Lesnícky časopis Forestry Journal ročník 55, číslo 4, 2009, s

Podobné dokumenty
Air Quality Improvement Plans 2019 update Analytical part. Ondřej Vlček, Jana Ďoubalová, Zdeňka Chromcová, Hana Škáchová

CARBONACEOUS PARTICLES IN THE AIR MORAVIAN-SILESIAN REGION

Soubor Map: Mapa struktury porostů na 7 TVP v CHKO Orlické hory Vacek S., Vacek Z., Bulušek D., Ulbrichová I.

Litosil - application

Characterization of soil organic carbon and its fraction labile carbon in ecosystems Ľ. Pospíšilová, V. Petrášová, J. Foukalová, E.

VYUŽITÍ MAGNETICKÉ SUSCEPTIBILITY LESNÍCH PŮD PRO MAPOVÁNÍ IMISNÍ ZÁTĚŽE V REGIONU KRNAP

SLEDOVÁNÍ JARNÍCH FENOLOGICKÝCH FÁZÍ U BUKU LESNÍHO VE SMÍŠENÉM POROSTU KAMEROVÝM SYSTÉMEM

KULOVÝ STEREOTEPLOMĚR NOVÝ přístroj pro měření a hodnocení NEROVNOMĚRNÉ TEPELNÉ ZÁTĚŽE

Jak se pečuje o zemědělskou půdu v České republice? Bořivoj ŠARAPATKA Univerzita Palackého v Olomouci borivoj.sarapatka@upol.

SPECIFICATION FOR ALDER LED

Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Teacher: Student:

Compression of a Dictionary

Vliv metody vyšetřování tvaru brusného kotouče na výslednou přesnost obrobku

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Effect of temperature. transport properties J. FOŘT, Z. PAVLÍK, J. ŽUMÁR,, M. PAVLÍKOVA & R. ČERNÝ Č CTU PRAGUE, CZECH REPUBLIC

Melting the ash from biomass

USING VIDEO IN PRE-SET AND IN-SET TEACHER TRAINING

VYSOKÁ ŠKOLA HOTELOVÁ V PRAZE 8, SPOL. S R. O.

INFLUENCE OF CONSTRUCTION OF TRANSMISSION ON ECONOMIC PARAMETERS OF TRACTOR SET TRANSPORT

Distribution of Sorbus thayensis in the Czech Republic

DATA SHEET. BC516 PNP Darlington transistor. technický list DISCRETE SEMICONDUCTORS Apr 23. Product specification Supersedes data of 1997 Apr 16

POČET ROČNÍKŮ JEHLIC POPULACÍ BOROVICE LESNÍ. Needle year classes of Scots pine progenies. Jarmila Nárovcová. Abstract

The Over-Head Cam (OHC) Valve Train Computer Model

Biosensors and Medical Devices Development at VSB Technical University of Ostrava

VLIV METEOROLOGICKÝCH PODMÍNEK NA ZNEČIŠTĚNÍ OVZDUŠÍ SUSPENDOVANÝMI ČÁSTICEMI

SYSTEM OF ROAD SURFACE MEASUREMENT AND EVALUATION IN THE CZECH REPUBLIC, NEW TRENDS IN THIS FIELD

By David Cameron VE7LTD

Dynamic Development of Vocabulary Richness of Text. Miroslav Kubát & Radek Čech University of Ostrava Czech Republic

STUDY EDITS FOR BETTER TRANSPORT IN THE CENTRE OF NÁCHOD

DC circuits with a single source

STUDYING OF NANOIRON PARTICLES MIGRATION IN HOMOGENEOUS ARTIFICAL CREATED AQUIFER IN 3-D ORDERING

VLIV METEOROLOGICKÝCH PODMÍNEK NA KONCENTRACE ŠKODLIVIN V OVZDUŠÍ V AGLOMERACI BRNO A JIHOMORAV- SKÉM KRAJI

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2006, ročník LII, řada strojní článek č.

Aktivita CLIL Chemie I.

Introduction to MS Dynamics NAV

ACOUSTIC EMISSION SIGNAL USED FOR EVALUATION OF FAILURES FROM SCRATCH INDENTATION

Czech Republic. EDUCAnet. Střední odborná škola Pardubice, s.r.o.

Vliv návštěvníků na mikroklima Kateřinské jeskyně. Influence of Visitors on Kateřinská Cave Microclimate

Oxide, oxide, co po tobě zbyde

Klepnutím lze upravit styl předlohy. nadpisů. nadpisů.

