že za objevem stojí zejména Flemingova nepořádnost. Kdyby Flemingovi v průběhu dovolené nezplesnivěly misky se stafylokoky, které před dovolenou nezlikvidoval, možná bychom na tento objev ještě dlouho čekali. Začátek 20. století také přinesl významné objevy na poli biochemie. Biochemici se pomalu přestával zabývat jen složením živé hmoty, ale začali se intenzivně zabývat také pochody, které v živých organismech probíhají. Intenzivně byly zkoumány zejména enzymy, byly objeveny první biochemické dráhy a také zkoumána vnitřní struktura buněk. Skutečnou revoluci, která biologické vědy opanuje dodnes, znamenal objev struktury deoxyribonukleové kyseliny (DNA) Jamesem Watsonem, Francisem Crickem a Mauricem Wilkinsonem (1953). Dvojšroubovicový model otevřel vědcům oči a vysvětlení základních genetických pochodů na úrovni molekul na sebe nenechalo dlouho čekat. V roce 1966 byl pak kompletně rozluštěn genetický kód. Rozvoj genetiky vedl i ke snaze využít poznatků k zásahům do genetického vybavení. V roce 1973 tak spatřila světlo světa první geneticky modifikovaná bakterie Escherichia coli, nesoucí v sobě žabí geny. V roce 1995 byl úspěšně dokončen první projekt sekvenace kompletního genomu bakterie Haemophilus influenzae. Dnes je znám kompletní genom u stovek bakterií, další stovky jsou pravděpodobně osekvenované, ale vědecké veřejnosti nepřístupné u řady biotechnologických a farmaceutických firem. 1-1
1.2 POSTAVENÍ MIKROORGANISMŮ V PŘÍRODĚ A ŽIVOTNÍM PROSTŘEDÍ Mikroorganismy patří mezi tzv. živé soustavy. Ty se od neživých soustav odlišují několika základními charakteristikami: Schopnost rozmnožovat se Schopnost předat dědičnou informaci na potomstvo Schopnost udržet uspořádaný stav Schopnost látkové přeměny (metabolismu) ku vlastnímu prospěchu Časově omezená existence Někteří autoři uvádějí i další charakteristiky živé hmoty, např. obsah bílkovin a nukleových kyselin (které nacházíme u všech dosud známých živých organismů) nebo buněčná stavba těla. Akademické spory se vedou o zařazení virů, které nejsou schopné samostatného rozmnožování a napadají za tímto účelem hostitelské buňky. Mikroorganismy, ačkoliv mikroskopické, zaujímají významné až dominantní postavení v životním prostředí a mají v něm nezastupitelné úlohy. Mikroorganismy jsou schopnými rozkladači zejména organické hmoty rozkládající např. těla jiných organismů (mrtvá i živá), jejich odumřelé součásti (např. listy ze stromu), látky vyloučené jinými organismy (trus apod.), mnohé horniny a nerosty nebo látky vytvořené člověkem. Mikroorganismy jsou důležitými producenty chemických látek. Kromě vlastní biomasy produkují např. látky určené k boji proti jiným organismům (antibiotika, toxiny apod.), ochranné látky (např. polysacharidová pouzdra), enzymy katalyzující rozklad látek či odpadní produkty metabolismu, často dále využitelné jinými organismy či člověkem (ethanol, vodík, methan apod.). Svou činností mají mikroorganismy nezastupitelnou úlohu při tvorbě půdy, čištění vod a v tzv. geochemických cyklech, tj. koloběhu základních chemických prvků v přírodě. Mikroorganismy jsou součástí přirozených společenstev organismů v přírodě. Jejich vztahy k ostatním členům společenstva mohou být pozitivní, neutrální i negativní. Mnohé mikroorganismy žijí v symbióze s makroorganismy a toto spojení bývá často výhodné či dokonce nezbytně nutné. V podobném vztahu jsou mikroorganismy i vůči člověku. Člověk hostí ve svém těle bilióny a trilióny bakterií, bez kterých by např. nebyl schopen správně trávit potravu. Mikroorganismy ale ovlivňují člověka i v jeho činnosti. Člověk mikroorganismy využívá ke svému prospěchu jako producenty žádaných látek, při likvidacích odpadu nebo produkci potravin. Naopak mikroorganismy člověka v mnoha ohledech škodí, ať už jako patogeny způsobující choroby či rozkladači potravin a jiných užitečných výrobků. 