Jaderné elektrárny. Tomáš Vysloužil. Fakulta výrobních technologií a managementu Univerzita Jana Evangelisty Purkyně Ústí nad Labem



Podobné dokumenty
VY_32_INOVACE_06_III./10._JADERNÉ ELEKTRÁRNY

Jaderná elektrárna. Martin Šturc

Elektroenergetika 1. Jaderné elektrárny

Elektroenergetika 1. Jaderné elektrárny

ATOMOVÁ FYZIKA JADERNÁ FYZIKA

Materiály AZ jaderných reaktorů

Simulace provozu JE s reaktory VVER 440 a CANDU 6

Tento zdroj tepla nahrazuje chemickou energii, tj. spalování např. uhlí v klasické elektrárně.

Jaderná energetika. Důvody podporující v současnosti výstavbu jaderných elektráren jsou zejména:

JADERNÁ ENERGIE. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: Ročník: devátý

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta

Jaderné reaktory a jak to vlastně funguje

Jaderné reaktory a jak to vlastně vše funguje

JADERNÁ ENERGIE. Jaderné reakce, které slouží k uvolňování jaderné energie, jsou jaderná syntéza a jaderné štěpení.

Jaderná elektrárna. Osnova předmětu. Energetika Technologie přeměny Tepelná elektrárna a její hlavní výrobní zařízení

JADERNÁ ENERGETIKA aneb Spojení poznatků z fyziky a chemie. Jiří Kameníček

PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/ PŘEDMĚT VYUŽITÍ ELEKTRICKÉ ENERGIE

Inovace výuky Člověk a svět práce. Pracovní list

Monitorovací indikátor: Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 19

A) Štěpná reakce obecně

Jaderná energetika Je odvětví energetiky a průmyslu, které se zabývá především výrobou energie v jaderných elektrárnách, v širším smyslu může jít i o

Inovace profesní přípravy budoucích učitelů chemie

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE

Jaderné reaktory blízké i vzdálené budoucnosti, vyhořelé jaderné palivo - současné trendy a moznosti

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/

Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan

Jaderná energie Jaderné elektrárny. Vojtěch Motyčka Centrum výzkumu Řež s.r.o.

6.3.1 Jaderné štěpení, jaderné elektrárny

Jaderná elektrárna Temelín (ETE)

Simulace provozu JE s bloky VVER 1000 a ABWR

Jaderná energie a energetika

SVAŘOVÁNÍ KOMPONENT JADERNÝCH ELEKTRÁREN I.

Jaderný palivový cyklus - Pracovní list

Ekonomika nových jaderných zdrojů. Economics of new nuclear power plants

4.4.9 Energie z jader

vysokoteplotního plazmatu na tokamaku GOLEM

Decommissioning. Marie Dufková

29. Atomové jádro a jaderné reakce

Jaderné bloky v pokročilém vývoji FBR (Fast Breeder Reactor)

Spasí nás nové generace reaktor ů?

Simulace jaderné elektrárny s reaktorem VVER-440

Ocelov{ n{stavba (horní blok) jaderného reaktoru

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika

Předmět: Stavba a provoz strojů Ročník: 4.

JADERNÁ FYZIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník

PROVOZ JADERNÉHO REAKTORU

Nezkreslená věda Jak funguje jaderná elektrárna

Vize přínosu členství ČR v IRC MBIR

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření

Energetické zdroje budoucnosti

Stres v jádře, jádro ve stresu. Dana Drábová Státní úřad pro jadernou bezpečnost

Jaderná energetika (JE)

Tvorba výukových materiálů jaderná energie a energetika

VŠB-TU OSTRAVA. Energetika. Bc. Lukáš Titz

Atomová a jaderná fyzika

Projekt realizovaný na SPŠ Nové Město nad Metují

2 Primární zdroje energie. Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín

VY_52_INOVACE_VK64. Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen

Vyhořelé jaderné palivo

Lukáš Feřt SPŠ dopravní, Plzeň, Karlovarská 99,

JE+ZJE Přednáška 1. Jak stará je jaderná energetika?

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

Co se stalo v JE Fukušima? Úterý, 15 Březen :32 - Aktualizováno Pátek, 01 Duben :00

Jaderné elektrárny. Těžba uranu v České republice

Úvod do moderní fyziky. lekce 5 energie z jádra

Štěpení těžkých jader

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROENERGETIKY A EKOLOGIE BAKALÁŘSKÁ PRÁCE

Elektroenergetika. (podklady ke státnicím) Komise: +ELE - 01

BULLETIN. Zahájena štěpná řetězová reakce rychlého reaktoru BN-800. Klasické a rychlé množivé reaktory. První jaderná elektrárna v Obninsku

Můžeme se obejít bez jaderné energetiky? Máme na vybranou?

Centrum výzkumu Řež s.r.o. Centrum výzkumu Řež se představuje

Pokročilé termodynamické cykly

Jaderné elektrárny I, II.

Technologie výroby elektrárnách. Základní schémata výroby

Jaderné reaktory blízké i vzdálené budoucnosti. Vyhořelé jaderné palivo současné trendy a možnosti

Metodické pokyny k pracovnímu listu č třída JADERNÁ ENERGIE A NEBEZPEČÍ RADIOAKTIVITY PRO ŽIVOT

ENERGETICKÁ ZAŔÍZENÍ ENERGETICKÁ ZAŔÍZENÍ

OBK - Odezva EDU 2012 na STRESS TESTY Josef Obršlík, Michal Zoblivý

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

Historie. Účel reaktoru. Obr. 1: Pohled na reaktor LVR-15

Jaká je budoucnost jaderné energetiky?

