9. tomové jádro a jaderné reakce tomové jádro složení: nukleony protony (p ) a neutrony (n o ) rozmry: ádov -5 m polomr: R=R. kde R =,3. -5 m, je nukleonové íslo jádra Mezi ásticemi psobí slabé gravitaní síly, elektrostatické odpudivé síly a silné pitažlivé krátkodosahové jaderné síly (psobí jen na uritý poet ástic, dosah 5 m). Protonové (atomové) íslo udává poet p v jáde, resp.e - v obalu Neutronové íslo N Nukleonové (hmotnostní) íslo =N Nuklid látka složená z atom se stejným i X v pírod 64 stabilních nuklid a 5 nestabilních (celkem dnes známe asi nuklid, vtšina z nich však byla vytvoena umle a jsou nestabilní). Pi štpení jádra na jednotlivé nukleony je poteba dodat energii. Energie i hmotnost jednotlivých nukleon je vtší než energie i hmotnost celého jádra hmotnostní úbytek B=.m p (-)m n -m j Vazební energie je rovna práci, kterou musíme dodat k rozložení jádra na jednotlivé nukleony E v =B.c vazební energie na nukleon v = E v / (= 7-9 MeV) Jaderné reakce - jsou umle vyvolané pemny jádra srážkou s jiným jádrem nebo ásticí platí pro n: zákon zachování energie zákon zachování hmotnosti (relativistické) zákon zachování hybnosti zákon zachování potu nukleon zákon zachování el. náboje Uvolování energie z atomových jader a) pi jaderné fúzi, tj. sluování lehkých jader (s menší hodnotou j ) za vzniku tžších (s vtší hodnotou j ). Píkladem mohou být procesy ve hvzdách, kdy se slouí jádra vodíku za vzniku helia: HHHe Pi této reakci se uvoluje nejvtší množství energie. Ve hvzd tedy vznikají stále tžší prvky, a to touto adou: HHeBeCO...Fe. Fe je nejstabilnjší (nejvtší v ) a pibývá ho v závrené fázi vývoje hvzdy. Tyto reakce jsou zdrojem energie a prvk ve vesmíru. H H H e ν ν...neutrinum 3 H H He χ χ...gama záení 3 3 4 He He He H 4 4. H He χ e ν 6, 7MeV Takto probíhá termonukleární reakce uvnit hvzd. ε j (MeV) Fe 56 6 Na emi byla první umlá jaderná reakce uskutenna Ernstem Rutherfordem v roce 99: 4 4 7 He 7N 8O H. Další umlá jaderná reakce pak vedla v roce 93 k objevu neutronu Jamesem Chadwickem: 4 9 He 4Be 6 C n. ízená termonukleární reakce je dnes stále ve stadiu výzkumu a experiment. Problémem jaderných syntéz je piblížit kladn nabitá jádra na dosah jaderných sil (je k tomu zapotebí obrovských teplot (ádov aspo 7 K) a obrovských tlak) Tokamak (zkratka pro název " (toroidní komora v magnetických cívkách). Tokamak byl vynalezen v padesátých letech Igorem Jevgenviem Tammem a ndrejem
Sacharovem) - plazma je v nádob prstencového tvaru udržováno v úzkém paprsku ve stedu prstence psobením silného magnetického pole. Deuterium H, (D) jako jaderné palivo je prakticky nevyerpatelné koncentrace D O v oceánech je,5%. Pokud by se podailo zvládnout termojadernou fúzi, získalo by lidstvo istou energii v množství asi tikrát vtší na jeden atom než jakou získává ze štpné reakce v souasných jaderných elektrárnách. Neízená termonukleární reakce na emi vodíková bomba. b) pi jaderném štpení Radioaktivita schopnost jader nkterých nuklid se samovoln rozpadat (vznik jader jiných prvk) a pitom vysílat záení (Becquerel objev 896, výzkum (objev Po, Ra) Marie a Pierre Curie). 