Skupenské stavy látek Mezimolekulární síly 1
Interakce iont-dipól Např. hydratační (solvatační) interakce mezi Na + (iont) a molekulou vody (dipól). Jde o nejsilnější mezimolekulární (nevazebnou) interakci. Interakce dipól-dipól Interakce mezi dipóly dvou stejných nebo i různých polárních molekul. Slabší než interakce iont-dipól. 2
Disperzní síly (Londonovy, indukované dipóly) Nejslabší mezimolekulární interakce. Fluktuací elektronů v elektronových obalech vznikají okamžité dipóly, které indukují vznik dipólu v okolních molekulách. Polarizovatelnost je míra snadnosti s jakou se v elektronovém obalu indukují dipóly. U atomů obvykle roste s počtem elektronů, resp. s molární hmotností. Vodíková vazba Speciální případ dipól-dipólové interakce. Velmi silná interakce, nejsilnější z tzv. van der Waalsových interakcí (vodíková vazba, dipól-dipól, Londonovy síly). - Vodíková vazba se projevuje u molekul kde je H vázán na elektronegativní prvek (zvláště F, O, N). Srovnání bodů varu podobných sloučenin prvků 4.-7. periody 3
Vodíková vazba, srovnání vazebných sil a intermolekulárních interakcí K vypaření 1 molu vody je třeba 41 kj (intermolekulární) K rozrušení všech vazeb O-H v 1 molu vody je třeba 930 kj (intramolekulární) Anomální vlastnosti vody: hustota Maximum hustoty 4 0 C Důsledek: led má nižší hustotu než kapalná voda 4
Kvalitativní odhad mezimolekulárních interakcí HBr Př.: Jaký typ nebo typy mezimolekulárních interakcí se uplatňují u následujících látek? CH 4 HF SO 2 O S O Změna skupenství: fázový diagram Fázový diagram vymezuje podmínky za kterých látka existuje v tuhé, kapalné popř. plynné fázi. Fázový diagram CO 2 při 1 atm CO 2 (s) CO 2 (g) 5
Křivka zahřívání Vlastnosti plynů Zaujímají objem a tvar nádoby. Jde o nejstlačitelnější formu hmoty. Všechny plyny jsou navzájem zcela mísitelné. Hustota plynů je nižší než kapalin nebo tuhých látek. Stlačitelnost plynů v závislosti na teplotě popisuje stavová rovnice ideálního plynu: PV = nrt n: látkové množství, R: plynová konstanta (8.314 J K -1 mol -1 ) Př.: Argon je inertní plyn používaný v žárovkách k ochraně vlákna před vypařením. Žárovka, která obsahuje argon při 1.20 atm a 18 C, je zahřáta na 85 C. Jak se přitom změní tlak argonu (v atm)? 6
Vlastnosti kapalin: povrchové napětí Povrchová energie je energie potřebná ke zvětšení povrchu kapaliny o jednotkovou plochu. Čím silnější jsou mezimolekulární interakce, tím vyšší je povrchová energie, resp. povrchové napětí. Vlastnosti kapalin: smáčení Kapilární elevace (smáčení, převládají adhezní síly) nastává pokud molekuly kapaliny a materiálu mají podobný charakter. Kapilární deprese (nesmáčení, převládají kohezní síly) nastává při značné odlišnosti charakteru molekul kapaliny a materiálu. 7
Vlastnosti kapalin: viskozita Viskozita je měřítkem odporu kapaliny k toku. Čím silnější jsou mezimolekulární interakce, tím vyšší je viskozita. Vlastnosti kapalin: tenze Tlak nasycené páry (tenze) je tlak páry v rovnovážném systému ve kterém látka existuje v kapalné i plynné fázi. H 2 O (l) H 2 O (g) počátek rovnováha 8
Vlastnosti kapalin: bod varu Bod varu je teplota při které se tlak nasycené páry vyrovná vnějšímu tlaku. Tuhé látky: struktura Krystalická tuhá látka vykazuje rigidní prostorové uspořádání atomů, molekul nebo iontů. V krystalu se opakuje tvar elementárního rovnoběžstěnu (jednotkové/základní buňky). V uzlových bodech jsou atomy, molekuly nebo ionty uzlový bod mřížky jednotková buňka a její opakování ve 3D 9
Základní typy jednotkových buněk Variace základních tvarů: kubická mřížka 10
Určení struktury krystalů: rentgenová difrakce Braggova rovnice rozdíl vzdáleností =BC + CD = 2d sinθ = nλ 11
Difrakce: příklad Rentgenové paprsky o vlnové délce 0.154 nm se odrážejí od krystalu pod úhlem 14.17 0 (pro n = 1). Jaká je vzdálenost (v pm) mezi stěnami jednotkové buňky v krystalu? n λ = 2d sin θ n = 1 θ = 14.17 0 λ = 0.154 nm = 154 pm d = n λ 2sin θ = 1 x 154 pm 2 x sin14.17 = 314.0 pm Tuhé látky: iontové krystaly V uzlových bodech mřížky anionty a kationty Silné elektrostatické interakce (iontová vazba) Obvykle tvrdé, křehké, vysoký bod tání Špatné vodiče tepla a elektřiny CsCl ZnS CaF 2 12
Tuhé látky: kovalentní krystaly V uzlových bodech mřížky atomy Pevné kovalentní vazby Obvykle tvrdé, vysoký bod tání Špatné vodiče tepla a elektřiny atomy uhlíku diamant grafit Tuhé látky: molekulové krystaly V uzlových bodech mřížky molekuly Slabé mezimolekulární interakce Obvykle měkké, nízký bod tání Špatné vodiče tepla a elektřiny 13
Tuhé látky: kovové krystaly V uzlových bodech mřížky atomy kovu Kovová vazba mezi atomy Různá tvrdost i body tání Dobré vodiče tepla a elektřiny Průřez krystalem kovu jádro a vnitřní elektrony mobilní elektronový oblak z valenčních elektronů Krystalové mřížky kovů 14
Amorfní látky V amorfní tuhé látce nelze najít opakované, dobře definované prostorové uspořádání. Prostorovou strukturou se podobají amorfní tuhé látky kapalině. Na křivce zahřívání nevykazují bod tání (tají v rozmezí teplot). krystalický křemen (SiO 2 ) nekrystalické křemenné sklo Vysokoteplotní supravodiče 15