Seco. Rotační lamelové vakuové pumpy SV 1003/1005 D. Seco Suchoběžné řešení. Kompaktní a výkonná.

Kritický stav jaderného reaktoru

POŽÁRNÍ OCHRANA ELEKTRÁREN A ENERGETICKÝCH ZAŘÍZENÍ

JADERNÁ ENERGIE. Při chemických reakcích dochází ke změnám v elektronových obalech atomů. Za určitých podmínek mohou změnám podléhat i jádra atomů.

Svět t energie. Dana Drábová Státní úřad pro jadernou bezpečnost Praha

Urychlovačem řízené transmutační systémy (ADS - Accelerator driven systems)

Perfektní oprava a zesílení závitů

Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití. Jméno: Ondřej Lukas Třída: 9. C

J i h l a v a Základy ekologie

Kateřina Fišerová - Seminární práce k předmětu Didaktika fyziky

Solární systémy. Termomechanický a termoelektrický princip

Jaderná fyzika. Zápisy do sešitu

Parní turbíny Rovnotlaký stupeň

Zahraniční hosté v hromadných ubyt. zařízeních podle zemí / Foreign guests at collective accommodation establishments: by country 2006*)

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

Obnovitelné zdroje energie

4.4.6 Jádro atomu. Předpoklady: Pomůcky:

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ OPTIMALIZACE TEPELNÝCH OBĚHŮ DIPLOMOVÁ PRÁCE FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV

Transkript:

Jaderné elektrárny Tomáš Vysloužil Fakulta výrobních technologií a managementu Univerzita Jana Evangelisty Purkyně Ústí nad Labem Sokolov, 28. 1. 2015 Registrační číslo: CZ.1.07/2.3.00/45.0029 Název projektu: Věda pro život, život pro vědu

Jaderné elektrárny Jaderná elektrárna slouží k přeměně vazebné energie atomů na energii elektrickou. Energii je možné získat: fúzí lehkých jader atomů štěpením těžkých jader atomů

Závislost vazebné energie jádra připadající na jeden nukleon ɛ j. Nejstabilnější prvky jsou s největší hodnotou ɛ j. Rozdíly v hodnotách ɛ j nestabilních prvků v jádře umožňují uvolňování jaderné energie - lehká jádra mají tendenci k syntéze a těžká jádra ke štěpení. [1]

Jaderné elektrárny Na jakém principu pracují jaderné elektrárny? fúze jader atomů? štěpení jader atomů

Uvolněná energie Jednotka uvolněné energie je elektronvolt (značka ev). Jeden elektronvolt odpovídá kinetické energii, kterou získá elektron urychlený ve vakuu napětím jednoho voltu. Používá se běžně k měření malých množství energie zejména v částicové fyzice, fyzikální chemii apod. Je to jednotka technicky výhodná vzhledem k běžným metodám měření energie částic. 1 ev = 1,602 176 565(35) 10 19 J

Jaderná fúze na Slunci Nejjednodušší reakcí jaderné fúze je spojování dvou jader vodíku na jádro deuteria: 1 1H + 1 1 H 2 1 H + e + + ν Je výchozí reakcí cyklu, v němž vzniká helium a sluneční záření. K získávání energie na Zemi však není vhodná, protože probíhá velmi pomalu a s malou pravděpodobností - v časovém měřítku miliard let. To je důvodem, proč Slunce září pomalu a dlouhodobě.

Jaderná fúze K získávání energie z jaderné fúze se předpokládá využití reakce mezi jádry deuteria 2 1 H a tritia 3 1H za vzniku částice α a neutronu 2 1H + 3 1 H 4 2 He + 1 0 n + 17.6 MeV Obrázek: Fúze deuteria a tritia [2]

Jaderná fúze Tato reakce může probíhat dvěma způsoby: 1 1 2 1 2 1H + 2 1 H 3 2 He + 1 0 n + 3.25 MeV 2 1H + 2 1 H 3 1 H + 1 1 H + 4.03 MeV H - vodík, jádro obsahuje jen proton H - deuterium, jádro vodíku obsahující jeden proton a jeden neutron, označuje se D 3 1H - tritium, jádro vodíku obsahující jeden proton a dva neutrony, označuje se T

Jaderná fúze Ekologicky zajímavé jsou tzv. čisté reakce, při nichž nevznikají neutrony ani záření γ, jako např.: 1 1H + 11 5 B 3 4 2He + 8.7 MeV 3 2He + 3 2 He 4 2 He + 2 1 1H + 12.8 MeV 2 1H + 3 1 H 4 2 He + 1 0 n + 17.6 MeV 2 1H + 3 2 He 4 2 He + 1 1 H + 18.4 MeV 6 3Li + 2 1 H 4 2 He + 4 2 He + 22.4 MeV 6 3Li + 1 1 H 3 2 He + 4 2 He + 4.02 MeV 7 3Li + 2 1 H 4 2 He + 4 2 He + 1 1 H + 14.9 MeV 7 3Li + 1 1 H 4 2 He + 4 2 He + 17.3 MeV

TOKAMAK Aby se jádra mohla přiblížit na dosah jaderných vazeb, je třeba jim dodat energii o velikosti řádově MeV, čehož lze dosáhnout zahřátím plazmatu na teplotu vyšší než 10 6 K. Pro výzkum jaderné fúze se používá TOKAMAK (toroidalnaja kamera s magnitnymi katuškami - toroidní komora v magnetických cívkách). V tokamaku je plazma ohříváno v nádobě prstencového (toroidního) tvaru na sto milionů Kelvinů. Byl navržen ruskými fyziky Igorem Jevgeněvičem Tammem a Andrejem Sacharovem.

