NEGATIVNÍ ÚČINKY DOPRAVY NA ŽIVOTNÍ PROSTŘEDÍ 1. OVZDUŠÍ 2. VODA, PŮDA



Podobné dokumenty
POKYNY MOTOROVÁ PALIVA

Přírodní zdroje uhlovodíků. a jejich zpracování

Paliva. nejběžnějším zdrojem tepla musí splňovat tyto podmínky: co nejmenší náklady na těžbu a výrobu snadno uskutečnitelné spalování

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ - ENERGETICKÝ ÚSTAV ODBOR TERMOMECHANIKY A TECHNIKY

Přírodní zdroje uhlovodíků

Inovace výuky prostřednictvím šablon pro SŠ

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

ZDROJE UHLOVODÍKŮ. a) Ropa je hnědočerná s hustotou než voda. b) Je to směs, především. Ropa však obsahuje také sloučeniny dusíku, kyslíku a síry.

BENZIN A MOTOROVÁ NAFTA

ANORGANICKÁ ORGANICKÁ

Ch - Uhlovodíky VARIACE

NEGATIVNÍ PŮSOBENÍ PROVOZU AUTOMOBILOVÝCH PSM NA ŽIVOTNÍ PROSTŘEDÍ

Ropa Kondenzované uhlovodíky

Zpracování ropy - Pracovní list

PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ OVZDUŠÍ

DUM VY_52_INOVACE_12CH27

Digitální učební materiál

PARAMO Pardubice. Studijní materiál k předmětu Chemická exkurze C6950 Brno 2011

Základní škola a mateřská škola Hutisko Solanec. žák uvede základní druhy uhlovodíků, jejich použití a zdroje. Chemie - 9. ročník

FAKTORY VNITŘNÍHO PROSTŘEDÍ STAVEB

PALIVA. Bc. Petra Váňová 2014

INDIKATIVNÍ MĚŘENÍ MS HAVÍŘOV Vyhodnocení za rok 2011

EKOLOGICKÉ ASPEKTY PALIV ČZU/FAPPZ

Průmyslově vyráběná paliva

Autor: Tomáš Galbička Téma: Alkany a cykloalkany Ročník: 2.

CZ.1.07/1.5.00/ Opravárenství a diagnostika. Pokud není uvedeno jinak, použitý materiál je z vlastních zdrojů autora

Ropa Ch_031_Paliva_Ropa Autor: Ing. Mariana Mrázková

Potenciál biopaliv ke snižování zátěže životního prostředí ze silniční dopravy

Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/

Výukový materiál zpracován v rámci projektu EU peníze školám

Zemní plyn v dopravě. Ing. Markéta Schauhuberová, Česká plynárenská unie , Den s fleetem

Směšovací poměr a emise

technických prohlídkách Nová technická řešení a jiná opatření ke snížení výfukových emisí:

Zpracování ropy doc. Ing. Josef Blažek, CSc. 6. přednáška

Porovnání jednotlivých způsobů pohonu motorových vozidel (technologií):

Zemní plyn v dopravě. Ing. Oldřich Petržilka prezident, Česká plynárenská unie , Autotec, Brno

H H C C C C C C H CH 3 H C C H H H H H H

materiál č. šablony/č. sady/č. materiálu: Autor:

zpracování těžkých frakcí na motorová paliva (mazut i vakuový zbytek)

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/

EU peníze středním školám digitální učební materiál

FOSILNÍ PALIVA A JADERNÁ ENERGIE

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

PŘÍRODNÍ ZDROJE ORGANICKÝCH SLOUČENIN

ZEMNÍ PLYN. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: Ročník: devátý

Emise ve výfukových plynech PSM

Zpracování ropy doc. Ing. Josef Blažek, CSc. 8. přednáška

SOUVISLOSTI MEZI OMEZOVÁNÍM EMISÍ, ZMĚNAMI V KONSTRUKCI AUTOMOBILOVÝCH MOTORŮ A ZMĚNAMI VE SLOŽENÍ AUTOMOBILOVÝCH MOTOROVÝCH OLEJŮ

Emisní limity pro zvláště velké spalovací zdroje znečišťování pro oxid siřičitý (SO 2 ), oxidy dusíku (NO x ) a tuhé znečišťující látky

rostlin a přesliček metrové sloje potřeba až třicetimetrová vrstva rašelin a přesliček vázaný uhlík, vodík, dusík a síru.

