Kvalita elektrické energie - průvodce. Harmonické 3.4.1. pochopení pojmu kompatibilní úroveň. Harmonické HUNGARIAN COPPER PROMOTION CENTRE



Podobné dokumenty
Harmonické. Harmonické. Kvalita elektrické energie - průvodce. Dimenzování středního vodiče v elektroinstalacích s hojným vyskytem harmonických 3.5.

Kvalita elektrické energie - průvodce. Poruchy napûtí Měření flikru. Poklesy napûtí HUNGARIAN COPPER PROMOTION CENTRE

Kvalita elektrické energie-průvodce

Kvalita elektrické energie - průvodce. Harmonické Volba a dimenzování transformátorů. Harmonické HUNGARIAN COPPER PROMOTION CENTRE

Kvalita elektrické energie-průvodce

Kvalita elektrické energie-průvodce

Kvalita elektrické energie - průvodce

Kvalita elektrické energie-průvodce 5.1.3

Poklesy napûtí

Poklesy napûtí Poklesy napûtí. Kvalita elektrické energie - průvodce. Doporučení pro výběr vhodného zařízení zmírňujícího poklesy napětí

Kvalita elektrické energie - průvodce. Harmonické Aktivní harmonické kondicionéry. Harmonické. Proud (A) Stupně

Harmonické střídavých regulovaných pohonů

6. ÚČINKY A MEZE HARMONICKÝCH

České vysoké učení technické v Praze Fakulta elektrotechnická Katedra elektroenergetiky. Energetická rušení v distribučních a průmyslových sítích

Uzemňování&EMC. Uzemňování&EMC. Kvalita elektrické energie - průvodce. Uzemňovací systémy - Základy výpočtu a návrh 6.3.1

Harmonické. Kvalita elektrické energie - průvodce. Degrees

Kvalita elektřiny po změnách technologie teplárenských provozů. Jaroslav Pawlas ELCOM, a.s. Divize Realizace a inženýrink

Kvalita elektrické energie - průvodce. Poruchy napětí. Flikr 5.1.4

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY. DALKIA INDUSTRY CZ, a.s. PŘÍLOHA 3. Parametry kvality elektrické energie

Míra vjemu flikru: flikr (blikání): pocit nestálého zrakového vnímání vyvolaný světelným podnětem, jehož jas nebo spektrální rozložení kolísá v čase

HAVARIJNÍ PLÁN. ERIANTA ENERGY, a. s.

Poruchy napětí-průvodce

Účinky měničů na elektrickou síť

1. ZÁKLADNÍ POJMY A NORMALIZACE V EMC. 1.1 Úvod do problematiky

Odolnost. Odolnost. Kvalita elektrické energie - průvodce. Odolné napájení elektrickou energií v moderní administrativní budově 4.5.

Otázky EMC při napájení zabezpečovacích zařízení a rozvodů železničních stanic ČD

Nové pohledy na kompenzaci účiníku a eliminaci energetického rušení

Kvalita elektrické energie-průvodce

Monitorování poklesů a přerušení napětí v síti nízkého napětí

Parametry kvality elektrické energie Část 3: Nesymetrie a změny kmitočtu napětí

VŠB-Technická univerzita Ostrava ZPĚTNÉ VLIVY POLOVODIČOVÝCH MĚNIČŮ NA NAPÁJECÍ SÍŤ

Karel Hlava. Klíčová slova: dvanáctipulzní usměrňovač, harmonické primárního proudu, harmonické usměrněného napětí, dělení usměrněného proudu.