TOKAMAK Obrázek: Základní princip tokamaku tokamak tvoří sekundární závit obřího transformátoru [3]

Tokamaky v ČR V Ústavu fyziky plazmatu: 1977-2006 tokamak CASTOR (Czech Academy of Sciences TORus) [4]. Vyroben byl v roce 1959 a pracoval v SSSR, od roku 2009 slouží pro výukové účely FJFI ČVUT pod názvem GOLEM. od 2009 tokamak COMPASS (COMPact ASSembly), který byl zkonstruován v 80. letech ve výzkumném centru v Culhamu v Anglii jako flexibilní tokamak především pro studium fyziky v plazmatu s kruhovým a tzv. D průřezem citecompass.

Tokamak ITER Ve francouzském městě Cadarache se staví tokamak ITER (International Thermonuclear Experimental Reactor - Mezinárodní termonukleární experimentální reaktor), který by měl jako první vyrobit více energie, než jí spotřebuje na udržení plazmatu. Nebude dodávat elektrickou energii do sítě. Vyrobené teplo bude mařeno v chladících věžích.

Tokamaky JET a ASDEX V současné době jsou v Evropě v provozu pouze dva tokamaky, které mají magnetickou konfiguraci podobnou tokamaku ITER a pracují v režimu se zlepšeným udržením plazmatu. tokamak JET (Joint European Torus), Oxford, Velká Británie, produkoval 65% dodávané energie tokamak ASDEX-U, Institut fur Plasmaphysik, Garching, Německo Tokamaky JET a ASDEX jsou největší experimentální zařízení tohoto typu na světě.

Obrázek: Srovnání velikostí evropských tokamaků

JET ITER poloměr m 3 6.2 objem m 3 90 840 energetický poměr 0.65 10 výkon MW 16.1 500 Obrázek: Srovnání tokamaků JET a ITER [5]

Obrázek: Tokamak ITER [5]

Štěpení jader Energeticky využitelná energie jader atomů je zatím pouze štěpením jader atomů těžkých jader. V jaderných elektrárnách se používá štěpení jader těžkých kovů (uranu U, plutonia Pu, thoria Th). Ostřelováním těžkých jader neutrony 1 0n dojde ke štěpení atomu na dva atomy a uvolnění dalších neutronů a uvolnění energie. Štěpením U vznikne průměrně 2.5 neutronů a štěpením Pu vznikne průměrně 3.02 neutronů.

Jaderný reaktor Štěpení jader probíhá v jaderných reaktorech. Rozdělení reaktorů podle druhu neutronů: tepelné reaktory - ke štěpení se používá zpomalených (tepelných) neutronů rychlé reaktory - ke štěpení se používá nezpomalených (rychlých) neutronů

Jaderný reaktor Rozdělení reaktorů podle použitého chladiva - reaktory chlazené: plynem (CO 2, helium, vodní pára, vzduch) kapalinou (H 2 O, D 2 O, organické látky) tekutými kovy (sodík, NaK), tekutými solemi (UF 4 )

Jaderné reaktory Štěpení uranu je možné vyjádřit rovnicí 235 92 U + 1 0 n A B X + C D Y + 3 1 0n + 200 MeV, kde A B X a C DY znamenají štěpné produkty vzniklé rozštěpením jádra uranu. Nejčastěji vznikají dva nestejné odštěpky v hmotnostním poměru 2 : 3. Příklady štěpení 235 92 U: 235 92 U + 1 0 n 94 37 Rb + 140 55 Cs + 2 1 0n 235 92 U + 1 0 n 144 56 Ba + 89 36 Kr + 3 1 0n 235 92 U + 1 0 n 93 37 Rb + 140 55 Cs + 3 1 0n

Obrázek: Procentuální výtěžek štěpení jader 235 92 v závislosti na hmotnostním čísle A. [6] U, 238 92 U a 239 93 Pu

Rychlé a tepelné neutrony Štěpná reakce 235 92 U rychlými neutrony vzniklými při štěpné reakci je velmi malá. Pravděpodobnost jaderné reakce je velká pro tepelné, tj. pro pomalejší neutrony. Neutrony se zpomalují interakcí s jinými jádry atomů, kterým říkáme moderátory. Nejúčinnější moderátory jsou jádra lehkých prvků (vodíku, deuteria, berilia a uhlíku).

Moderátory Moderátory pro zpomalení neutronů: grafit už se nepoužívá u nově stavěných elektráren( byl např. v 1. reaktoru v Obninsku, v Černobylu) D 2 O těžká voda, je možné použít přírodní (neobohacený) uran, drahý moderátor( ve vodě obsažena 1 : 5000) H 2 O nutné mírné obohacení uranu H 2 O, D 2 O při havarijním přehřátí reaktoru snižují hustotu a přestávají tím dobře moderovat, rychlé neutrony se pohltí 238 U a reakce se zastaví - kladná zpětná vazba vodních reaktorů. Grafit i při rozžhavení reaktoru stále dobře moderuje neutrony.