EFFECT OF MALTING BARLEY STEEPING TECHNOLOGY ON WATER CONTENT

Just write down your most recent and important education. Remember that sometimes less is more some people may be considered overqualified.

CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA

CHEMIE ŽIVOTNÍHO PROSTŘEDÍ I Environmentální procesy (01) Koncepce výuky chemie životního prostředí

Soubor map struktury porostů na TVP v gradientu hory Plechý v Národním parku Šumava

Czech Technical University in Prague DOCTORAL THESIS

Stejskalová J., Kupka I.: Vliv lesních vegetačních stupňů na kvalitu semen jedle bělokoré... (ABIES ALBA MILL.) ABSTRACT

Infiltration ability of soil in fast-growing species plantation

VY_32_INOVACE_06_Předpřítomný čas_03. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Effect of ph on the denitrifying enzyme activity in pasture soils in relation to the intrinsic differences in denitrifier communities

THE PREDICTION PHYSICAL AND MECHANICAL BEHAVIOR OF FLOWING LIQUID IN THE TECHNICAL ELEMENT

CZ.1.07/1.5.00/

místo, kde se rodí nápady

MÉNĚ ZNÁMÉ DRUHY JETELOVIN PRO POTENCIÁLNÍ PĚSTOVÁNÍ V PODMÍNKÁCH ARIDNÍHO KLIMATU

The target was to verify hypothesis that different types of seeding machines, tires and tire pressure affect density and reduced bulk density.

Perception Motivated Hybrid Approach to Tone Mapping

KONTAMINACE A OBOHACENÍ ANTIMONEM V PŮDÁCH SLOVENSKA

BIOLOGICKÉ LOUŽENÍ KAMÍNKU Z VÝROBY OLOVA

FIRE INVESTIGATION. Střední průmyslová škola Hranice. Mgr. Radka Vorlová. 19_Fire investigation CZ.1.07/1.5.00/

Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů

BEZDRÁTOVÁ SENZOROVÁ SÍŤ SLEDUJICÍ ZNEČIŠTĚNÍ OVZDUŠÍ. Vendula HEJLOVÁ

SOIL ECOLOGY the general patterns, and the particular

Přehled činnosti oddělení ISKO Plán rozvoje oddělení 2015

Moderní technologie dokončování velmi přesných děr vystržováním a její vliv na užitné vlastnosti výrobků

KLÍČIVOST A VITALITA OSIVA VYBRANÝCH DRUHŮ JARNÍCH OBILNIN VE VZTAHU K VÝNOSU V EKOLOGICKÉM ZEMĚDĚLSTVÍ

Uni- and multi-dimensional parametric tests for comparison of sample results

BLATNÍKY A BEDNY NA NÁŘADÍ MUDGUARDS AND TOOLBOXES

GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA

Agile leadership in Czech Rep. Agilia Conference 2011 Brno

Magnetismus hornin a jeho aplikace při studiu znečištění životního prostředí.

TVORBA VÝNOSŮ PŠENICE OZIMÉ A SILÁŽNÍ KUKUŘICE PŘI RŮZNÉM ZPRACOVÁNÍ PŮDY Forming of winter wheat and silage maize yields by different soil tillage

Jiří LUKEŠ 1 KAROTÁŅNÍ MĚŖENÍ VE VRTECH TESTOVACÍ LOKALITY MELECHOV WELL LOGGING MEASUREMENT ON TESTING LOCALITY MELECHOV

Radiova meteoricka detekc nı stanice RMDS01A

AIC ČESKÁ REPUBLIKA CZECH REPUBLIC

CITI-SENSE. Výzkumný projekt veřejného monitorování kvality ovzduší a životního prostředí pomocí senzorových technologií

Why PRIME? 20 years of Erasmus Programme Over 2 million students in total Annually

VD ŠANCE TBD PŘI VÝSTAVBĚ DRENÁŽNÍ ŠTOLY A OBNOVĚ INJEKČNÍ CLONY

CZ.1.07/1.5.00/

TELEGYNEKOLOGIE TELEGYNECOLOGY

HODNOCENÍ ZDRAVOTNÍCH RIZIK Z POŽITÍ A DERMÁLNÍHO KONTAKTU NAFTALENU V ŘECE OSTRAVICI

THE ASSOCIATION OF SERUM BILIRUBIN AND PROMOTER VARIATIONS IN UGT1A1 WITH ATHEROSCLEROSIS

Distribution of Sorbus milensis in the Czech Republic

Tabulka 1 Stav členské základny SK Praga Vysočany k roku 2015 Tabulka 2 Výše členských příspěvků v SK Praga Vysočany Tabulka 3 Přehled finanční