Zajištění kvality elektřiny podmínky připojení a možnost odběratele je splnit. Ing. Jaroslav Pawlas ELCOM, a.s. Divize Realizace a inženýrink

5 HODNOCENÍ NAPĚŤOVÝCH UDÁLOSTÍ S OHLEDEM NA ODOLNOST SPOTŘEBIČŮ

Electromagnetic compatibility - Generic immunity standard - Part 1: Residential, commercial and light industry

LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY

2.6. Vedení pro střídavý proud

5. POLOVODIČOVÉ MĚNIČE

Elektromagnetická kompatibilita trojfázového můstkového usměrňovače s R-C zátěží vůči napájecí síti

STŘÍDAVÝ PROUD POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTIBUČNÍ SOUSTAVY Příloha 3 Kvalita napětí a způsoby jejího zjišťování a hodnocení

Katedra elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava MĚŘENÍ NA JEDNOFÁZOVÉM TRANSFORMÁTORU.

Flyback converter (Blokující měnič)

Pavel Kraják

Odolnost. Odolnost. Kvalita elektrické energie - průvodce. Zlepšování spolehlivosti pomocí záložních zdrojů energie 4.3.1

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY. ProEnerga s.r.o.

FYZIKA II. Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování)

PRAVIDLA PROVOZOVÁNÍ DISTRIBUČNÍCH SOUSTAV KVALITA NAPĚTÍ V DISTRIBUČNÍ SOUSTAVĚ, ZPŮSOBY JEJÍHO ZJIŠŤOVÁNÍ A HODNOCENÍ

PŘÍLOHA číslo 3 KVALITA NAPĚTÍ V LOKÁLNÍ DISTRIBUČNÍ SOUSTAVĚ, ZPŮSOBY JEJÍHO ZJIŠŤOVÁNÍ A HODNOCENÍ

České vysoké učení technické v Praze Fakulta elektrotechnická Katedra elektroenergetiky

Monitorování kvality elektřiny při jejím přenosu a distribuci

PODNIKOVÁ NORMA ENERGETIKY

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY LDS Globus Ostrava, Plesná

idt IEC :199.1

ENERGETIKA PETR HURTA

Kvalita dodávky elektrické energie Odběratel elektrické energie požaduje dodávku elektrické energie v požadovaném množství a kvalitě.

14. OBECNÉ ZÁSADY PROJEKTOVÁNÍ VÝKONOVÝCH ZAŘÍZENÍ, SYSTÉMŮ A INSTALACÍ Z HLEDISKA EMC Úvod

ČESKÁ TECHNICKÁ NORMA

PŘÍLOHA 3 KVALITA NAPĚTÍ V LOKÁLNÍ DISTRIBUČNÍ SOUSTAVĚ, ZPŮSOBY JEJÍHO ZJIŠŤOVÁNÍ A HODNOCENÍ

Maximální úspory kvality energie řešení energetické hospodárnosti. Page Strana 1 1

Technické údaje. Systém pro regulaci nízkého napětí LVRSys - venkovní instalace. Flexibilní řešení pro udržení napětí

Hrozba nebezpečných rezonancí v elektrických sítích. Ing. Jaroslav Pawlas ELCOM, a.s. Divize Realizace a inženýrink

Technická data. Commander SK. Měniče kmitočtu určené k regulaci otáček asynchronních motorů

Testování elektrických komponentů

TRANSFORMÁTORY Ing. Eva Navrátilová

9. Harmonické proudy pulzních usměrňovačů

ČESKÁ TECHNICKÁ NORMA

PRAVIDLA PROVOZOVÁNÍ

Využiti tam, kde je potřeba střídavého napětí o proměnné frekvenci nebo jiné než síťový kmitočet přímé (cyklokonvertory) konverze AC / AC velké výkony

Zlepšení vlastností usměrňovače s kapacitní zátěží z hlediska EMC

Semiconductor convertors. General requirements and line commutated convertors. Part 1-2: Application guide

Kvalita elektrické energie-průvodce

C L ~ 5. ZDROJE A ŠÍŘENÍ HARMONICKÝCH. 5.1 Vznik neharmonického napětí. Vznik harmonického signálu Oscilátor příklad jednoduchého LC obvodu:

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Podniková norma energetiky pro rozvod elektrické energie. Parametry kvality elektrické energie ČÁST 3: NESYMETRIE NAPĚTÍ

idt IEC :1997

Digitální panelové měřící přístroje

Měniče a jejich vliv na vyšší harmonické v síti

A VYŠŠÍ ODBORNÁ ŠKOLA. Bezpečnost při práci s bateriovými systémy

ELCOM, a.s. Energie Pro Budoucnost Ampér 2017

ČESKÁ TECHNICKÁ NORMA

Integrovaná střední škola, Sokolnice 496

Parametry kvality elektrické energie Část 3: Nesymetrie a změny kmitočtu napětí

CHARAKTERISTIKY NAPĚTÍ ELEKTRICKÉ ENERGIE VE VEŘEJNÉ DISTRIBUČNÍ SÍTI

Calculation of the short-circuit currents and power in three-phase electrification system

HAVARIJNÍ PLÁN LOKÁLNÍCH DISTRIBUČNÍCH SOUSTAV. EEIKA ŠAFRÁNEK s.r.o.

SIMULACE JEDNOFÁZOVÉHO MATICOVÉHO MĚNIČE

1.1 Měření parametrů transformátorů

LABORATORNÍ PROTOKOL Z PŘEDMĚTU SILNOPROUDÁ ELEKTROTECHNIKA

MS - polovodičové měniče POLOVODIČOVÉ MĚNIČE

Vliv polovodičových měničů na napájecí síť (EMC)

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava. 2. Měření funkce proudových chráničů.

Měření hodinového úhlu transformátoru (Distribuce elektrické energie - BDEE)

Zdroje napětí - usměrňovače

idt CISPR 15:1996 Limits and methods of measurement of radio disturbance characteristics of electrical lighting and similar equipment

Elektroměry Pro rozvodné a přenosové sítě. Elektroměr. Landis+Gyr E850 ZMQ200. Vyšší efektivita založená na vysoké přesnosti a funkcionalitě

FEROREZONANCE. Jev, který vzniká při přesycení jádra induktoru v RLC obvodu s nelineární indukčností (induktor s feromagnetickým jádrem).

BEZPEČNOST V ELEKTROTECHNICE 2.

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY. ENERGETIKY TŘINEC, a.s.

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 8. TRANSFORMÁTORY

Transkript:

Kvalita elektrické energie - průvodce Harmonické 3.4.1 pochopení pojmu kompatibilní úroveň Harmonické HUNGARIAN COPPER PROMOTION CENTRE