Názvosloví Konformace Isomerie. Uhlíky: primární (1 o ) sekundární (2 o ) terciární (3 o ) kvartérní (4 o )

Palivová soustava Steyr 6195 CVT

Ročník: 1. Mgr. Jan Zmátlík Zpracováno dne:

ení kvality ovzduší oblasti Česka a Polska Kvalita ovzduší Ing. Rafał Chłond Ostrava 29. června 2010

DOPRAVA A ZDRAVÍ. příspěvek k diskusi o řešení dopravní situace v Praze Ing. Miloš Růžička

Uhlovodíky -pracovní list

Zpracování a využití ropy

1)uhlovodík musí být cyklický, všechny atomy musí být v jedné rovině

Chemické procesy v ochraně životního prostředí

NAŘÍZENÍ VLÁDY. ze dne 11. května o stanovení závazných zadávacích podmínek pro veřejné zakázky na pořízení silničních vozidel

Výfukové plyny pístových spalovacích motorů

Model dokonalého spalování pevných a kapalných paliv Teoretické základy spalování. Teoretické základy spalování

SEZNAM VYBRANÉHO ZBOŽÍ A DOPLŇKOVÝCH STATISTICKÝCH ZNAKŮ

Organická chemie 3.ročník studijního oboru - kosmetické služby.

Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu

Ropa, zpracování ropy

materiál č. šablony/č. sady/č. materiálu: Autor:

Obalovny živičných směsí a mísírny živic, recyklace živičných povrchů Ing. Renata Beranová

Alkany a cykloalkany

Identifikace zdrojů znečištění ovzduší měření a postupy

ZÁKON O OCHRANĚ OVZDUŠÍ

Kolik energie by se uvolnilo, kdyby spalování ethanolu probíhalo při teplotě o 20 vyšší? Je tato energie menší nebo větší než při teplotě 37 C?

STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Nař í zení vla dy č. 173/2016 Sb., o stanovení za vazny čh zada vačíčh podmí nek přo veř ejne zaka zky na poř í zení silnič ní čh vozidel

STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

VYHLÁŠKA č. 337/2010 Sb. ze dne 22. listopadu 2010

Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E PRTR

INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV Černoleská 1997, Benešov BIOLOGIE A EKOLOGIE. Název školy. Zpracování ropy. Ročník 2.

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Inovace výuky na GSN prostřednictvím ICT

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

Z ûehovè a vznïtovè motory

LEGISLATIVNÍ OPATŘENÍ CHRÁNÍCÍ ZDRAVÍ ČLOVĚKA PŘED NEPŘÍZNIVÝMI VLIVY STAVEB

ÚPRAVA VODY V ENERGETICE. Ing. Jiří Tomčala

Stanovení územně specifických emisních faktorů ze spalování rafinérského plynu a propan butanu

n-butan isobutan; butany zvyšují oktanové číslo ČZU/FAPPZ

Zdroje a zpracování uhlovodíků

EU peníze středním školám digitální učební materiál

Vzácné dary Země Pracovní list

Gymnázium Jiřího Ortena, Kutná Hora

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Test k ověření znalostí o ropě 2. verze

1. PROCES A PODMÍNKY HOŘENÍ, HOŘLAVÉ LÁTKY

Negativní vliv energetického využití biomasy Ing. Marek Baláš, Ph.D.

EU peníze středním školám digitální učební materiál

NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE. Ing. Stanislav HONUS

Ing. Zdeněk Fildán PŘÍRUČKA PRO OCHRANU OVZDUŠÍ PODLE ZÁKONA Č. 86/2002 SB., O OCHRANĚ OVZDUŠÍ

Zákon 86/2002 Sb. o ochraně ovzduší a o změně některých dalších zákonů

TERMICKÉ PROCESY PŘI VYUŽITÍ ALTERNATIVNÍCH SUROVIN. Most, Autor: Doc. Ing. J.LEDERER, CSc.

Organická chemie-rébusy a tajenky VY_32_INOVACE_ CHE

PEVNÁ PALIVA. Základní dělení: Složení paliva: Fosilní-jedná se o nerostnou surovinu u našich výrobků se týká jen hnědouhelné brikety

Transkript:

NEGATIVNÍ ÚČINKY DOPRAVY NA ŽIVOTNÍ PROSTŘEDÍ Negativní vlivy dopravy se projevují v těchto oblastech: 1. OVZDUŠÍ 2. VODA, PŮDA 3. HLUK 4. VIBRACE 5. OSTATNÍ FYZIKÁLNÍ ZÁŘENÍ 6. JINÉ FAKTORY 1. 2. 3. 4. 5. 6.