PC/104, PC/104-Plus. 196 ept GmbH I Tel. +49 (0) / I Fax +49 (0) / I I

Project Life-Cycle Data Management

Aplikace matematiky. Dana Lauerová A note to the theory of periodic solutions of a parabolic equation

RYBÁŘSKÉ ŘETĚZY FISHING CHAINS

Upřesnění metodiky pro stanovení ekologické stability, zranitelnosti a únosnosti lesního biomu na území Biosférické rezervace Krkonoše

Bibliometric probes into the world of scientific publishing: Economics first

Soubor map struktury porostů na TVP v oblasti Modravy v Národním parku Šumava

Transformers. Produkt: Zavádění cizojazyčné terminologie do výuky odborných předmětů a do laboratorních cvičení

Palmovka Business center Kancelářské prostory k pronájmu / Offices for lease. Na Žertvách 2247/29, Prague 8

půdy v trvalém travním porostu a v porostu rychle rostoucích dřevin během vegetačního období roku 2011

Typy a zdroje kontaminace půd

obsah / table of content

VLIV MLETÍ ÚLETOVÉHO POPÍLKU NA PRŮBĚH ALKALICKÉ AKTIVACE

Soubor map: Struktura porostů na trvalých výzkumných plochách v CHKO Křivoklátsko Autoři: S. Vacek, Z. Vacek, D. Bulušek, V.

LOGOMANUÁL / LOGOMANUAL

Vliv rozdílného využívání lučního porostu na teplotu půdy

Transkript:

Lesnícky časopis Forestry Journal ročník 55, číslo 4, 2009, s. 385 393 MAGNETOMETRIC METHOD AS A TOOL OF MEASURING POLLUTION OF FOREST SOILS BY HEAVY METALS EXAMPLE OF THE ORLICKÉ HORY MTS. VĚRA SEMELOVÁ 1, HANA FIALOVÁ 2, ALEŠ KAPIČKA 2, DUŠAN KACÁLEK 3 1 Czech University of Life Sciences Prague, Faculty of Forestry and Wood Science, Kamýcká 1176, CZ 165 21 Praha 6 Suchdol 2 Institute of Geophysics ASCR, v.v.i., Boční II/1401, CZ 141 31 Praha 4 3 The Forestry and Game Management Research Institute, Jíloviště-Strnady 136, CZ Praha 5 Zbraslav SEMELOVÁ V., FIALOVÁ H., KAPIČKA A., KACÁLEK D.: Magnetometrická metoda jako prostředek měření znečištění lesních půd těžkými kovy příklad Orlických hor. Lesn. Čas. Forestry Journal, 55(4): 385 393, 2009, 2 fig., tab. 2., ref. 27. Original paper. ISSN 0323 10468 This paper introduces the magnetometric method and its application in measuring fly-ash contamination of the forest soils in the Orlické hory Mts. region, Eastern Bohemia. The magnetometric method is highly sensitive; therefore we can measure even small changes in the magnetic characteristics of soils. Under certain conditions the method is useful also in locations with low level of contamination such as national parks and other environmentally unique localities. Topsoil magnetic susceptibility was measured directly in the field by Bartington MS2 instrument. From forest floor and mineral soil samples detailed laboratory magnetic analyses were carried out to understand origin and translocation history of magnetic particles in soil horizon. Dominant ferromagnetic fraction in forest floor (magnetite) was identified by thermomagnetic measurements on Kappa Bridge KLY-3S. IRM acquisition curves discriminate two populations of magnetic contributions; topsoil magnetic particles, derived from atmospheric deposition, and subsoil ones, derived from lithology. We compared our measurements of magnetic susceptibility with concentrations of chosen heavy metals (Fe, Mn, Zn, Cu, Cr, Co, Pb, Cd) and their correlations were statistically evaluated. Results confirmed that magnetometry is suitable and effective proxy method for evaluation of soil contamination in location of Orlické hory Mts. Key words: atmospheric deposition, forest soils, heavy metals, magnetic susceptibility, Orlické hory Mts., Czech Republic V roce 2006 byla v oblasti Orlických hor zkoumána vhodnost využití magnetometrické metody pro zjišťování znečištění lesních půd pevným atmosférickým spadem deponovaným do povrchových horizontů půd. Vysoká citlivost magnetické metody umožňuje detekovat i malé změny magnetických vlastností půd. Jeví se jako vhodná 385