1.3 VÝSKYT MIKROORGANISMŮ Výskyt organismů se dá charakterizovat velice jednoduše: mikroorganismy jsou prakticky všude. Tzv. aseptické prostředí (tj. prostředí bez mikroorganismů) se na Zemi přirozeně vyskytuje velmi zřídka a obvykle je jen dílem člověka. Příkladem jsou aseptická prostředí v nemocnicích a vědeckých ústavech a pak lokality s opravdu extrémními podmínkami (rozžhavená láva apod.). Variabilita a odolnost mikroorganismů je podstatně větší než makroorganismů a mnohé mikroorganismy osidlují i prostředí, kde panují z lidského pohledu extrémní podmínky, např. polární kraje, jícny podmořských sopek či extrémně slané vody, např. Mrtvé moře. Všude tam nacházíme unikátní mikroorganismy dobře přizpůsobené pro dané prostředí. I vzhledem ke své velikosti se mikroorganismy počítají obvykle v tisících, miliónech či miliardách, viz. tabulka: 1-2
Prostředí Orientační množství bakterií Stolice zdravého člověka 10 9 /g Zemědělská půda 10 8 /g Bachorová šťáva přežvýkavců Lidská slina Jezera a rybníky 10 10 / ml 10 8 /ml 10 6 /ml Jogurt >10 9 /g Pitná voda 10 2 /ml Vzduch 10 3 /m 3 1.4 VÝVOJ ŽIVOTA NA ZEMI Dnes nejrozšířenější názor na vznik života je ten, že život na Zemi vznikl samovolně z neživé hmoty a postupným vývojem se rozvinul až do dnešní bohaté podoby. Tato evoluční teorie má nicméně mnoho nejasností, bílých míst a fakty málo podložených hypotéz. I díky nemalému rozšíření nejrůznějších náboženství tak existuje mnoho odpůrců evoluční teorie. Kreacionisté věří, že život byl stvořen bohem, eternitisté věří tomu, že život je věčný a vzniknout tak ani nemusel. Neobvyklý není ani ten názor, že život vznikl na jiné planetě a byl na Zemi zanesen. Většina vědců nicméně věří, že nejasnosti se podaří časem vysvětlit a tato víra byla v minulosti mnohokrát podpořena novými objevy. Nové objevy pak také vedou k upřesnění časového vývoje, následující řádky proto možná nebudou za pár let platit. Země vznikla pravděpodobně přibližně před 4,5 miliardami let a byla výrazně jiná než dnes. Atmosféra byla pravděpodobně redukční a sestávala zejména z methanu, amoniaku, vodíku, vodních par, dusíku, amoniaku a oxidu uhličitého. Vlivem slunečního záření (zejména ultrafialového) a vlivem častých bouří docházelo v atmosféře k chemickým reakcím, které daly vzniknout složitějším chemickým látkám, např. aminokyselinám (součást bílkovin), purinům (součást DNA) a mnohým dalším. Tuto fázi vývoje života nazýváme obvykle chemickou evolucí a její stěžejní reakce se podařilo nasimulovat v laboratořích. Kumulací a vysycháním těchto jednoduchých organických látek vznikaly pravděpodobně polymery (jakési prabílkoviny a pranukleové kyseliny), které se za určitých nejasných okolností shlukovaly za vzniku přibližně kulatých útvarů. S velmi malou ale nenulovou pravděpodobností byl některý z těchto útvarů natolik organizovaný, že měl schopnost rozmnožování a dal tak fakticky vzniknout první živé buňce. Primitivní život byl pravděpodobně založen zejména na ribonukleové kyselině (RNA), která vykonávala nejen funkci informační molekuly, ale též funkci stavební a katalytickou. Pravděpodobným pozůstatkem této fáze praživota jsou funkční ribozomální a transferové RNA, které hrají hlavní roli v syntéze bílkovin. Biologická evoluce začíná vznikem genetického kódu a proteosyntézy. Genetický kód všech dnešních organismů je univerzální (tj. pro všechny stejný) a je tedy zjevné, že mají jednoho společného předka. Vývoj od tohoto předka se pak ubíral dvěma hlavními směry, první větev zůstala na nižší buněčné úrovni a dala vzniknout dnešním bakteriím. Druhá větev se později rozdělila na další dvě. Z první se vyvinuly organismy jejichž stavba buněk zůstala primitivní podobná bakteriím, ale s některými pokročilejšími vlastnostmi. Tyto organismy byly nazvány archea*. Druhá větev se vyvinula k pokročilejší stavbě buňky a dala vzniknout dnešním eukaryotickým organismům rostlinám, živočichům, houbám a prvokům. 1-3
Rostliny Houby Bacteria Archea Živočichové Eukarya Společný předek Obr. 1 Univerzální fylogenetický strom a základní vývojové větve života na Zemi. Společný vývoj archeí a eukaryot je doložen např. genetickými mechanismy, které jsou u obou skupin velice podobné a proti genetickým mechanismům bakterií výrazně pokročilejší. Samostatný vývoj archeí je pak doložen některými unikátními metabolickými drahami (např. methanogenezí) či unikátními prvky ve stavbě buněk (např. buněčné membrány). Otázkou zůstává, jakým způsobem se vyvinula pokročilá eukaryotická buňka. Tak je totiž, na rozdíl od bakteriálních a archeálních buněk, vnitřně rozdělená membránami na různé kompartmenty a organely. Některé z těchto organel (mitochondrie a chloroplasty) jsou přitom částečně autonomní a mají i vlastní genetickou informaci (podobnou bakteriální). Dnes se předpokládá tzv. endosymbiotická teorie, podle které pohltila primitivní eukaryotická buňka purpurové bakterie. Tato symbióza posléze přešla v závislost a specializaci a z původní purpurové bakterie se stala mitochondrie. K tomuto jevu došlo pravděpodobně několikrát. Předpokládá se, že rostlinné chloroplasty vznikly podobným mechanismem pohlcením zelené fotosyntetizující bakterie. Dnešní rostlinná buňka (nesoucí jak mitochondrie, tak chloroplasty) pravděpodobně vznikla splynutím dvou buněk, jedné nesoucí chloroplasty, druhé nesoucí mitochondrie. 1.5 EVOLUCE A TAXONOMICKÝ SYSTÉM MIKROORGANISMŮ Základem každé vědy je systematika získaných poznatků a biologické vědy nejsou pochopitelně žádnou výjimkou. Biologové se odjakživa snažili známé organismy nějakým způsobem zatřídit do systému. Vznikl tak podobor biologie nazývaný taxonomie. Základy dnes používaného taxonomického systému položil už v 18. století švédský biolog Carl Linné. Ten ve svém díle Systematica nature (Soustava přírody) z roku 1735 stručně popsal všechny tehdy známé biologické druhy a každému přiřadil dvojslovný název rodové a druhové jméno. Vznikla tak tzv. binomická nomenklatura, kterou biologie využívá dodnes. Rodové a druhové jméno se v odborných publikacích píše tradičně proloženě (kurzívou). Základní taxonomickou jednotkou je druh. U vyšších organismů je jeho vymezení jednoduché, jedinci stejného druhu jsou ty, kteří jsou schopni se vzájemně rozmnožovat za vzniku plodního potomstva. V mikrobiologii ale tato definice naráží, protože naprostá většina mikroorganismů se rozmnožuje pouze nepohlavně, popř. střídavě pohlavně a nepohlavně. U těchto organismů (zejména bakterií) proto dáváme přednost definici druhu založené na dostatečné vzájemné podobnosti organismů, obvykle se uvažuje 95% shoda. U bakterií pak narážíme na další problém a tím je poměrně velká morfologická uniformita. Tvary bakteriálních buněk nejsou příliš rozmanité, jejich pozorování je vzhledem 1-4