Multiplikační koeficient Multiplikační koeficient k udává poměr neutronů ke štěpení: k = počet štěpících neutronů v nové generaci počet štěpících neutronů v předcházející generaci Podle velikosti multiplikačního koeficientu rozlišujeme tři základní stavy reaktoru: k = 1 kritický stav reaktoru, počet štěpících neutronů se nemění k < 1 podkritický stav reaktoru, počet štěpících neutronů klesá k > 1 nadkritický stav reaktoru, počet štěpících neutronů se zvětšuje

Reaktivita reaktoru Počet neutronů se snižuje zasouváním regulačních tyčí a zvyšováním množství kyseliny borité v chladivu. Pokud jsou v multiplikačním koeficientu zohledněny skutečné podmínky reálného reaktoru, nazýváme jej "efektivní multiplikační koeficient"a značíme jej k ef. V praxi častěji popisujeme stavy reaktoru pomocí "reaktivity reaktoru"ρ, která je definována vztahem: ρ = k ef 1 k ef Hodnota reaktivity reaktoru: ρ = 0 kritický stav reaktoru ρ < 0 podkritický stav reaktoru ρ > 0 nadkritický stav reaktoru

První řízená řetězová štěpná reakce USA 2. prosince 1942 reaktoru CP-1 v podzemí stadionu Chicagské univerzity reaktor postavil Enrico Fermi

První řízená řetězová štěpná reakce USA 2. prosince 1942 reaktoru CP-1 v podzemí stadionu Chicagské univerzity reaktor postavil Enrico Fermi

První řízená řetězová štěpná reakce Obrázek: První řízená řetězová štěpná reakce [7]

První jaderná elektrárna připojená k síti Obninsk, SSSR připojení k síti 26. 6. 1954 od roku 1959 ukončena produkce elektřiny a byl používán jako výzkumný provoz ukončen 29. dubna 2002 tepelný výkon 30 MWt elektrický výkon 6 MWe, vlastní spotřeba 1 MWe vodou chlazený a grafitem moderovaný 151 kanálů, z toho 23 pro regulační tyče

Typy jaderných reaktorů V jaderných elektrárnách ve světě pracovalo v roce 2014 437 jaderných reaktorů několika různých typů. Jejich celkový instalovaný výkon je více než 370000 MWe.

Jaderný reaktor PWR, VVER Pressurized light-water moderated and cooled Reactor Vodo-Vodjanoj Energetičeskij Reaktor nejrozšířenější typ, asi 57% všech jaderných reaktorů palivo - obohacený UO 2 nebo PuO 2 ve tvaru válečků uspořádaných do palivových tyčí aktivní zóna - palivové tyče poskládané do souborů, v reaktoru - ocelová tlaková nádoba, tlak 15.7 MPa chladivo - H 2 O, která se po ohřátí (na 325 C) vede do parogenerátoru, kde předá teplo vodě sekundárního okruhu moderátor - H 2 O účinnost elektrárny 32.7 %

Jaderný reaktor PWR, VVER Obrázek: Reaktor VVER [8]

Jaderný reaktor BWR Boiling Water Reactor druhý nejrozšířenější typ palivo - obohacený UO 2 nebo PuO 2 ve tvaru válečků uspořádaných do palivových tyčí aktivní zóna - palivové tyče poskládané do souborů, v reaktoru - ocelová tlaková nádoba, tlak 7 MPa chladivo - H 2 O, v aktivní zóně vzniká pára (286 C), která se po oddělení vlhkosti vede na turbínu - jednookruhová elektrárna moderátor - H 2 O účinnost elektrárny 33.3 %

Jaderný reaktor BWR Obrázek: Reaktor BWR [8]

Těžkovodní reaktor CANDU - PHWR vyvinut v Kanadě, exportován do Indie, Pákistánu, Argentiny, Koreje a Rumunska palivo - přírodní uran ve formě oxidu uraničitého aktivní zóna - umístěna v nádobě ve tvaru ležícího válce, která má v sobě vodorovné průduchy pro tlakové trubky chladivo - D 2 O, která se po ohřátí (na 305 C) vede do parogenerátoru, kde předá teplo vodě sekundárního okruhu moderátor - D 2 O, moderační schopnost se snižuje se zvyšující se teplotou účinnost elektrárny 30.1 %

Těžkovodní reaktor CANDU - PHWR Obrázek: Reaktor CANDU [8]

Jaderný reaktor MAGNOX, GCR anglicky magnesium oxid = Magnox Velká Británie a Japonsko palivo - přírodní kovový uran ve formě tyčí pokrytých oxidem magnezia aktivní zóna - skládá se z grafitových bloků (moderátor), kterými prochází několik tisíc kanálů, do každého se umíst uje několik palivových tyčí, je uzavřena v kulové ocelové nádobě s betonovým stíněním výměna paliva - kontinuální za provozu chladivo - CO 2, který se po ohřátí (na 400 C) vede do parogenerátoru, kde předá teplo vodě sekundárního okruhu moderátor - grafit účinnost elektrárny 28.5 %

Jaderný reaktor MAGNOX, GCR Obrázek: Reaktor MAGNOX [8]

Jaderný reaktor AGR Advanced Gas Cooled, Graphite Moderated Reactor Velká Británie - 14 reaktorů Velká Británie palivo - uran obohacený izotopem 235 U ve formě UO 2, pokrytí nerez ocelí max. teplota paliva 1500 C chladivo - CO 2, který se po ohřátí (na 650 C) vede do parogenerátoru, kde předá teplo vodě sekundárního okruhu moderátor - grafit účinnost elektrárny 42 %

Jaderný reaktor AGR Obrázek: Reaktor AGR [8]

Jaderný reaktor RBMK používá se výhradně na území bývalého SSSR, další se nestaví první jaderná elektrárna v Obninsku reaktor v Černobylu palivo - přírodní nebo mírně obohacený uran ve formě UO 2 aktivní zóna - palivové tyče jsou uloženy v kanálech, kudy proudí chladivo, tlak 6.9 MPa chladivo - H 2 O, v tlakových kanálech vzniká pára (284 C), která po oddělení vlhkosti pohání turbínu, elektrárna je jednookruhová moderátor - grafit, obklopuje kanály účinnost elektrárny 31.3 %

Jaderný reaktor RBMK Obrázek: Reaktor RBMK [8]