i pro oblasti, s předpokládaným malým znečištěním. Aparaturou Bartington MS2 byla vyšetřována povrchová půdní susceptibilita a odebrány vertikální profily pro laboratorní měření magnetické susceptibility. Tato měření sloužila k vyloučení lokalit, u kterých hodnota magnetické susceptibility svrchních půdních horizontů byla ovlivněna horninovým podložím. Z měřeného souboru byly z tohoto důvodu vyloučeny tři lokality. Laboratorní magnetická měření byla využita ke stanovení magnetomineralogie a magnetické stability dominantních antropogenních ferimagnetik v půdách. Naměřené hodnoty půdních susceptibilit byly porovnány s koncentracemi některých těžkých kovů a zjišťovala se jejich vzájemná korelace. Plošné rozložení hodnot povrchových půdních susceptibilit indikuje nerovnoměrnou úroveň pevného spadu v Orlických horách. Výsledky potvrdily vhodnost využití magnetometrické metody při sledování kontaminace půd, jako předběžné monitorovací metody, která ve srovnávaní s klasickými chemickými analýzami je relativně rychlejší a finančně méně náročná. Klíčová slova: atmosférická depozice, magnetická susceptibilita, lesní půdy, těžké kovy, Orlické hory. 1. Introduction In general, intoxication of environment trough anthropogenic influence is a worldwide problem. Therefore fast and effective new approaches are needed for monitoring and evaluation of source of contamination. In addition to the traditional chemical methods, which are slow and expensive, we present a method based on measurement of magnetic properties of soils. Advantage of this magnetometric method is high sensitivity and possibility to measure large area in relatively short time (KAPIČKA et al. 2001, FIALOVÁ et al. 2006). We used magnetometric method for detecting contamination by air pollutants. Principal idea of magnetometry is based on the fact that magnetic enrichment in forest floor layers is due to industrial fly ash deposition. Fly ashes are rich in ferromagnetic minerals (magnetite, maghemite) but we can find these minerals also in soils as natural minerals resulting from weathering processes (MAHER 1986, DEARING 1994). Another source of magnetic enrichment can be ultra-fine, super paramagnetic particles, due to pedogenetic processes in soils (FASSBINDER et al. 1990, MAHER et al. 1988, 1995, 2003). Low-field magnetic susceptibility (MS) is the most useful, concentration-dependent parameter for magnetic mapping of soil pollution. We are able to measure topsoil MS with high precision directly in the field. Many studies confirmed also good correlations between MS and heavy metal concentration in contaminated soils (e.g. JORDANOVÁ et al. 2003, SPASSOV et al. 2004, SPITERI et al. 2005). Practically all, industrial fly ashes contain a significant fraction of ferromagnetic iron oxides; the most important sources are fly ashes being produced during combustion of fossil fuel. Other sources, such as steel works, cement works and road traffic also contribute to contamination by anthropogenic ferromagnetic particles (PROSPERO 1968, HUNT 1986, CHESTER et al. 1984, THOMPSON and OLDFIELD 1986). Magnetic particles and heavy metals have similar sources and similar storing mechanism (ADRIANO 1986, UHLÍŘOVÁ et al. 2002). Objective of our research was to find out whether magnetometry is convenient method for detecting soils contamination in relatively unpolluted region of Orlické 386