ZÁKLADNÍ POJMY Vnější ovzduší ovzduší v troposféře (vnitřním ovzduším se rozumí ovzduší v uzavřených prostorách) Znečišťující látka látka vnesená do vnějšího ovzduší, nebo látka v něm druhotně vznikající, která má škodlivý vliv na život a zdraví lidí a zvířat, případně na ekosystém. Vnášení jedné nebo více znečišťujících látek do ovzduší v důsledku lidské činnosti nazýváme znečišťováním ovzduší. Emise přímé nebo nepřímé vypouštění látek, šíření vibrací a vyzařování hluku, tepla nebo jiných forem neionizujícího záření ze zařízení do životního prostředí. Emisní limit nejvýše přípustné množství znečisťující látky nebo skupiny látek vypouštěné do ovzduší z příslušného zdroje znečišťování (vyjadřuje se jako o množství znečišťující látky vstupující (v okamžiku vstupu) za jednotku času do ovzduší ze zdroje znečištění v g, kg, t za s, min, hod, rok). Pozor, vztahuje sei na zápach (počet pachových jednotek na jednotku objemu) Emisní strop nejvýše přípustná emise znečišťující látky nebo skupiny látek vznikajících v důsledku lidské činnosti vyjádřená v hmotnostních jednotkách za jeden rok ze všech zdrojů znečišťování ovzduší (případně skupiny zdrojů, nebo i z jednotlivého zdroje ve vymezeném území) Depozitní limit nejvýše přípustné množství znečišťující látky usazené po dopadu na jednotku plochy za daný čas

ZÁKLADNÍ POJMY Úroveň znečištění ovzduší hmotnostní koncentrace znečišťujících látek v ovzduší nebo jejich depozice z ovzduší na jednotku plochy za daný čas Imise znečištění ovzduší hmotnostní vyjádření koncentrací znečišťující látky. Imisní limit nejvýše přípustná úroveň znečištění ovzduší vyjádřená v jednotkách hmotnosti na jednotku objemu (při normální teplotě a tlaku). Mez tolerance procento imisního limitu nebo část jeho absolutní hodnoty, o kterou může být imisní limit překročen. Pachové látky látky nebo směsi látek obtěžující svým zápachem. Jsou charakterizované pachovým číslem, pachovou jednotkou nebo čichovým prahem.

ZÁKLADNÍ POJMY Přípustná tmavost kouře nejvýše přípustný stupeň znečišťování ovzduší vyjádřený zabarvením kouřové vlečky (nebo zjištěný v kouřovodu). Těkavá organická látka jakákoli organická sloučenina nebo jejich směs (mimo metan), která při teplotě 20ºC má tlak 0,01 kpa nebo více a/nebo má odpovídající těkavost (schopnost látky, obvykle v kapalném skupenství, vypařovat se). V ovzduší mohou tyto látky reagovat za spolupůsobení slunečního záření s oxidy dusíku za vzniku fotochemických oxidantů (ozon, peroxyacetylnitrát) VOC = volatile organic compounds = těkavé organické látky Světelné znečištění světelnýsmog je forma osvětlení umělým světlem, které je rozptýleno mimo určené oblasti (zejména nad hladinu obzoru). ozon způsobuje pálení očí, kašel, bolest na hrudníku, bolesti hlavy, nevolnost a dýchací potíže

Obecně: tuhé, kapalné, plynné ZNEČIŠŤUJÍCÍ LÁTKY (poškozují zdraví lidí a jiných organismů, zhoršují životní prostředí apod.) Znečišťující látky z dopravy vznikají v závislosti na typu dopravní cesty, při skladování pohonných hmot, při přepravě a dopravě, při údržbě a opravách vozidel nebo obecně dopravních prostředků a také při jejich provozu (spalování paliv, otěr pneumatik, brzd apod). Do ovzduší jsou emitovány především znečišťující látky vznikající při spalování fosilních paliv.