Jaderný reaktor HTGR High Temperature Gas Cooled Reactor vysokoteplotní reaktory jsou zatím vyvinuty pouze experimentálně v Německu, USA a Velké Británii palivo - vysoce obohacený uran ve formě malých kuliček UO 2 (průměr asi 0.5 mm). Kuličky povlékané třemi vrstvami karbidu křemíku a uhlíku jsou rozptýleny v koulích grafitu, velkých asi jako tenisový míček. Grafit slouží jako pevná, tepelně odolná schránka uranu i vznikajících radioaktivních zbytků i jako moderátor. Palivo se volně sype do aktivní zóny, na dně je postupně odebíráno. chladivo - He proháněné skrze aktivní zónu účinnost elektrárny 40 %

Jaderný reaktor HTGR Obrázek: Reaktor HTGR [8]

Jaderný reaktor FBR rychlý množivý reaktor FBR, v Rusku v Bělojarsku BN-600-1980, BN-800-2014 pracoval ve Francii (Superphénix) a Velké Británii v USA, Německu a Japonsku - demonstrační palivo - plutonium ve směsi oxidu PuO 2 a UO 2, BN-600 - obohacení na 17 26 % 235 U. Vyprodukuje více nového plutoniového paliva, než kolik ho sám spálí. aktivní zóna - svazky palivových tyčí jsou obklopeny plodivým pláštěm z ochuzeného uranu, tlak 0.25 MPa chladivo - sodík - dva okruhy, který ze sekundárního okruhu (620 C) proudí do parogenerátoru, kde ve třetím okruhu ohřívá vodu na páru bez moderátoru, řízená štěpná reakce v něm probíhá působením nezpomalených, rychlých neutronů účinnost elektrárny 42 %

Jaderný reaktor FBR Obrázek: Reaktor FBR [8]

Vývoj štěpných reaktorů Reaktory IV. generace - šest nových typů reaktorů, čtyři jsou rychlé a dva jsou klasické: Gas-Cooled Fast Reactor (GFR) - rychlý reaktor chlazený plynem Lead-Cooled Fast Reactor (LFR) - rychlý reaktor chlazený olovem Molten Salt Reactor (MSR) - reaktor chlazený roztavenou solí Sodium-Cooled Fast Reactor (SFR) - rychlý reaktor chlazený sodíkem Supercritical-Water Reactor (SCWR) - reaktor chlazený vodou s nadkritickým cyklem Very-High-Temperature Reactor (VHTR) - reaktor s velmi vysokými teplotami

Jaderné elektrárny v ČR V České republice jsou provozovány dvě jaderné elektrárny s šesti reaktory: Dukovany - 4 510 MWe Temelín - 1090 MWe a 1060 MWe Roční výroba je v každé elektrárně asi 15 TWh a roční využití je přes 80 %.

Obrázek: Schéma jaderné elektrárny [9]

Jaderná elektrárna Dukovany je první provozovanou jadernou elektrárnou v České republice. V Jaderné elektrárně Dukovany jsou instalovány čtyři tlakovodní reaktory (PWR). Projektové označení těchto reaktorů je VVER 440 typ V 213. Uvedení do provozu: 1-1985 2-1986 3-1986 4-1987

Jaderná elektrárna Dukovany Na projektu, výrobě zařízení a výstavbě elektrárny se podílely následující subjekty: Podklady projektu: firma LOTEP (bývalý SSSR) Prováděcí projekt: Energoprojekt Praha Generální dodavatel stavby: Průmyslové stavby Brno Generální dodavatel technologie: Škoda Praha Konstrukce, výroba, dodávka rozhodujících zařízení: Reaktory: Škoda Plzeň Parogenerátory: Vítkovice Turbogenerátory: Škoda Plzeň

Jaderná elektrárna Dukovany Původní instalované parametry každého reaktoru: tepelný výkon 1375 MW elektrický výkon 440 MWe Od roku 2012 jsou na všech reaktorech využity projektové rezervy (zvýšení výkonu reaktoru o 5 %) a vyměněny turbíny: tepelný výkon 1444 MW elektrický výkon 510 MWe Dva hlavní výrobní bloky. V každém jsou dva reaktory. Na jeden reaktor jsou dvě 255 MW turbostrojí s jedním jednoproudým vysokotlakým a dvěma dvouproudými nízkotlakými stupni turbíny.

Jaderná elektrárna Dukovany V areálu jaderné elektrárny Dukovany jsou kromě čtyř reaktorových bloků další dvě jaderná zařízení: sklad použitého jaderného paliva, ve kterém je použité palivo skladováno v transportně-skladovacích kontejnerech CASTOR 440/84. úložiště nízko a středně radioaktivních odpadů (z EDU, ETE a ÚJV Řež), které je ve vlastnictví státu.

Jaderná elektrárna Temelín V Jaderné elektrárně Temelín jsou instalovány dva tlakovodní reaktory (PWR). Projektové označení těchto reaktorů je VVER 1000. Uvedení do provozu: 1-2000 2-2002 Instalované parametry každého reaktoru: tepelný výkon 3000 MW elektrický výkon 1000 MWe Po výměně vysokotlaké části turbíny byl elektrický výkon 1020 MWe

Jaderná elektrárna Temelín V roce 2013 bylo provedeno zvýšení tepelného výkonu obou reaktorů na 104% (elektrický výkon 1060 MWe). Po výměně nízkotlaké turbíny (čtyřstupňové za pětistupňové) bude výkon 1090 MWe: blok 1 - výměna byla provedena v roce 2014 blok 2 - výměna bude provedena v roce 2015 Na jeden reaktor je jedno turbostrojí s jedním jednoproudým vysokotlakým a třemi dvouproudými nízkotlakými stupni turbíny.