hory Mts., where evolution of forest ecosystem exhibit constant degradation (MZE CR VULHM 2004). The forests of Orlické hory Mts. show forest decline along with the change of soil chemistry (VACEK et al. 1994a, b; VACEK and PODRÁZSKÝ 1996a, b; VACEK et al. 1997). 2. Materials and Methods In the June and October 2006 measurements of topsoil magnetic susceptibility, including soil core sampling, were carried out in area of Orlické hory Mts., Eastern Bohemia. Eleven locations, of the total area about 120 km 2 were chosen to describe uniformly windward and leeward side (Tab. 1). Altitude of sampling sites varied from 500 to 1,070 m. From point of view of nature protection, majority of chosen locations belong to the most important areas in the region of interest; in addition to protected preserves (NPR Trčkov, PR Pod Vrchmezím, PR Sedloňovský vrch, PR Jelení lázeň, PR Kunštátská kaple, PR Komáří vrch), five localities were chosen (Nad Zdarovem Hlodný, Polom, Neratov I, Neratov II) under conditions of managed forest. Topsoil magnetic susceptibility (κ LF ) was measured directly in the field by Bartington MS2-D probe according to the recommendations for selecting and measuring the sites (SCHIBLER et al. 2002). For information about vertical distribution of MS in whole soil profile we used two instruments, Bartington stratigraphic probe MS2F and Susceptibility Meter SM400 [ZH Instruments co.) (PETROVSKÝ et al. 2004)]. The depth of individual soil pits or soil cores varied from 30 to 40 cm. Furthermore, laboratory measurements of MS were completed on Bartington MS2C probe, where core samples taken from vertical soil profile were measured. From soil cores we separated forest floor (L, F, H) and subsoil (A, B/C) layers. Samples were dried, sieved with 2 mm mash, put into the plastic containers of volume Table 1. Localities in the area of interest, the Orlické hory Mts. Locality Altitude (m) Aspect Slope (%) Site Stand age (years) Dominating tree species Bedrock Soil Trčkov 790 NE < 10 6 S 180 SM, BK Pod Vrchmezím 930 NNW 35 6 S, 7 S 180 SM, BK, JVK Sedloňovský vrch 1 010 WSW 35 7 S 180 SM, BK Mica schist, quartzite Mica schist Cambisol Cambisol, podzol Jelení lázeň 1 075 < 1 8 T SM Mica schist + quartzite Gleysol Nad Zdarovem 560 NW 50 5 B, 5 A 120 BK, JVK Permian breccia Cambisol Kunštátská kaple 1 040 < 1 8 T Gneiss + mica schist Gleysol Komáří vrch 970 SSW 25 7 K, 7 Z 140 SM, BK Gneiss Cambisol, podzol Hlodný 600 W 50 5 J 120 BK, JL, JVK Phyllite Polom 680 ESE 5 5 S 50 SM Phyllite + amphibolites Cambisol Neratov I 740 NNE 18 6 S 50 SM Glauconitic Neratov II 740 NNE 18 6 S 50 MD sandstone Explanation notes: Site: 5 beech with fir; 6 beech with spruce; 7 spruce with beech; 8 spruce potential forest vegetation zones. Tree species abbreviations used: SM Norway spruce; MD European larch; BK European beech; JVK sycamore maple; JL Scotch elm. 387

10 ml and weighted to determine also mass specific magnetic susceptibility (χ LF ). Enrichment of MS due to pedogenic processes was checked by frequency-dependent magnetic susceptibility κ FD, defined as κ FD [%] = (κ LF κ HF ) / κ LF ), where κ LF and κ HF represent susceptibility values at 0.47 and 4.7 khz (DEARING et al. 1996). To determine hardness of dominant ferromagnetic particles in soils we performed measurement of IRM (isothermal remnant magnetization), acquisition curves and AC demagnetisation curves of SIRM (saturation isothermal remnant magnetization). Measurements were performed by AGICO spinner magnetometer JR-5 (KAPIČKA et al. 2003) Magnetic mineralogy of samples was studied by high temperature measurements of magnetic susceptibility on Kappa Bridge KLY-3S (AGICO co.) with CS-3 furnace. By continuous heating up to 700 C we defined Curie temperature (Tc) of dominant ferromagnetic minerals. Concentration of heavy metals (Fe, Mn, Zn, Cu, Cr, Co, Pb, and Cd) was determined with Atomic Absorption Spectrometry (AAS) in certified laboratory. 2M HNO 3 was used as a leaching agent. On chosen samples, Scanning Electron Microscopy (SEM) with Wavelength Dispersive Spectroscopy (WDS) was done to see morphology and determine the element content. SEM and WDS analyses were carried out in the Institute of Geology, ASCR in Lysolaje by equipment SX 100 CAMECA. Relations between heavy metals content and MS of forest-floor and mineral soil horizons were visualized by software CANOCO 4.5 (ter BRAAK and ŠMILAUER 2002). Data were determined by non- -parametric gradient analysis method of Detrended Correspondence Analysis (DCA). 3. Results and Discussion Magnetic susceptibility in forest floor layers has not reached extremely high values, typical for industrial areas. Some of measured samples were just above the limit of sensitivity of instruments used for measuring of MS. Frequency-dependent susceptibility (κ FD ) of practically all forest floor samples was lower than 4%, what is a proof of negligible or zero content of pedogenic particles. Measurements of κ FD helped us to determine one soil profile (location Hlodný), where magnetic enrichment resulted from pedogenic processes, creating SP magnetite. This soil profile had increased κ FD in deeper horizons. Magnetic enrichment due to strong lithogenic contribution was detected in 3 locations. Topsoil MS measurements were used for creation of preliminary 2D map expressing surface distribution of contamination. The map can be used only as approximate guide, because better resolution needs much more measuring points of surface MS. From IRM and SIRM measurements we can conclude, that samples from top- and sub-soil horizons exhibit different magnetic behaviour. Forest floor contain magnetically soft (multidomain) ferromagnetic minerals, which are typical for anthropogenic particles. For saturation of subsoil samples was necessary to applied higher magnetic field, which proof the presence of harder ferromagnetic, of lithogenic and probably also pedogenic origin. Thermo-magnetic measurements confirmed presence of magnetite in top horizon, with Curie temperature of 580 C. Shape of heating curves of all forest floor samples was very similar; therefore magnetite has to have one source, most probably of anthropogenic origin. SEM analyses detected anthropogenic particles only at forest floor samples (Fig. 1b and 1c). In location Sedloňovský vrch titan magnetite of lithogenic origin was 388