Harmonické Část 3.4.1. Harmonické - pochopení pojmu kompatibilní úroveň Autor: Rafael Asepsi, Universidad Politécnica de Madrid, March 2005 Autoři překladu: Josef Gavlas, Pavel Santarius, Petr Krejčí FEI Technická univerzita Ostrava, Prosinec 2005 Tento Průvodce byl vytvořen v rámci programu Leonardo Power Quality Initiative (LPQI), což je evropský vzdělávací program podporovaný Evropskou komisí(v rámci programu Leonardo da Vinci) a Mezinárodní asociací mědi (International Copper Assotiation). Více informací naleznete na www.lpqi.org. Hungarian Copper Promotion Centre (HCPC) HCPC je nezisková organizace financovaná producenty mědi a výrobci zpracovávajícími měď. Jejím cílem je podporovat používání mědi a měděných slitin a napomáhat jejich správné a účinné aplikaci. Služby HCPC, mezi něž patří i poskytování informací a technického poradenství, jsou dostupné zájemcům o využití mědi ve všech oborech. Sdružení rovněž slouží jako prostředník mezi výzkumnými organizacemi a průmyslovými uživateli a udržuje těsné styky s obdobnými středisky mědi ve světě. Fakulta elektrotechniky a informatiky VŠB Technická univerzita Ostrava (FEI - TUO) Fakulta elektrotechniky a informatiky zahájila svou činnost na VŠB Technické univerzitě v Ostravě od 1. ledna 1991. Fakulta zajišťuje všechny formy vysokoškolského studia (tj. bakalářské, magisterské a doktorské) ve studijním programu Elektrotechnika a informatika s ucelenou strukturou elektrotechnických oborů a inženýrské informatiky. Nedílnou součástí činností pedagogů na fakultě je i vědecko-výzkumná činnost, kde jedním z nosných programů je kvalita elektrické energie s hlavním zaměřením na problematiku monitorování parametrů kvality a na problematiku harmonických v elektrických sítích. European Copper Institute (ECI) European Copper Institute je organizací založenou podporujícími členy ICA (International Copper Association) a IWCC (International Wrought Copper Council). ECI zastupuje největší světové producenty mědi a přední evropské výrobce při propagaci mědi v Evropě. ECI, který byl založen v roce 1996, se opírá o síť deseti národních organizací mědi (Copper Development Associations - 'CDAs') v Beneluxu, Francii, Německu, Řecku, Maďarsku, Itálii, Polsku, Skandinávii, Španělsku a Spojeném království. Navazuje na činnost sdružení Copper Products Development Association založeného v roce 1959 a INCRA (International Copper Research Association) založeného v roce 1961. Upozornění Obsah tohoto materiálu nemusí nutně vyjadřovat názor Evropského společenství a není pro něj ani závazný. European Copper Institute a Hungarian Copper Promotion Centre odmítají odpovědnost za jakékoliv přímé, nepřímé či vedlejší škody, které mohou být způsobeny nesprávným využitím informací v této publikaci. Copyright European Copper Institute a Copper Development Association. Česká verze byla připravena ve spolupráci HCPC a Fakulty elektrotechniky a informatiky VŠB Technické Univerzity Ostrava. Reprodukce je možná za předpokladu, že materiál bude otištěn v nezkrácené podobě a s uvedením zdroje. Hungarian Copper Promotion Centre Képíró u. 9 H - 1053 Budapest Maďarsko Tel.: 00 361 266 4810 Tel.: 00 361 266 4804 E-mail: hcpc@euroweb.hu Website: www.hcpcinfo.org VŠB-TU Ostrava Fakulta elektrotechniky a informatiky Katedra el. měření 17. listopadu 15 CZ 708 33 Ostrava-Poruba Tel.: +420 597324279 Tel.: +420 596919597 E-mail: pavel.santarius@vsb.cz Website: homen.vsb.cz/san50/ European Copper Institute 168 Avenue de Tervueren B - 1150 Brussels Belgium Tel.: 00 32 2 777 70 70 Fax: 00 32 2 777 70 79 Email: eci@eurocopper.org Website: www.eurocopper.org