ZÁKLADNÍ FOSILNÍ PALIVA V DOPRAVĚ Fosilní paliva jsou nerostné suroviny, které vznikly v dávných dobách (fosilní z lat. předvěký, vznikla přeměnou odumřelých rostlin a těl bez přístupu vzduchu) a s odstupem času se z nich podařilo získat energii (elektřina, teplo, světlo, pohon). Oproti obnovitelným zdrojům energie, které lze využívat prakticky neomezeně, je nevýhodou fosilních paliv jejich nenávratnost. Řadíme mezi ně: ropu, uhlí a zemní plyn Ropnými produkty používanými v dopravě jsou benzín, nafta, topný olej a letecký petrolej. Většina paliv, označených jako alternativní, také vznikají z fosilních zdrojů: Z ropy pochází ropný zkapalněný plyn (LPG), ze zemního plynu se vyrábí stlačený zemní plyn (CNG) a zkapalněný zemní plyn (LNG). Nefosilním palivem budoucnosti je vodík, který však zatím nemá v dopravě širší využití.

ZÁKLADNÍ FOSILNÍ PALIVA V DOPRAVĚ ropa, uhlí a zemní plyn

ZÁKLADNÍ FOSILNÍ PALIVA V DOPRAVĚ ropa, uhlí a zemní plyn Složení zemního plynu Methan CH 4 70-90% Ethan, Propan, Butan C 2 H 6, C 3 H 8, C 4 H 10 0-20% Oxid Uhličitý CO 2 0-8% Kyslík O 2 0-0.2% Dusík N 2 0-5% Sirovodík H 2 S 0-5% Vzácné plyny A, He, Ne, Xe Stopové množství Složení zemního plynu podle země původu Země původu Methan Ethan Propan Butan Dusík Oxid uhličitý Alžírsko 86,98 9,35 2,33 0,63 0,71 0,87 USA 99,72 0,06 0,0005 0,0005 0,20 < 0,019 Nizozemí 82,12 2,81 0,38 0,13 13,43 0,99

ZPRACOVÁNÍ ROPY FRAKČNÍ DESTILACE (postupné oddělení jednotlivých frakcí podle stoupající teploty varu) Základní operací pro získání primárních frakcí, používaných pro následnou výrobu motorových paliv, mazacích olejů, silničních asfaltů, surovin pro petrochemii a dalších produktů, je atmosféricko-vakuová destilace ropy.

ZPRACOVÁNÍ ROPY FRAKČNÍ DESTILACE Atmosférická destilace ropy - probíhá při mírně zvýšeném tlaku (okolo 0,15 MPa) v atmosférické destilační koloně. - odsolená ropa se po ohřátí ve výměnících tepla (280-300 C) a v trubkové peci (cca 360 C) vede na nástřikové patro atmosférické kolony. - kapalné podíly klesají destilační kolonou přes několik (2-4) destilačních pater do spodní části, kde se z nich přehřátou vodní parou vyhánějí lehčí podíly. - páry uvolněné na nástřikovém patře stoupají spolu s podíly uvolněnými ve spodní části kolony nahoru a procházejí řadou destilačních pater, na kterých nastává rozdělení na jednotlivé frakce. - lehký benzin, plyny a vodní pára odcházejí hlavou kolony přes výměník tepla do kondenzátoru, kde benzinové páry a vodní pára zkondenzují. Odtud přecházejí do separátoru, kde se odděluje voda, která se nepřetržitě odpouští. Lehký benzin se z části vrací jako zpětný tok na nejvyšší patro kolony, část se odvádí do zásobních nádrží. Zbytek z atmosférické destilace je mazut.

ZPRACOVÁNÍ ROPY FRAKČNÍ DESTILACE Atmosférická destilace ropy Zpracování frakcí atmosférické destilace Plyny Zde převažují uhlovodíky propan a butany (n a izo), ostatní v menší Hlavním produktem je LPG (Liquified Petroleum Gas) u nás známé jako propan-butan. Benziny Ty dělíme na technické, automobilové a letecké. Technické benziny získáváme redestilací základní benzinové frakce. Automobilové benziny představují největší podíl výroby benzinů. Zde nemůžeme samotnou frakci použít, ale musíme ji upravit několika postupy tak, aby obsahovala co nejvíce rozvětvených uhlovodíků (izoalkany) a aromátů (především toluen, xyleny, ethylbenzen). Tyto látky jsou vysoce odolné vůči tzv. klepání. (viz. oktanové číslo). Dále se do směsi přidávají kyslíkaté sloučeniny jako methanol, ethanol nebo ethery, což jsou látky, které mají vysoké oktanové číslo a do určité koncentrace zlepšují složení výfukových plynů. Letecké benziny se připravují obdobným způsobem, jako automobilové. Petroleje Petroleje se používají pro svícení (aromáty při hoření tvoří saze). Dále se petrolej používá pro výrobu motorové nafty, což je v podstatě směs plynového oleje a petroleje, či pro výrobu leteckého petroleje. Plynový olej Plynový olej se používá k výrobě nafty, či se dále zpracovává na topné oleje různých druhů. (TOEL, LTO, TTO)