A B 200 µm 50 µm C D 10 µm 20 µm Fig. 1. Examples of SEM: a) mineral soil sample with non-spherical fragments from location Sedloňovský vrch; b) forest-floor sample with spherical fragments from location Sedloňovský vrch; c) spherical fragment from forest-floor layer from location Nad Zdarovem; d) cross section of spherule, where WDS element content was determine. Lighter parts are more enriched by FeO compared with darker parts. identified (Fig. 1a) in sub soil horizon. Exception at sample in location Trčkov was observed in depth of 16 20 cm, where MS extremely increased. SEM observations discovered atmospheric particles in this part of B horizon. Exact explanation of transport mechanism is not known. SEM analyses showed wide variety in the morphology, but clearly confirmed that magnetic enrichment of forest floor is due to presence of anthropogenic spherules. WDS analyses exactly determined element composition of different particles; one example is present in Figure 1d, where spherical particle is composed of FeO+Al 2 O 3 (white part) and FeO+SiO 2 (dark part). One of our goals was to determine possible correlations between concentration of heavy metals in forest soils and mass specific magnetic susceptibility (χ LF ). For evaluation of pollution level, concentrations of selected heavy metals were set out. Correct interpretation of contamination of forest soils by heavy metals is connected 389

Forest floor Mineral soil Fig. 2. Ordination diagram describes well relations between concentration of heavy metals Fe, Mn, Zn, Cu, Cr, Co, Pb, Cd and magnetic susceptibility (κ LF ) in top layers of forest floor (blue spots) and sub layers of mineral (red spots) soils (red spots). with fact that there does not exist any limit for concentration of heavy metals in forest soils in the legislation of the Czech Republic. This gap can be partly solved by using recommended maximal values for four elements (Cd > 3,5; Cu > 20; Pb > 150; Zn > 300 (mg/kg)) set by international programme IPC Forests (UHLÍŘOVÁ et al. 2002). In their methodology concentration of heavy metal is set by leaching in aqua regia, therefore we can not compare correctly our measurements, where leaching in 2M HNO 3 was used. Data analyses were performed using non-parametric Detrended Correspondence Analysis (DCA) in the CANOCO software v. 4.5 (ter BRAAK and ŠMILAUER 2002). We tested 1 st and 2 nd ordination axis (p < 0.05). Results are presented as ordination diagram (Fig. 2). Samples are presented as points surrounded by envelopes ; forest-floor and mineral soil horizons and elements are visualized as arrows pointing towards growing concentration. Statistical analyses determine good correlation between Pb, Cu, Cd, Zn, Cr and mass specific magnetic susceptibility (χ LF ) in forest-floor humus. Pb reached the highest concentration in forest-floor humus, what results from anthropogenic origin. Furthermore, elements as Cu, Cd and Zn (Fig. 2) showed also high concentration in organic layers. Cobalt (Co) had the highest concentration in mineral layer and it was 390