Části jaderné elektrárny primární okruh sekundární okruh terciální okruh

Obrázek: Schéma jaderné elektrárny [9]

Primární okruh reaktor parogenerátory hlavní cirkulační čerpadla cirkulační potrubí primárního okruhu kompenzátor objemu

Jaderný reaktor slouží k udržování řízené štěpné řetězové reakce a umožňuje plynule odvádět tepelnou energii uvolňovanou při štěpení ocelová tlaková nádoba opatřená odnímatelným víkem uvnitř je nachází aktivní zóna, v níž je uspořádáno jaderné palivo a regulační orgány pro řízení a kontrolu štěpné reakce.

Jaderný reaktor oběhové (hlavní cirkulační) čerpadlo kompenzátor objemu - kompenzace objemových změn, regulace tlaku parogenerátor - horizontální výparníkový výměník, předává své teplo vodě sekundárního okruhu potrubí primárního okruhu -průměr 500 milimetrů a síla stěny 32 mm

Jaderný reaktor - Temelín výška 11 m průměr 4.5 m navržena na tlak 17.6 MPa při teplotě 350 provozní tlak je 15.7 MPa při teplotách 290 320 nízkolegovaná chrom - nikl - molybden - vanadová ocel

Sekundární okruh Přeměňuje tepelnou energii páry v mechanickou energii rotoru parní turbíny. Základními zařízeními tohoto okruhu jsou: turbína a generátor kondenzátor - tlak 0.004 MPa, teplota 30 C kondenzátní čerpadla odplyňovací nádrž napájecí čerpadla regenerační ohříváky - ohřev kondenzátu

Terciální okruh Ochlazuje vodu sekundárního okruhu v kondenzátoru a vytváří tak co největší turbínou využitelný podtlak, aby účinnost turbíny byla co nejvyšší. Čím nižší je teplota chladící vody v terciálním okruhu, tím vyšší je podtlak v kondenzátoru. Základními zařízeními tohoto okruhu jsou: chladící věže oběhová čerpadla potrubí a kanály chladící vody

Chladící věže Chladící věž ve tvaru rotačního hyperboloidu. Ve spodní části věže je kruhový bazén, v němž se ochlazená voda shromažd uje a oběhovými čerpadly chladící vody je dopravována zpět do kondenzátoru turbín. U elektráren postavených u moře nebo u velkých řek se nestaví chladící věže.

Jaderné palivo Izotopu uranu 235 v čerstvém palivu jsou asi 4%. Protože přírodní uran obsahuje pouze 0.7% uranu 235 U, musí dojít před výrobou palivových tablet k takzvanému obohacení uranu. Provozem dochází štěpením ke snižování obsahu 235 U. V obou našich JE se používalo palivo, které bylo projektováno na tříleté použití v reaktoru (takzvanou tříletou palivovou kampaň). V současné době se v JE Dukovany používá palivo projektované na pětiletou palivovou kampaň. V JE Temelín je kampaň čtyřletá. Část paliva (pětina v EDU, čtvrtina v ETE) se vymění každých 12 měsíců.

Použité jaderné palivo Kazety s použitým jaderným palivem, které se vyjímají z reaktoru vypadají stejně jako kazety s čerstvým palivem. Jsou nepoškozené a čisté. Významný rozdíl je však v radioaktivitě látek, které obsahují. Během provozu roste téměř z nuly postupně tak, jak narůstá množství produktů štěpení v jaderném palivu. Rozštěpením jednoho atomu U 235 vzniknou dva nestabilní atomy různých prvků, které se dále přeměňují. Po vyjmutí paliva z reaktoru dochází k jaderným přeměnám štěpných produktů a k uvolňování gama záření, neutronů a tepla, které musí být odváděno.

Mezisklad použitého paliva - Dukovany Vnější průměr kontejneru CASTOR je 2.66 m a výška 4.2 m. Hmotnost prázdného kontejneru je 93.7 tun, naplněného 112 tun. Pro uložení 84 použitých palivových souborů. Obrázek: Mezisklad použitého jaderného paliva - Dukovany, 1995, 60 kontejnerů [10], Dukovany nový mezisklad, 2006, 133 kontejnerů [11]

Mezisklad použitého paliva - Temelín Výška kontejneru je 5.5 m a průměr 2.3 m. Prázdný váží 100 tun a plný 115 tun. Pro uložení 19 použitých palivových souborů. Obrázek: Mezisklad použitého jaderného paliva Temelín, 2010, 152 kontejnerů [12]

Manipulace s použitým palivem 1 - kontejment, 2 - reaktorová nádoba, 3 - bazén použitého paliva, 4 - zavážecí stroj, 5 - budova skladu použitého paliva, 6 - kontejner na použité palivo Obrázek: Schéma manipulace s použitým palivem [13]

Kontejner CASTOR Obrázek: Schéma kontejneru CASTOR [13]

JE Dukovany a Temelín

JE Dukovany

JE Dukovany

JE Temelín

JE Temelín

Podíl jaderné energie na výrobě elektřiny Která země má největší podíl JE na výrobě elektrické energie?