ZPRACOVÁNÍ ROPY FRAKČNÍ DESTILACE Vakuová destilace ropy - vakuová kolona pracuje za sníženého tlaku 2-10 kpa - má menší počet pater než atmosférická kolona, její průměr je však větší, což je dáno tím, že objem par při nižším tlaku je větší než za normálního tlaku. - snížením tlaku se snižuje bod varu přítomných sloučenin, takže lze za teplot do 360-400 C vydestilovat z mazutu další frakce bez jejich termického rozkladu (který by nastal při destilaci za atmosférického tlaku). - horem vakuové kolony odcházejí páry vakuového plynového oleje s vodní parou, procházejí výměníkem, v němž si vyměňují teplo s mazutem, jdou do kondenzátoru, v němž při teplotě 30 50 C zkondenzuje plynový olej a část vody. Část zkondenzovaného vakuového plynového oleje se vrací jako zpětný tok na nejvyšší patro vakuové kolony. - Při vakuové destilací mazutu se obvykle odebírají 2-3 boční vakuové destiláty. Zbytkem je asfalt o různé kvalitě Zbytek z vakuové destilace je asfalt.

ZPRACOVÁNÍ ROPY FRAKČNÍ DESTILACE Vakuová destilace ropy Zpracování frakcí vakuové destilace Zpracování na pohonné hmoty Frakce vakuové destilace obsahují hlavně uhlovodíky s dlouhým řetězcem, proto je potřeba je rozštěpit na kratší molekuly. Tomuto postupu se říká krakování (katalytické, hydrogenační, termické). Hlavními produkty štěpných procesů jsou obvykle frakce využitelné při výrobě motorových paliv, tj. benzin, petrolej a plynový olej. V závislosti na použitém procesu štěpení (se vlastnosti získaných frakcí dále upravují tak, aby z nich vyrobené pohonné hmoty splňovaly normované vlastnosti. Zpracování na mazací prostředky Vakuové destiláty obsahují alkany, izoalkany, aromáty a heterosloučeniny obsahující atomy N, S a O. Alkany mají dobrou mazací schopnost a velký viskózní index, což v praxi znamená, že tyto látky jsou schopny stejně dobře mazat v různých teplotách. Tato schopnost je však snižována přítomností nežádoucích látek, proto je nutné se těchto látek zbavit. To se provádí rafinací a odparafinováním olejů. Asfalt Hlavním uplatněním asfaltů je výstavba a údržba netuhých asfaltových vozovek. Takto se spotřebují asi tři čtvrtiny zpracovávaných asfaltů. Jinak se používají i jako izolace proti vlhkosti ( lepenka )

ZPRACOVÁNÍ ROPY FRAKČNÍ DESTILACE Typická destilační rozmezí a uhlovodíkové zastoupení (n-alkany jsou nasycené uhlovodíky, jejichž atomy C jsou navzájem spojeny do nerozvětveného řetězce, kdežto cykloalkany (z řeckého cyklo = kruh) jsou nasycené uhlovodíky, které obsahují jednoduché vazby mezi atomy uhlíku v uzavřeném uhlíkovém řetězci)

Barel ropy (nebo jiné obdobné látky) se značí bbl (někdy bar). 1 bbl = 158,987 litrů = 42 US galonů Protože se hustota ropy v závislosti na obsahu rozpuštěných látek pohybuje v rozmezí od 0,61 1,05 a víc g/cm³ váží 1 barel ropy v závislosti na druhu ropy od 96,972 kg do 166,92 kg. Množství ropy se může udávat v tunách, jedna tuna ropy tak odpovídá přibližně 6 10,32 barelu. ČR: 7,2 mil. t ropy/rok 0,7 1,2 mil. bbl/rok