Table 2. Results of correlation analyses of elements concentrations and magnetic susceptibility in the forest floor and mineral soil Indep. var. Depen. variable r F P value κ LF 0,739 25,199 <0.001 Fe 0,542 8,725 0.008 Zn 0,455 5,473 0.029 Horizon Cu 0,700 20,143 <0.001 Cr 0,038 0,030 0.865 Co 0,649 15,309 <0.001 Pb 0,685 18,557 0.001 Cd 0,588 11,098 0.003 Abbreviations: indep. var. independent variable horizon (forest floor and mineral horizon), dependent variable soil concentration of selected elements, κ LF magnetic susceptibility. not correlated with MS (χ LF ). This is likely to indicate its lithogenic origin. According to DCA, the effect of horizon was significant and explained 60.2% variability of all collected data (P = 0.022) Variability in concentration of the element was tested between forest floor and mineral soils horizons using one-way ANOVA in STATISTICA 8.0 software (StatSoft 2007). It was used to evaluate the effect of horizon (forest floor and mineral soil) on soil chemical properties and magnetic susceptibility (χ LF ). In the case of significant ANOVA result, Tukey s post-hoc comparison test was applied to identify significant differences between horizons. To demonstrate that the ordination diagram shows correctly the relation between all analysed data, the results of the most important correlation analyses are given in Table 2. 4. Conclusions The main goal of this study was to test suitability of magnetomeric method for the evaluation of contamination of forest soils in the region of Orlické hory Mts. by air pollutants. Investigated area belongs to the category of relatively clean forest ecosystems. There are no local heavy-contamination sources situated nearby, therefore we assume that contamination is mostly due to long-range transboundary atmospheric pollution. Magnetic measurement carried out directly in the field and detailed laboratory measurements as well identified anthropogenic particles and discriminate lithogenic and pedogenic minerals. Three locations (Hlodný, Polom, and Komáří vrch) were evaluated as areas with strong lithogenic influence; therefore they were excluded from the evaluated data set used for magnetic mapping. Magnetic measurements based on low values of MS confirmed relatively low level of contamination by air pollutants nevertheless whole area shows increased concentration of anthropogenic particles in 391