Podíl jaderné energie na výrobě elektřiny Obrázek: Podíl jaderné energie na výrobě elektřiny [14]

Podíl jaderné energie na výrobě elektřiny Obrázek: Podíl jaderné energie na výrobě elektřiny [14]

Podíl jaderné energie na výrobě elektřiny [15] ZEMĚ REAKTORY V REAKTORY PLÁNOVANÉ NÁVRH SPOTŘEBA VÝROBA V JE PROVOZU VE VÝSTAVBĚ REAKTORY REAKTORŮ URANU 2013 2015/1 2015/1 2015/1 2015/1 2014 TWh % e No. MWe net No. MWe MWe MWe No. No. gross gross gross tonnes U Argentina 5,7 4,4 3 1 627 1 27 0 0 3 1 600 213 Armenia 2,2 29,2 1 376 0 0 1 1 060 87 Bangladesh 0,0 0,0 0 0 0 0 2 2 400 0 0 0 Belarus 0,0 0,0 0 0 2 2 400 0 0 2 2 400 0 Belgium 40,6 52,0 7 5 943 0 0 0 0 0 0 1 017 Brazil 13,8 2,8 2 1 901 1 1 405 0 0 4 4 000 325 Bulgaria 13,3 30,7 2 1 906 0 0 1 950 0 0 321 Canada 94,3 16,0 19 13 553 0 0 2 1 500 3 3 800 1 784 Chile 0,0 0,0 0 0 0 0 0 0 4 4 400 0 China 104,8 2,1 22 19 095 27 29 548 64 71 220 123 128 000 6 296 ČR 29,0 35,9 6 3 766 0 0 2 2 400 1 1 200 563 Egypt 0,0 0,0 0 0 0 0 1 1 000 1 1 000 0 Finland 22,7 33,3 4 2 741 1 1 700 1 1 200 1 1 500 480 France 405,9 73,3 58 63 130 1 1 720 1 1 720 1 1 100 9 927 Germany 92,1 15,4 9 12 003 0 0 0 0 0 0 1 889 Hungary 14,5 50,7 4 1 889 0 0 2 2 400 0 0 357 India 30,0 3,4 21 5 302 6 4 300 22 21 300 35 40 000 913

Podíl jaderné energie na výrobě elektřiny [15] ZEMĚ REAKTORY V PROVOZU REAKTORY VE VÝSTAVBĚ VÝROBA V JE 2013 2015/1 2015/1 TWh % e No. MWe net No. MWe gross PLÁNOVANÉ REAKTORY NÁVRH REAKTORŮ SPOTŘEBA URANU 2014 2015/1 2015/1 No. MWe MWe No. gross gross tonnes U Indonesia 0,0 0,0 0 0 0 0 1 30 4 4 000 0 Iran 3,9 1,5 1 915 0 0 2 2 000 7 6 300 174 Israel 0,0 0,0 0 0 0 0 0 0 1 1 200 0 Italy 0,0 0,0 0 0 0 0 0 0 0 0 0 Japan 13,9 1,7 48 42 569 3 3 036 9 12 947 3 4 145 2 119 Jordan 0,0 0,0 0 0 0 0 2 2 000 0 Kazakhstan 0,0 0,0 0 0 0 0 2 600 2 600 0 Korea DPR (N) 0,0 0,0 0 0 0 0 0 0 1 950 0 Korea RO (S) 132,5 27,6 23 20 656 5 6 870 8 11 640 0 0 5 022 Lithuania 0,0 0,0 0 0 0 0 1 1 350 0 0 0 Malaysia 0,0 0,0 0 0 0 0 0 0 2 2 000 0 Mexico 11,4 4,6 2 1 600 0 0 0 0 2 2 000 277 Netherlands 2,7 2,8 1 485 0 0 0 0 1 1 000 103 Pakistan 4,4 4,4 3 725 2 680 0 0 2 2 000 99 Poland 0,0 0,0 0 0 0 0 6 6 000 0 0 0 Romania 10,7 19,8 2 1 310 0 0 2 1 440 1 655 179 Russia 161,8 17,5 34 25 264 9 7 968 31 32 780 18 16 000 5 456

Podíl jaderné energie na výrobě elektřiny [15] ZEMĚ REAKTORY V PROVOZU REAKTORY VE VÝSTAVBĚ VÝROBA V JE 2013 2015/1 2015/1 TWh % e No. MWe net No. MWe gross PLÁNOVANÉ REAKTORY NÁVRH REAKTORŮ SPOTŘEBA URANU 2014 2015/1 2015/1 No. MWe MWe No. gross gross tonnes U Saudi Arabia 0,0 0,0 0 0 0 0 0 0 16 17 000 0 Slovakia 14,6 51,7 4 1 816 2 942 0 0 1 1 200 392 Slovenia 5,0 33,6 1 696 0 0 0 0 1 1 000 137 South Africa 13,6 5,7 2 1 830 0 0 0 0 8 9 600 305 Spain 54,3 19,7 7 7 002 0 0 0 0 0 0 1 274 Sweden 63,7 42,7 10 9 487 0 0 0 0 0 0 1 516 Switzerland 25,0 36,4 5 3 252 0 0 0 0 3 4 000 521 Taiwan 39,8 19,1 6 4 927 2 2 700 1 249 Thailand 0,0 0,0 0 0 0 0 0 0 5 5 000 0 Turkey 0,0 0,0 0 0 0 0 4 4 800 4 4 500 0 Ukraine 78,2 43,6 15 13 168 0 0 2 1 900 11 12 000 2 359 UAE 0,0 0,0 0 0 3 4 200 1 1 400 10 14 400 0 UK 64,1 18,3 16 10 038 0 0 4 6 680 7 8 920 1 738 USA 790,2 19,4 99 98 756 5 6 018 5 6 063 17 26 000 18 816 Vietnam 0,0 0,0 0 0 0 0 4 4 800 6 6 700 0 WORLD** 2 358,7 437 377 728 70 73 514 183 203 580 311 340 170 65 908

Přírodní reaktor V roce 1972 byl v uranovém dole v Oklo v Gabonu objeven přírodní štěpný reaktor. V této oblasti bylo nalezeno šestnáct reaktorů, které pracovaly asi před 1.7 miliardami let a jejich průměrný výkon byl 100 kw a pracoval asi 150 tisíc let. K objevu došlo při zjištění koncentrace 235 U 0.7171 %, která je nižší než koncentrace kdekoliv na světě, která je 0.7202 %. Následně odebrané vzorky obsahovaly dokonce jen 0.3 % 235 U. Tento nízký obsah je zapříčiněn spotřebováním 235 U v přírodním reaktoru.