Harmonické Úvod Teoreticky mají proudy a napětí v elektrickém trojfázovém distribučním systému ideální sinusový průběh, mají účiník roven jedné, jsou symetrické (tj. napětí a proudy mají stejné amplitudy a jejich fáze jsou posunuty o 1200 ). V praxi způsobuje charakter zátěže (primárně) zkreslení proudu a napětí a fázovou nesymetrii [1]. V posledních dvou desetiletích se situace zhoršuje a současné sítě mají zkreslené proudy i napětí a dokonce ani v ustáleném stavu nelze uvažovat o symetrickém, sinusovém režimu. Důvody tohoto stavu jsou: Harmonické proudy generované nelineární zátěží jako jednofázové a trojfázové usměrňovače, elektrické obloukové pece, statická kompenzace, atp. Meziharmonické proudy generované střídavými a stejnosměrnými elektrickými obloukovými pecemi, střídavými pohony, atp. Nesymetrie vyvolaná připojenou jednofázovou zátěží k trojfázovému systému Flikr způsobený proměnlivou zátěží Změny napětí (poklesy, přerušení) při poruchách v síti, bleskem, atp. V deregulovaném trhu, kde mnohé společnosti soupeří o zákazníky v téže síti, je hlavním zájmem kvalita elektrické energie, protože schopnost dodávat čistou energii tyto společnosti rozděluje. Aby se zajistila dobrá kvalita elektrické energie, je nutno mít řadu norem jasně specifikujících limity, které musí být stanoveny pro zátěže v sítích. Je nutno zajistit prostředí, ve kterém je dosažena elektromagnetická kompatibilita (EMC), která je definována v normách IEC [2] jako Schopnost zařízení nebo systému fungovat vyhovujícím způsobem ve svém elektromagnetickém prostředí bez vytváření nepřípustného elektromagnetického rušení čehokoliv v tomto prostředí. Problém elektromagnetické kompatibility Jsou zde dvě hlediska problému elektromagnetické kompatibility. Zařízení spotřebitele, které je připojeno do sítě, způsobuje rušení v této síti a výsledné rušení v této síti ovlivňuje řádný chod jiných zařízení v této síti. Aby se zajistila kompatibilita, je nutné hlídat maximální úroveň rušení, která může být v libovolném bodě sítě a stanovit úroveň rušení, pro kterou budou všechna zařízení imunní. Elektrická síť je velice rozsáhlá a nehomogenní, například impedance ve společném napájecím bodě závisí na struktuře sítě a síle lokální sítě, přičemž hustota připojených zařízení se enormně mění. Každé zařízení produkuje nějaké rušení, které se skládá jistým způsobem s rušením od jiných zařízení. Normy pro tato zařízení jsou navrženy tak, aby zajistily, že: emisní úrovně pro každou třídu zařízení jsou takové, že připojením tohoto zařízení k síti nedojde k přílišnému nárůstu celkové úrovně rušení zařízení nebude citlivé na úroveň rušení, kterou je možno očekávat v síti Jsou zde různé parametry, které je nutno definovat a regulovat: emisní úroveň, úroveň vyzařování (emission level - EL) úroveň odolnosti (imunity level - IL) kompatibilní úroveň (compatibility level - CL) mez vyzařování (emission limit - E) mezní odolnost (imunity limit I)) a v sítích vn a vvn plánovací úroveň (planning level -PL) Tyto meze a úrovně jsou popsány v následujících kapitolách. 1

Pochopení pojmu kompatibilní úroveň Emisní úroveň (emission level) Emisní roveň je úroveň rušení produkována jednotlivou zátěží v určitém místě. Její hodnota většinou závisí na dvou faktorech: charakteristikách zařízení, včetně jejich změn při hromadné výrobě charakteristikách napájecí sítě v bodě připojení Ačkoliv je zařízení navrhováno a vyráběno tak, aby vyhovělo normám (včetně dovolené emisní úrovně), individuální výrobky v hromadné výrobě budou mít nevyhnutelně malé odchylky v jejich emisích rušení. Zařízení je typově testováno, aby se zajistilo dosažení požadavků norem, ale změny prvků a náhodně sestavené součásti povedou k malým změnám v emisních úrovních. To znamená, že úroveň rušení produkována různými vzorky téhož zařízení ve stejné síti bude různá. Protože mnohá rušení se projevují jako změny nebo zkreslení proudu zařízení, výsledné rušení, měřené jako napěťové rušení, bude záviset na impedanci napájecí sítě, jenž bývá někdy vyjádřena zkratovým výkonem. Statistický aspekt emisní úrovně V síti je připojen velký počet zátěží, každá má svou emisní úroveň. Vlivem rozdílné síťové impedance (zkratového výkonu), prostorové hustoty zátěží a jejich provozních podmínek budou emisní úrovně měřené v různých bodech sítě rozdílné. Jinými slovy je měřená hodnota emisní úrovně rozdělena statisticky, jak je ukázáno na obr. 1. Graf ukazuje pravděpodobnost (p) výskytu jednotlivé hodnoty emisní úrovně při určitém rušení. Jestliže je výskyt hodnot emisní úrovně častější, jejich pravděpodobnost výskytu je větší. Obr. 1 Distribuční funkce emisní úrovně Základní úroveň rušení je tvořena příspěvky mnoha jednotlivých zařízení. Některá rušení mají v podstatě náhodný charakter a tedy nemají vztah ani k amplitudě ani k fázi hodnoty rušení, která jsou produkována jinými zařízeními. To má za následek, že pro tato rušení není výsledným rušením pouhý součet s jiným rušením zařízení v systému. Ačkoli jsou některá významná rušení, jako například proudy třetí harmonické a poklesy napětí jimi způsobené, které se lokálně sčítají. 2