Ceny ropy na světových trzích 1973-2009

Souvislosti cen ropy a politických událostí

Natural 95 (Kč/l) Nafta (Kč/l) Ropa OPEC (USD/b) Ropa Brent (USD/b)

ZPRACOVÁNÍ ZEMNÍHO PLYNU Konečné využití většiny zemního plynu není v chemické výrobě, ale spaluje se pro získání energie. Vzhledem k tomu není zpracováván v rafineriích jako ropa, pouze se kvůli přepravě zbavuje už v oblasti těžby nežádoucích příměsí. Technologické schéma úpravy a možného zpracování zemního plynu včetně jednotlivých produktů:

ZPRACOVÁNÍ ZEMNÍHO PLYNU Zemní plyn je z největší části využíván jako čisté palivo. Jeho dokonalým spalováním vzniká jen vodní pára a oxid uhličitý. Z hlediska emisí skleníkových plynů při spalování jde o nejvýhodnější ze všech fosilních paliv. Díky své vysoké energetické účinnosti a malým emisím při spalování je zemní plyn vhodný i jako motorové palivo v dopravě. Lze ho využívat v klasických spalovacích motorech (nutná úprava vstřikovacího systému a montáž zásobníku plynu) i ve speciálních plynových motorech. Komerčně je dostupný se v těchto formách: 1. CNG (Compressed Natural Gas stlačený zemní plyn) při tlaku 20-27 MPa a běžných teplotách 2. LNG (Liquefied Natural Gas zkapalněný zemní plyn) při tlaku 25 kpa a teplotě okolo -163 C

ZNEČIŠŤUJÍCÍ LÁTKY VZNIKAJÍCÍ PŘI SPALOVÁNÍ FOSILNÍCH PALIV fosilní paliva = uhlovodíková paliva Hlavní příčinou vzniku škodlivin je nedokonalé spalování klasických paliv v motoru vznikají produkty nedokonalé oxidace uhlovodíků Na znečištění ovzduší se nejvíce podílí silniční doprava (80 až 95% škodlivých emisí z dopravy) Spalovací motory přeměňují energii tepelnou na spalovací motor energii mechanickou spalovací motor je rovněž zdroj tepla. Tepelná energie vzniká spalováním paliva přivedeného do spalovacího prostoru. Podle působení vzniklých spalin rozdělujeme spalovací motory na: pístové lopatkové tryskové

ZNEČIŠŤUJÍCÍ LÁTKY VZNIKAJÍCÍ PŘI SPALOVÁNÍ FOSILNÍCH PALIV spalovací motory podle působení vzniklých spalin: pístový spalovací motor vrtulový (lopatkový) spalovací motor proudový (tryskový) spalovací motor rozdělení podle zapálení směsi: - zážehové - vznětové rozdělení podle druhu paliva: - benzinové - naftové - plynové

ZNEČIŠŤUJÍCÍ LÁTKY VZNIKAJÍCÍ PŘI SPALOVÁNÍ FOSILNÍCH PALIV IDEÁLNÍ PRŮBĚH SPALOVÁNÍ Reakcí atomů uhlíku (C) a vodíku (H) obsažených v palivu s kyslíkem (obsažen v nasávaném vzduchu) proběhnou během spalování zápalné směsi následující chemické reakce: C + O 2 CO 2 (oxid uhličitý) 2H 2 + O 2 2H 2 O (vodní pára) SKUTEČNÝ PRŮBĚH SPALOVÁNÍ Ve spalovacím prostoru zážehového motoru nepanují ideální poměry. Podmínky pro skutečné spalování : - tepelné ztráty, - velmi krátká reakční doba, - nedokonalé promísení paliva se vzduchem Výfukové plyny obsahují vedle vodních par (H 2 O), oxidu uhličitého (CO 2 ) a dusíku (N 2 ) také oxid uhelnatý (CO), uhlovodíky (HC), oxidy dusíku (NOx), sirné sloučeniny a pevné částice.