Přírodní reaktor Poločas rozpadu 235 U je 0.7 miliard let a poločas rozpadu 238 U je 4.5 miliard let. To je důvod, že koncentrace 235 U v přírodním uranu klesá. Před 1.7 miliardami let byla koncentrace 235 U asi 3 %, což postačovalo se spuštění jaderné reakce jako v našich tlakovodních reaktorech s nízko obohaceným uranem moderovaných vodou. Zřejmě byl moderován vodou. Nefungoval kontinuálně, ale jako gejzír. Byl v chodu zhruba půl hodiny a poté 2.5 hodiny chladnul. Tento koloběh se opakoval do ukončení jaderné reakce kvůli nízkému zastoupení 235 U a tvorbě reaktorových jedů.

Stupnice INES pro jaderné havárie V roce 1991 byla Mezinárodní agenturou pro atomovou energii (MAAE) zavedena stupnice INES (The International Nuclear Event Scale - Mezinárodní stupnice jaderných událostí). - odchylky - 0 - nemají žádný bezpečnostní význam - nehody - 1, 2, 3 - neohrožující okolí a vně lokality elektrárny nevyžadující žádná mimořádná opatření - havárie - 4, 5, 6, 7 - vyžadující v důsledku většího úniku radioaktivity do okolí opatření, obsažená v přijatých havarijních plánech

Stupnice INES pro jaderné havárie Každá účastnická země je povinná v přesně stanoveném termínu informovat koordinační centrum MAAE o každé nehodě a havárii. Absolutní většina hlášených událostí je pod stupněm 3. Události, které vůbec nesouvisejí s bezpečností se označují jako události mimo stupnici. Obrázek: Stupnice INES [16]

Havárie v JE INES 4 - JE A-1 v Jaslovských Bohunicích INES 5 - JE Windscale (Anglie) a JE Three Mile Island (USA) INES 7 - Černobyl (Ukrajina, dříve SSSR) - 26. dubna 1986, Fukušima (Japonsko) - březen 2011

Havárie v JE Černobyl Bloky JE Černobyl [15]: 1-1977, uzavřen v roce 1997 2-1978, uzavřen po požáru strojovny v roce 1991 3-1981, uzavřen v roce 2000 4-1983, havárie 26. 4. 1986 5 - výstavba zastavena v roce 1988 6 - výstavba zastavena v roce 1988

Havárie v JE Fukušima 11. 3. 2011 Při zemětřesení byly automaticky odstaveny provozované reaktory 1, 2 a 3. Na reaktorech 4, 5 a 6 probíhala odstávka. O hodinu později dorazila k elektrárně čtrnáctimetrová vlna. Byl poškozen systém chlazení a zničeny nádrže paliva pro dieselgenerátory. Došlo k odhalení paliva a k produkci vodíku, který byl odpouštěn kvůli vysokému tlaku. V horní části budovy reaktoru došlo k výbuchu vodíku. Z elektrárny unikla radiace.

Výroba a provozované bloky JE v Japonsku [15] rok výroba [TWh] z JE [%] počet reaktorů výkon [MW] 2009 263.1 28.9 53 46236 2010 280.3 29.2 54 47102 2011 156.2 18.1 55 47348 2012 17.2 2.1 51 44642 2013 13.9 1.7 50 44396 Probíhá proces schvalování spuštění reaktorů.

Výroba a provozované bloky JE v Německu [15] rok výroba [TWh] z JE [%] počet reaktorů výkon [MW] 2009 127.7 26.1 17 20339 2010 133.0 28.41 17 20339 2011 102.3 17.81 17 20339 2012 94.1 16.1 9 12003 2013 92.1 15.4 9 12003

[1] http://imhfyzikafbi.wz.cz/prednasky/fyzatomjad.htm [2] http://fyzika.jreichl.com/main.article/view/814-jadernafuze [3] http://aldebaran.cz/bulletin/2003_39_itr.html [4] http://www.ipp.cas.cz/tokamak/index?m=castor [5] https://www.euro-fusion.org/2014/01/comparison-of-jetand-iter/ [6] http://www.fjfi.cvut.cz/reaktorova_fyzika1/kap311.htm [7] http://www.uchicago.edu/features/ how_the_first_chain_reaction_changed_science/ [8] http://www.cez.cz/edee/content/file/static/encyklopedie/ encyklopedie-energetiky/03/typy_2.html [9] www.aktivnizona.cz

[10] http://www.sujb.cz/jaderna-bezpecnost/jadernazarizeni/sklady-vyhoreleho-jaderneho-paliva/meziskladvyhoreleho-paliva-dukovany/ [11] http://www.cez.cz/cs/vyroba-elektriny/jadernaenergetika/jaderne-elektrarny-cez/edu/technologie-azabezpeceni.html [12] http://www.temelinky.cz/cs/clanky/manipulace-skontejnery-castor-22.html [13] http://3pol.cz/1081-jak-se-plni-castor-jadernym-palivem [14] http://www.cez.cz/cs/pro-media/cisla-astatistiky/energetika-ve-svete.html [15] http://world-nuclear.org/ [16] http://www.sujb.cz/jaderna-bezpecnost/ines/stupnice-ines/