Pochopení pojmu kompatibilní úroveň Úroveň odolnosti (immunity level) Každé zařízení je navrženo a vyrobeno podle norem, které vyžadují odolnost proti rušení do určité úrovně. Úroveň odolnosti je maximální hodnota rušení, která je přítomná v síti a která nezhorší provoz zařízení při testovacích podmínkách. V praxi je odolnost zařízení proti rušení ovlivněna i jinými faktory. Například tolerance parametrů prvků a precizní montáž součástí bude ovlivňovat úroveň odolnosti ve vztahu k typově testovaným vzorkům. Také montážní podmínky, jako například délky kabelů a podmínky zemnění, způsobují odchylky úrovně odolnosti. Výsledkem je, že úroveň odolnosti je rozdělena statisticky stejně, jak je ukázáno pro emisní úrovně na obr. 1. Kompatibilní úroveň (compatibility level) Rušení produkována individuálními zátěžemi vytvářejí svou kombinací úroveň rušení ve všech bodech napájecí sítě. Úroveň rušení bude různá pro různé body napájecí sítě v závislosti na impedanci sítě a zatížení, a bude se měnit během denní, týdenní i roční periody. Kompatibilní úroveň je definována jako úroveň rušení, která nepřekročí 95% měřených hodnot v celé síti [2]. Všimněte si, že kompatibilní úroveň je statistická hodnota, která charakterizuje stav v celé síti nemůže být použita pro popis situace v jednotlivých místech sítě. Na obr. 2 je ukázán výsledek postupného měření úrovně rušení ve všech bodech sítě během týdne. Obr. 2 Kompatibilní úroveň Kompatibilní úroveň je definována absolutně, například kompatibilní úrovně pro některé harmonické napětí v sítích nízkého napětí jsou uvedeny v Tab. 1 (viz [2]) jsou vyjádřeny v procentech základní harmonické složky napětí. Nicméně úrovně rušení (jako 95% hodnota) jsou statistické hodnoty, které jsou výsledkem vlivu mnoha proměnných. Tab. 1 - Kompatibilní úrovně pro některé harmonické napětí v sítích nízkého napětí Zatímco stanovit amplitudu kompatibilní úrovně je jednoduché, definovat normy pro návrh zařízení a pravidla pro plánování sítí, která to umožní, je mnohem komplexnější úloha, při níž se často opíráme o provozní zkušenosti. Meze vyzařování popsané v následující kapitole jsou jednou komponentou pro řešení této úlohy. 3