k velikosti i s obyčejným mikroskopem obtížné a pro taxonomické hodnocení se příliš nehodí. Proto se v mikrobiologii používají zejména chemické a metabolické charakteristiky. V posledních letech se pak dostávají do popředí zejména charakteristiky založené na genetické informaci a sekvencích DNA a RNA. Ty mají mnoho výhod, např. že odrážejí vývojovou (fylogenetickou) příbuznost nebo že nezávisí na fyziologickém stavu organismů. Taxonomie se ale nespokojuje jen s určením druhu, ale snaží se zatřídit organismy do větších hierarchických skupin, tzv. taxonů. Každý taxon je založen na dostatečné míře vzájemné podobnosti jeho členů a zároveň na dostatečné míře odlišnosti těchto členů od členů patřících do jiného taxonu. Míru podobnosti organismů můžeme matematicky vyjádřit formou čtyřpolní tabulky: počet vlastností, 1. druh které druh má nemá 2. druh má a b nemá c d Políčka označená jako a, b, c, d se vyplní počty znaků, které se vyskytují u obou organismů (a), které pouze u jednoho (b resp. c) a které se nevyskytují u žádného organismu. Ze čtyřpolní tabulky je pak možné vypočítat koeficient podobnosti, např. tzv. koeficient prosté shody (simple matching coefficient): S a + d = SM a + b + c + d popř. tzv. Jaccardův koeficient, který nezahrnuje znaky nevyskytující se ani u jednoho porovnávaného druhu: S a = J a + b + c Oba koeficienty dosahují hodnot <0-1>, čím vyšší hodnota, tím vyšší vzájemná podobnost. Na základě koeficientů podobnosti je pak možné sestavovat tzv. stromové grafy, ve kterých leží podobné organismy blíže u sebe a jejichž větvení odpovídá vyšším taxonům (tzv. fenonům). Při porovnávání podobnosti jednotlivých organismů je možné využít jakýchkoliv pozorovatelných vlastností organismů, čím jich je více, tím větší je přesnost takového porovnání. Tradičně se k tomuto účelu využívají zejména morfologické (tvarové) znaky (tvar těla, barva apod.). Rozvoj geneticky dal nicméně biologům do ruky novou a podstatně mocnější zbraň porovnávání genetických sekvencí. Zatímco u morfologických znaků už bývá velmi problematické a hlavně pracné správné určení už několik desítek znaků, genetické sekvence nabízejí o několik řádů bohatší informaci. Navíc se předpokládá, že náhodné změny genetické informace (mutace) jsou hlavní hybnou silou evoluce nových znaků a vlastností. Fenotypové (tj. vnější) projevy těchto mutací jsou pak podrobeny tlaku prostředí (selekce), výhodné jsou zachovány (fixovány), nevýhodné naopak obvykle eliminovány. Příbuznější organismy proto budou mít vzájemně podobnější genetické sekvence. Jako nejvhodnější část genetické informace pro určení evoluční příbuznosti se ukázala ribozomální RNA. Ribozómy nacházíme u všech organismů od bakterií až po člověka a z těchto sekvencí je tedy možné sestrojit skutečně univerzální fylogenetický strom. Navíc mají ribozomální RNA v ribozómech stavební funkci, mutace v této oblasti jsou proto veskrze neutrální a selekce prakticky nenastává. Univerzální fylogenetcický strom založený na 16S RNA (resp. 18SRNA u eukaryot) je uveden na Obr. 1. Z něj vychází základní evoluční linie nazvané