4 3 druhy záení: ) svazek helion (jádra helia He ), mají silné ionizaní úinky, malou pronikavost a nesou velkou energii, která je kvantována 4 4 X He Y 6 4 88 Ra He 86 Rn nuklid se v tabulce posune o místa vlevo ped pvodní. ) mají vtší pronikavost, menší ionizaní úinky a energie není kvantována, protože je tvoena jen kinetickými energiemi jednotlivých ástic -...tvoeno elektrony e -, jeho zdrojem jsou pirozené atomy, tzn. vzniká pirozená radioaktivita n ~ p e ν ν~...antineutrino ~ X e Y ν 3 P 3 ~ 5 S 6 e ν...tvoeno pozitrony e, vzniká pi umlé radioaktivit (umle vytvoená jádra) p n e X Y 3 3 5 P 4 Si e e 3 3) - elektromagnetické vlnní o f (, )Hz, je velmi pronikavé (k zastavení je poteba silná vrstva olova), siln ionizuje plyny, má schopnost uvolovat z látky elektrony nebo celé ionty, doprovází,. ktivita záie fyzikální veliina udávající poet radioaktivních pemn za asovou jednotku. [] = Bq (becquerel) = s -. a poloas pemny T klesne aktivita záie na ½. Poloas pemny T je doba, za kterou se pemní polovina jader. ( t ) ( ) ( )T t = T...poloas pemny, e...eulerovo íslo. t ln ln ln T λ t = e = e, ( t ) = ( ) e = ( ) e, kde Protože ln λ = T je pemnová konstanta(- vyjaduje pravdpodobnost pemny) ákon radioaktivní pemny: λ t N ( t ) = N ( ) e N () je pvodní poet jader (v ase t=) a N (t) je poet jader radionuklidu v ase t. Pirozená radioaktivita aktivita jader radionuklid vyskytujících se v pírod; pemny tvoí tzv. pemnové ady (=posloupnost jaderných pemn). Jsou známy ti pirozené pemnové ady, jejichž leny se
vyskytují v pírod, a jedna tzv. umlá pemnová ada, jejíž poátení radionuklid neptunium se bžn v pírod nenachází a musí být pipraven umle; vtšina jader se pemuje pouze jediným zpsobem. V pípad, že se daný radionuklid mže pemnit více zpsoby, dochází ke vzniku vtví ady, které se ale opt spojují u nkterého dalšího radionuklidu v ad, takže ada koní u jediného stabilního nuklidu..ada uran-radiová.ada thoriová 3.ada aktiniová 4. ada neptuniová (umlá) Umlá radioaktivita zdroj: radioaktivní nuklidy vytvoené lovkem získané v jaderném reaktoru nebo v urychlovai ástic objev: 934 Irena a Frederich Joliot Curie 7 4 3 l He P n 3 5 3 5 P 3 4 Si e ν p n e ν (proton se pemní na neutron, pozitron a neutrino - rozpad) Využití radionuklid: ) v medicín diagnostické úely (sledování prtoku krve, zjišování innosti štítné žlázy) léení zhoubných nádor, revmatických chorob výroba léiv ) jaderné baterie (v meteorologických stanicích, kosmu) 3) v kouových detektorech a hlásiích požáru 4) k ochran životního prostedí (sledování škodlivých exhalací, toxických látek, sledování kolobhu látek v pírod metoda znaených atom) 5) k mení stáí hornin a organických materiál (uhlíková metoda - ) Úinky na lovka vytváejí ddiné zmny, nádory, zpsobují nemoci z ozáení. E Dávka záení D = m [ D] = Gy (gray). Umle vznikají v reaktorech nebo ostelováním ásticemi z urychlova. Radionuklid se svými chemickými vlastnostmi neliší od svého stabilního izotopu. Jaderná energetika Jadernou reakcí rozumíme pemnu jader atom vyvolanou vnjším zásahem. složením dvou lehích jader vznikne jádro tžší - ízená termonukleární reakce je zatím ve stadiu výzkumu a experiment. vzhledem k tomu, že neutron nemá náboj, proniká relativn snadno i do atomového jádra a mže vyvolat štpnou reakci. Pi ní z jednoho jádra vznikají dv jádra s pibližn stejným protonovým íslem a uvoluje se energie. Existují pouze tyi nuklidy, v nichž je možno uskutenit etzovou jadernou reakci, a které proto mohou sloužit jako štpné materiály k získávání jaderné energie. Jsou to uran 35, plutonium 39, uran 33 a plutonium 4. Pouze jeden z nich se vyskytuje v pírod. Je to uran 35, který je obsažen v pírodním uranu ve smsi s uranem 38 v množství,7%. Další štpné materiály je teba vyrábt v jaderných reaktorech plutonium ozaováním uranu 38 uran 33 ozaováním thoria 3 neutrony. 35 Neutron zpomalený vrstvou vody nebo parafínu mže tedy rozštpit jádro 9 U na pibližn stejn tžká jádra. Nov vzniklá jádra jsou v excitovaném stavu, nestabilní a dále se rozpadají.