forest-floor horizons (O L, O F, O H ). Statistical analyses showed that concentration of Pb, Cu, Cd, Zn, and Cr correlate well with magnetic susceptibility of forest-floor layers. Anthropogenic influence of the surface conditions confirms that as well. We can conclude that magnetometric method is fast and relatively inexpensive. Our results indicate that this method can be used (as proxy method) for evaluation of forest soil contamination also in areas with relatively lower pollution levels as in region of the Orlické hory Mts. Acknowledgements This study was supported by Grant Agency of the Czech Republic through grant No. 205/07/0941. Additional support was provided within the project no. 0002070203 of the Ministry of Agriculture. References 1. ADRIANO D.C., 1986: Trace Elements in the Terrestrial Environment. Springer-Verlag, New York. ISBN 0-387-96158-5. 2. DEARING J.A., 1994: Environmental magnetic susceptibility Using the Bartington MS2 System. Chi Publishing, 184. 3. DEARING J.A., HANNAM J.A., ANDERSON A.S., WELLINGTON E.M.H., 2001: Magnetic, geochemical and DNA properties of highly magnetic soil in England. Geophys. J. Int., 144: 183 196. 4. ASSBINDER J.W.E., STANJEK H., VALI H., 1990: Occurrence of magnetic bacteria in soil. Nature, 343: 161 163. 5. FIALOVÁ H., MAIER G., PETROVSKÝ E., KAPIČKA A., BOYOKO T., SCHOL- GER R., MAGPROX TEAM, 2006: Magnetic properties of soils from sites with different geological and environmental settings. Appl. Geophys., 59: 273 283. 6. HUNT A., 1986: The application of mineral magnetic methods to atmospheric aerosol discrimination. Phys. Earth Planet, 42: 10 21. 7. CHESTER R., SHARPLES E.J., SANDRES G.S., OLDFIELD F. SAYDAM A. C., 1984: The distribution of natural and non-crustal ferrimagneic minerals in soil-sized particulates from the Mediterranean atmosphere. Water, Air, Soil, Pollut. 23: 25 35. 8. JORDANOVA N.V., JORDANOVA D.V., VENEVA L., YOROVA K., PETROVSKÝ E., 2003: Magnetic response of soils and vegetation to heavy metal pollution A case study. 9. KAPIČKA A., PETROVSKÝ E., JORDANOVÁ N., PODRAZSKÝ V., 2001: Magnetic parameters of forest top soil condition on magnetic parameters of power-plant fly ashes. J. Appl. Geophys., 48: 93 102. 10. KAPIČKA A., JORDANOVÁ N., PETROVSKÝ E., PODRAZSKÝ V., 2003: Magnetic Study of Weakly Contaminated Forest Soils. Water, Air and Soil Pollution, 148: 31 44. 11. KAPIČKA A., PETROVSKÝ E., 2004: Magnetismus hornin a jeho aplikace při studiu znečištění životního prostředí. Čs. čas. fyz., 54. 12. MAHER B.A., 1988: Magnetic properties of some synthetic sub-micron magnetites, Geophys. J., 94: 83 96. 13. MAHER B.A., THOMSON R., 1995: Paleoreinfall reconstructions from pedogenic magnetic susceptibility variations in the Chinese loess and paleosols. Quat. Res., 44: 383 391. 14. MAHER B.A., ALEKSEEV A., ALEKSEEVA T., 2003: Magnetic mineralogy of soils across the Russian Steppe: climatic dependence of pedogenic magnetite formation. Paleogeog. Paleoclima. Paleoecol., 201: 321 341. 15. PETROVSKÝ E., HŮLKA Z., MAGPROX TEAM, 2004: A new tool for in situ measurements of the vertical distribution of magnetic susceptibility in soils as basis for mapping deposited dust. Environ. Technol. 25: 1021 1029. 16. PROSPERO J. M., 1986: Atmospheric dust studies on Barbados. Bull. Am. Meterol. Soc., 49: 649 652. 17. SCHIBLER L., BOYKO T., FERDYN M., GAJDA B., HÖLL S., JORDANOVA N., ROSLER W., MAGPROX TEAM, 2002: Topsoil magnetic susceptibility mapping: data reproducibility and compatibility, measurement strategy. Stud. Geophys. Geod., 46: 43 57. 18. PASSOV S., EGLI R., HELLER F., NOURGALIEV D.K., HANNAM J., 2004: Magnetic quantification of urban pollution sources in atmospheric particulate matter. Geophys. J. Int., 159: 555 564. 19. SPITERI C., KALINSKI V., ROSLER W., HOFFMANN V., APPEL E., MAGPROX TEAM, 2003: Magnetic screening of a pollution hotspot in the Lausitz area, Eastern Germany: correlation analysis between magnetic proxies and heavy metal contamination in soils. Environmental geology, 49: 1 9. 20. TER BRAAK C.J.F., ŠMILAUER P., 2002: CANOCO reference manual and CanoDraw for Windows user s guide: software for Canonical Community Ordination (version 4.5). Ithaca, NY: Microcomputer. 392

21. THOMPSON R., OLDFIELD F., 1986: Environmental Magnetism, Allen und Unwin, London, U.K. 22. UHLÍŘOVÁ H., FADRHONSOVÁ V., BÍBA M., LOCHMAN V., 2002: Depozice a pohyb vybraných látek v lesních ekosystémech s vazbou na potravní řetězec. Chem. Listy, 96: 598 606. 23. VACEK S., PODRÁZSKÝ V., SOUČEK J., 1997: Dynamika poškození smrkových a bukových porostů v CHKO Orlické hory VII. Analýza změn v NPR Bukačka a NPR Trčkov, Příroda, 11: 183 199. 24. VACEK S., PODRÁZSKÝ V., 1996a: Dynamika poškození smrkových a bukových porostů v CHKO Orlické hory IV. Stav půd v přírodních rezervacích, Příroda, 5: 125 138. 25. VACEK S., PODRÁZSKÝ V., 1996b: Dynamika poškození smrkových a bukových porostů v CHKO Orlické hory V. Stav výživy lesních dřevin v přírodních rezervacích makroelementy, Příroda, 5: 139 146. 26. VACEK S., PODRÁZSKÝ V., MAREŠ V., 1994a: Dynamika poškození smrkových a bukových porostů. Změny ve stromovém patře CHKO Orlické hory I., Příroda, 153 164. 27. VACEK S., PODRÁZSKÝ V., MAREŠ V., 1994b: Dynamika poškození smrkových a bukových porostů v CHKO Orlické hory III., Trendy půdního vývoje, Příroda, 177 183. 393