nově domény (Bacteria, Archea a Eukarya) i jejich další větvení. Z evoluční příbuznosti vychází také moderní taxonomický systém. Taxonomové se snaží vyšší taxony uspořádávat tak, aby byly tzv. monofyletické, tj. aby v každém taxonu byli pouze ty druhy, které mají jednoho společného předka. Příkladem takovýchto taxonů jsou např. tři základní eukaryotické říše (rostliny, živočichové a houby). Monofyletické taxony jsou považovány za přirozené. Opakem jsou umělé tzv. polyfyletické taxony, který sdružují organismy s více předky. Příkladem může být umělá říše Prvoci (Protozoa), která zahrnuje menší nezávislé eukaryotické vývojové linie. Je samozřejmě pravda, že všichni prvoci mají jednoho společného předka (praeukaryotický organismus), nicméně takovýto taxon by odpovídal všem eukaryotům a nezahrnoval už by jen prvoky. Hlavní taxony používané v biologii uvádí tabulka: 1-5
Česky Latinsky Anglicky Přípona doména regio domain říše regnum kingdom kmen phyllum phylum oddělení division division třída classis class řád ordo order -ales čeleď familia family -aceae rod genus genus druh species species Objektivně je ale třeba dodat, že v mikrobiologii nenašly tyto taxony velkého uplatnění. Díky absenci pohlavního rozmnožování u většiny mikroorganismů bývá totiž obvykle problematické určitě správně rod a druh, natož pak vyšší taxony. Systematická mikrobiologie se proto obvykle drží spíše tradičního, ale praktičtější členění založeného zejména na biochemii a morfologii (viz kapitola 12). V mikrobiologii mají naopak daleko větší uplatnění nižší taxony. Zejména u bakterií se často definuje tzv. kmen, který představuje bližší charakteristiku zástupců druhu. Tato charakteristika může být např. místo, ze kterého byl daný kmen izolován. Zástupci kmene pak obvykle představují potomky (klony) jediné konkrétní bakterie. Jiná charakteristika může být např. konkrétní mutace nebo přítomnost či absence některých genů. Kmen se obvykle vyznačuje kratší sekvencí písmen, kterou určuje ten, kdo kmen izoloval a který se nepíše kurzívou. Přítomnost či absence genů se pak obvykle vyznačuje krátkými třípísmenými zkratkami biochemických drah s označením + či -, které se naopak kurzívou píší. Ilustračním příkladem mohou být čtyři kmeny bakterie Pseudomonas fluorescens některé geneticky modifikované: Pseudomonas fluorescens 5R nah + sal + lux - Pseudomonas fluorescens 5RL nah + sal - lux + Pseudomonas fluorescens HK9 nah + sal + lux - Pseudomonas fluorescens HK44 nah + sal + lux + První kmen představuje přirozený izolát který má funkční geny pro odbourávání naftalenu (nah + ) i salicylové kyseliny (sal + ), ale nemá geny pro luminiscenci. Druhý kmen představuje genetickou modifikaci předchozího kmenu, do kterého byly přidány luminiscenční geny (lux + ). Vložení těchto genů ale poškodilo geny pro odbourávání salicylové kyseliny a proto je tento kmen sal -. Třetí kmen je pak opět přirozený izolát a poslední kmen je konečně kýžená luminiscenční bakterie se schopností odbourávání jak naftalenu, tak salicylové kyseliny a zároveň schopná luminiscence. U patogenních mikroorganismů je někdy určován ještě tzv. sérotyp nebo sérovar podle toho, jakými protilátkami na ně reaguje imunitní systém. Jak vyplývá z předchozích kapitol, současná biologie zná tři domény Bacteria, Archea a Eukarya. Ještě nedávno se v biologii učilo (a není vyloučeno, že někde se učí dodnes), třídění života na dvě tzv. nadříše prokaryota a eukaryota. Toto členění živých organismů už je dnes překonané. Termíny prokaryotický a eukaryotický nicméně biologie nadále používá, ale pro označování typu buňky. Bacteria a Archea mají buňky prokaryotické stavby, Eukarya mají buňky eukaryotické stavby. Stavbě buněk se věnuje detailně kapitola 2. 1-6