n n 35 9 35 9 U U 44 56 9 38 Ba Sr 89 36 4 54 Kr 3 Xe 5 n MeV n 35 95 39 n 9U 4 Mo 57La n 7 e prosinec 94.ízený jaderný reaktor v Chicagu (E.Fermi): 38 39 - vznik transuranu: 39 ~ 39 9 U n 9U 93 Np e ν, 39 ~ 93 Np 94 Pu e ν Jaderný reaktor obal (kryt) tepeln odizoluje, odstiuje vznikající záení (=stínící bariéry) palivo tableta s obohaceným U naskládaná do palivových proutk a ty do palivových kazet chladivo H O, HBO regulaní a bezpenostní tye obsahují Cd, B, které siln pohlcují neutrony zastaví reakci (zasunutím) moderátor ke zpomalení ástic (neutron) lehká jádra (H O, díve C) Dukovany, Temelín jaderný reaktor typu VVER (vodovodný) voda se používá jako chladivo i moderátor (bezpenjší, protože pi porušení (když voda vytee) se reakce zastaví) ernobyl moderátorem grafit C(nevýhody: moderátor nelze z reaktoru odstranit, zastavení pomocí tyí, C mže hoet) jen chladivo, moderátor (voda) regulaní tye palivové lánky Jaderná elektrárna Stavba: ) primární okruh (uzavený): jaderný reaktor parogenerátor (ohívá vodu na páru) erpadla ) sekundární okruh (uzavený): parogenerátor parní turbína kondenzátor erpadla 3) terciární okruh (otevený): chladicí vže erpadla kondenzátor vodní zdroj Výhody: poteba nižších teplot než v tepelných elektrárnáchzvýšení doby života levné palivo, levná doprava paliva nejkoncentrovanjší energetický odpad nejkompaktnjší odpad (množství, hustota) možnost citelných zlepšení skrze výzkum nevytváí skleníkové plyny ani kyselé exhaláty Nevýhody: vyžaduje vtší kapitál kvli bezpenosti, kontejnmentu, radioaktivnímu odpadu a skladovacím systémm vyžaduje legislativní povolení kvli skladování dlouhodob radioaktivních odpad ve vtšin zemí možnost zneužití pro vojenské úely Fyzika ástic Detekce ástic: za využití ionizaních úink nabitých ástic.ionizaní komory mohou mit celkovou úrove ionizujícího záení, pomocí Geiger-Müllerova poítae mžeme poítat jednotlivé ástice. Ve Wilsonov mlžné komoe a v bublinové komoe mžeme dráhy ástic zaznamenávat a pak zpracovávat pomocí poítae. Geiger-Mülerv poíta: je trubice naplnná plynem o nízkém tlaku, anodu tvoí drát v ose válce, katodou je válcová nádoba. Mezi elektrodami je naptí asi kv. Pi prletu ionizující ástice vznikne K
v plynu nkolik pár kladných iont a elektron. Elektrony jsou elektrickým polem v blízkosti anody urychlovány a nárazem ionizují další molekuly plynu (lavinovitá ionizace). V obvodu vzniká proudový impuls, který je registrován akusticky nebo ítaem. by mohl poíta registrovat další ástici, musí být uveden do pvodního stavu (nap. doasným snížením naptí na elektrodách). Mlžná komora: slouží ke zviditelnní trajektorií ástic jaderného záení. Je to válcová nádoba naplnná nasycenou párou vody nebo ethanolu. Pi prletu ástic jaderného záení dojde k ionizaci molekul páry, ionty se stávají kondenzaními jádry, na nich se vytváejí mikroskopické kapiky, které vyznaují trajektorii. asto se umísuje do magnetického pole, aby bylo možné podle zakivení trajektorie urit hybnost ástice a její mrný náboj. Bublinová komora - zaízení k registraci drah nabitých ástic. V peháté pracovní látce (napíklad v kapalném vodíku pod tlakem) vzniknou sledy drobných bublinek podél dráhy ástic. Urychlovae ástic: ke studiu reakcí mezi ásticemi musíme ástice urychlit na vysoké energie.takové urychlené ástice se vyskytují v kosmickém zání, umle je mžeme získávat na urychlovaích. Lineární urychlovae: jsou tvoeny dlouhou vakuovou trubicí (až 3 km), ve které je ada válcových elektrod. Ve štrbinách mezi elektrodami jsou ástice urychlovány vysokofrekvenním elektrickým polem. Kruhové urychlovae: ástice se pohybují po zakivené trajektorii v magnetickém poli ( F m = Fd ). ástice se pohybuje uvnit polokruhových komor (duant) umístných mezi póly silného magnetu. Duanty jsou pipojeny ke stídavému elektrickému naptí, pi pechodu duanty z jednoho duantu do druhého se ástice urychlí a zvtší se polomr trajektorie. Dosáhne-li ástice rychlosti blízké rychlosti zdroj svtla, zvtší se její hmotnost a prodlouží doba obhu, proto je poteba pizpsobit urychlovací frekvenci dob obhu ástic N fázotron.synchrotron je fázotron s promnným magnetickým polem. To se mní tak, aby byl polomr trajektorie konstantní duanty (buduje se ve tvaru prstence). Synchrofázotron má promnnou S frekvenci urychlovacího naptí a konstantní polomr trajektorie ástic. Elementární ástice Ješt na zaátku ticátých let. století staily k pochopení struktury hmoty ti ástice - elektrony, neutrony, protony. Výsledky experimet i teoretické fyziky tenkrát dávaly nadji, že aplikování kvantové fyziky na proton a neutron brzy umožní poítat vlastnosti jádra atomu. Již na konci zmínné dekády však zaala doba objev nových a nových ástic, která trvá dodnes. Dnes známe nkolik stovek ástic, jejichž pojmenování vyerpalo zásobu písmen ecké abecedy, a jsou vtšinou známy pod ísly. Snaha o jejich klasifikaci vedla k následujícím zpsobm rozdlení ástic:. Všechny ástice mají vlastní moment hybnosti, tzv. spin. S tímto spinem souvisí spinové 3 kvantové íslo s, které mže nabývat hodnot bu! poloíselných (,,...), nebo celoíselných (,,, ). Podle spinového kvantového ísla se ástice dlí na:
a) mají! spinové kvantové íslo (nap. elektrony, protony, neutrony (všechny mají s = )) a pro n "# $% #!%&&' b) ( mají &! spinové kvanmtové íslo (nap. fotony, jejich s = ) a pro n "# $% #!%&&.. Síly psobící mezi ásticemi: - gravitaní (zanedbateln malé) - elektromagnetické (pro uvažované dlení nepodstatné) - silné (váží k sob nukleony) - slabé (projevují se nap. pi -rozpadu ) Podle toho, jestli na ástice p sobí silná jaderná síla, je lze dlit na: a) $ psobí na n silná síla b) nepsobí na n silná síla, mezi nimi je dominantní slabá síla. 3. Ke každé!& existuje!& se stejnou hmotností a spinem, ale s opaným znaménkem náboje (jsou-li nabité) a opaným znaménkem dalších kvantových ísel. Pi srážkách ástic s antiásticemi (nap. elektron a pozitron) dochází k anhilaci ástic a vzniká γ záení. Shrnutí: ástice e, µ -, τ -, ν (elektrony, miony, tauony, jejich neutrina a ke všem tmto šesti druhm ástic jejich antiástice) $ (bosony) π, κ, η (piony, kaony, éta) ( (fermiony) #) p, n (protony, neutrony) $ Λ, Σ, Ξ, Ω (lambda, sigma, ksí, omega) Pokud budeme uvažovat o "elementárnosti" a vnitní struktue základních stavebních ástic hmoty, dležitým vodítkem nám mže sloužit to, zda se daná ástice samovoln rozpadá (pemuje) i nerozpadá na jiné druhy ástic. a opravdu elementární ástice bez vnitní struktury mžeme podle dosavadních poznatk považovat foton a elektron, které vznikají i zanikají vždy jako celek a nepemují se na jiné druhy ástic. Neutron a proton se mohou vzájemn pemovat za úasti elektron, pozitron a neutrin; nemohou být tedy v pravém slova smyslu "elementární". Leptony tedy dosud považujeme za elementární ástice, hadrony jsou pravdpodobn z kvark. Také kvarky musí být v uritých kvantových stavech.