ZNEČIŠŤUJÍCÍ LÁTKY VZNIKAJÍCÍ PŘI SPALOVÁNÍ FOSILNÍCH PALIV V emisích vznikajících ve spalovacích motorech se nacházejí tyto škodliviny (mimo jiné): Oxid uhelnatý uvolňuje se při nedokonalém spalování paliva s nedostatkem kyslíku Nespálené uhlovodíky a těkavé organické sloučeniny (VOC) vznikají při nedokonalém spalování paliva. Zvlášť nebezpečné jsou polyaromatické uhlovodíky, které vznikají při chodu nezatíženého spalovacího motoru (např. benzo(a)pyren je karcinogenní) Polycyklické aromatické uhlovodíky vznikají při nedokonalém spalování paliva. Jsou rozpustné v tucích a pronikají tedy snadno do organismů (dýchacího, trávicího systému, kůže). Polycyklické aromatické uhlovodíky (PAH polyaromatic hydrocarbons) vznikají při nedokonalém spalování paliva. Jsou rozpustné v tucích a pronikají tedy snadno do organismů (dýchacího, trávicího systému, kůže). (v roce 2011 byly v České republice měřeny koncentrace PAH na 33 stanicích, které sledovaly soubor dvanácti látek: fenantren, antracen, fluoranten, pyren, benzo(a)antracen, chrysen, benzo(b)fluoranten, benzo(k)fluoranten, benzo(a)pyren, dibenz-(a,h)antracen, benzo(g,h,i)perylen a indeno(c,d)pyren)

Oxidy dusíku (NOx) vznikají při vysokých teplotách spalování. Při vyšších koncentracích(3 9mg.m 3 ) vyvolávají změny plicních funkcí po cca 10 15 minutách. Při nižších koncentracích kolem 0,2 mg.m 3 dochází k dráždění očí. NOx patří do skupiny fotochemických oxidantů (spolu s ozonem, peroxyacylnitráty a jinými) Oxid siřičitý (SO 2 ) uvolňujesezesíryvpalivu.významněsepodílína tvorbě tzv. kyselých dešťů, narušuje proces fotosyntézy, rozpouští vápenec (nerozpustný) na sádrovec (rozpustný). U lidí postihuje hlavně dýchací cesty. Jemné částice mají formu aerosolu, prachu, popílku, sazí. Vážou se na ně další škodliviny, zejména PAH. Jemné částice obsažené v dieselových výfukových plynech mohou poškodit krevní cévy. Poškození vede k vyššímu rozvoji krevních sraženin a následnému vyššímu riziku vzniku srdečního infarktu. Tyto jemné částice jsou menší než jedna miliontina metru (lze je zachytit filtry DPF - Diesel Particulate Filter). Formaldehyd a jiné aldehydy formaldehyd je aldehydem kyseliny mravenčí. Je nejhojněji zastoupenou karbonylovou sloučeninou v atmosféře. Má karcinogenní a mutagenní účinky. Aldehydy jsou organické sloučeniny, které obsahují aldehydickou funkční skupinu (-CHO) (pozor na záměnu s alkoholy -COH) na konci uhlovodíkového řetězce.

Polychlorované dibenzo(p)dioxiny vznikají při činnosti spalovacích motorů. Dioxiny vznikají nedokonalým spalováním chlorovaných organických látek popřípadě při spalování jakýchkoli organických látek v přítomnosti chloridových iontů. Dioxiny se v přírodě velmi pomalu rozkládají (podobně jako další halogenované organické sloučeniny) a díky své rozpustnosti v tucích mají schopnost se akumulovat v tukových tkáních. Olovo, dibrom a dichlorethylen přidávají se do benzínových směsí, aby se dosáhlo požadované oktanové číslo (vyjadřuje odolnost paliva proti samozápalu při kompresi ve válci spalovacího motoru). Patří mezi antidetonační přísady v benzínu látky zabraňující detonačnímu spalování automobilových benzínů ve válci zážehových motorů, tedy zvyšující oktanové číslo benzínů (čistý benzín má velice nízké oktanové číslo). Oxid uhličitý (CO 2 ) vzniká reakcí uhlíku s kyslíkem (spalováním) C + O 2 CO 2, hořením oxidu uhelnatého (například svítiplynu) 2CO + O 2 2 CO 2, nebo hořením organických látek, například methanu CH 4 +2O 2 CO 2 +2H 2 O. Je to bezbarvý plyn bez chuti a zápachu, při vyšších koncentracích však může mít v ústech slabě nakyslou chuť. Je těžší než vzduch. Oxid uhličitý se podílí na vzniku skleníkového efektu. Celkově má však na skleníkovém efektu nižší vliv než vodní pára, která se na něm podílí z více než 60%.