Hlavní rozdíly mezi doménami jsou shrnuty v následující tabulce. Některé termíny jsou vysvětleny až v dalších kapitolách a proto lze doporučit návrat k tabulce po prostudování příslušných kapitol. Tučně jsou vždy vyznačené shody mezi doménami. Bakteria Archea Eukarya Stavba buňky Prokaryotická Prokaryotická Eukaryotická Operony Ano Ano Ne Introny Ne Ano Ano Vazba v membr. lipidech Esterová Éterová Esterová RNA polymeráza Jednoduchá Složitá Složitá DNA polymerázy Odlišné Podobné Podobné velikost malé ribozomální podjednotky 16S 16S 18S 1.6 TAXONOMICKÉ SKUPINY ORGANISMŮ STUDOVANÝCH MIKROBIOLOGIÍ Jak už bylo řečeno v úvodu, tradiční charakteristika organismů, které jsou zájmem objektu mikrobiologů, je velikost organismu. Tyto hranice jsou ale velmi vágní. Tradičně jsou studovány tyto skupiny organismů 1.6.1 BAKTERIE (BACTERIA) Bakterie jsou jednobuněčné prokaryotické organismy s výhradně nepohlavním rozmnožováním. Jsou velmi variabilní (proměnlivé) zejména v metabolismu (pro získání energie a stavebních látek jsou schopné využít podstatně širší skupinu látek a reakcí než vyšší organismy) a fyziologii (adaptace na nejrůznější, i extrémní podmínky). V optimálních podmínkách jsou schopné daleko rychlejšího rozmnožování ve srovnání s vyššími organismy, podobně rychlejší je i jejich metabolismus. Všechny bakterie jsou zařazeny do domény Bacteria. 1.6.2 MIKROSKOPICKÉ HOUBY (FUNGI) Houby (fungi) jsou eukaryotické organismy mnohobuněčné či jednobuněčné, obvykle s vláknitou stavbou těla. Jejich rozmnožování může být pohlavní i nepohlavní, obvykle se obě fáze střídají. Metabolismus je poměrně uniformní, houby nejsou schopné fotosyntézy a energii získávají oxidací organických látek kyslíkem (aerobní respirací). Některé houby jsou schopné získávat energii i bez kyslíku (anaerobně) tzv. kvašením (viz kapitola 4). Houby tvoří samostatnou říši domény Eukarya, rozdělenou na 5 oddělení (blíže viz kapitola 12). Většina hub není mikroskopická. V rámci mikrobiologie jsou tradičně zkoumány kvasinky (jednobuněčné houby obvykle s kvasnými schopnostmi) a plísně. Ty nejsou přesně vymezenou skupinou hub a jsou chápány spíše technologicky jako mikroskopické vláknité houby s negativním dopadem. 1-7
1.6.3 PRVOCI (PROTOZOA) Prvoci jsou obvykle jednobuněčné eukaryotické organismy. Vývojově se jedná o samostatné menší vývojové větve. Jejich rozmnožování je obvykle nepohlavní, ve výjimečných případech i pohlavní. Jejich buňky jsou obvykle složité a mají vyvinuté speciální organely, nahrazující orgány, např. buněčná ústa či buněčnou řiť. Jejich metabolismus je obvykle založen na oxidaci potravy kyslíkem, ale známe i fotosyntetizující prvoky. Prvoci tvoří samostatnou říši domény Eukarya, nicméně tato říše je typickým příkladem polyfyletického taxonu, protože prvoci nemají společného předka praprvoka. Exaktně by každá skupina prvoků měla být vlastně samostatnou říší, ale tyto říše by ve srovnání s těmi hlavními (rostliny, živočichové, houby) měly neporovnatelně méně druhů a zároveň by jich bylo příliš mnoho. Proto jsou prvoci sdruženy do jedné samostatné nepřirozené říše. 1-8