Pochopení pojmu kompatibilní úroveň Mez vyzařování (emission limit) Mez vyzařování je maximální dovolená hodnota emisní úrovně generované jednotlivým zařízením. Všimněme si, že mez vyzařování je aplikována na jednotlivá zařízení, zatímco kompatibilní úroveň je aplikována na celou síť. Meze vyzařování mohou být potvrzeny testováním, které vyloučí nevyhovující zařízení. V praxi je řízení tohoto procesu ponecháno trhu, který se spoléhá, že výrobce bude testovat řádně své výrobky a že uživatel bude upozorňovat na vadné výrobky. Mez vyzařování je úroveň rušení nastavená o něco níže, než kompatibilní úroveň. Důvodem je to, že rušení produkovaná všemi zátěžemi v systému se komplexně sčítají, čímž stanovíme globální úroveň rušení. Některá rušení, jako například proudy třetí harmonické, se jednoduše aritmeticky sčítají, ale mohou se lokálně omezit například průchodem přes delta vinutí transformátorů. Jiné harmonické složky mají sklon se sčítat jako efektivní hodnoty, ale jsou omezovány při směšování s harmonickými z jiných zdrojů, čemuž přispívají změny fáze při průchodu harmonických vinutím transformátorů a také vlivem indukčností a kapacit v síti. Lokálně mohou harmonické neočekávaně vzrůst vlivem rezonančních efektů. Meze vyzařování jsou definovány v absolutních hodnotách, tj. absolutní limity proudu na jednotlivých harmonických frekvencích na rozdíl od úrovně rušení v síti, která je definována statisticky. Soulad mezi nimi závisí na charakteristikách sítí a je odvozena od dlouholetých provozních zkušeností. Regulační a normalizační úřady musí specifikovat meze vyzařování pro zařízení, které by mohly vést k takovým úrovním rušení, které nepřekročí vyžadované kompatibilní úrovně. Jako příklad jsou uvedeny v Tab. 2 meze vyzařování některých harmonických proudů v sítích nízkého napětí (EN 61000-3-2 [3]). Proudy jsou uvedeny v Ampérech. Meze vyzařování [A] Tab. 2 Meze vyzařování harmonických proudů v sítích nn Kompatibilní úroveň je stanovena jako úroveň rušení, která je větší než 95% naměřených hodnot v celém systému v určitém čase. Výsledkem je, že pouze v 5% případů překročí v systému úroveň rušení kompatibilní úroveň. Distribuční funkce úrovně odolnosti je rozložena tak, že pouze 5% hodnot je pod kompatibilní úrovní. Kompatibilní úrovní můžeme definovat hodnotu, kterou překročí pouze 5% naměřených hodnot úrovní rušení v systému a na kterou pouze 5% zařízení bude citlivých. Pouze v případě, kdy problémem u zařízení je spojen s jeho umístěním v systému, může pravděpodobně nastat problém. Jinými slovy s požadavky na EMC se setkáme u velké většiny případů. Ve skutečnosti situace je taková, že kompatibilní úroveň byla stanovena při návrhu norem používaných distribučními společnostmi a při faktu, že vyráběné zařízení bude akceptováno na trhu, pokud bude dostatečně imunní, a je schopno spoluexistence s jinými zařízeními. Tyto problémy jsou řešeny, jak je uvedeno výše. Protože různé typy zařízení působí na systém různě, jsou v normě EN 61000-3-2 definovány různé třídy zařízení. Pro ilustraci jsou uvedeny dva příklady. Třída A zahrnuje zařízení jako trojfázové symetrické systémy nebo domácí spotřebiče. Zařízení třídy B jsou přenosná zařízení (zařízení s nízkým činitelem využití). Mezní odolnost (imunity limit) Mezní odolnost je úroveň rušení, kterému musí zařízení odolat bez omezení činnosti. Mezní odolnost je určena konstrukcí zařízení a je zajištěna typovým testem, ale mohou zde být malé rozdíly mezi jednotlivými produkty téže konstrukce. Jelikož se mění podmínky instalace, bude zde větší rozptyl charakteristik mezi podobnými zařízeními v různých instalacích. Proto zde bude statistické rozdělení mezní odolnosti pro zařízení v napájecí síti. Má-li být dosaženo správné EMC, pak 95% distribuční funkce pro mezní odolnost instalovaného zařízení musí ležet nad kompatibilní úrovní, jak je ukázáno na obr. 3. 4

Pochopení pojmu kompatibilní úroveň Obr. 3 Distribuční funkce mezní odolnosti Této ideální situace může být dosaženo při rozumné volbě kompatibilní úrovně a při zavedení vhodných norem pro odolnosti zařízení a při využití dobrých instalačních postupů. Plánovací úroveň (planning level) Plánovací úrovně se používají v sítích vysokého a velmi vysokého napětí a reprezentují interní cíle energetických společností. Jsou užívány při návrhu sítí, například při rozhodování jak připojit novou zátěž. V mnoha regulačních režimech jsou plánovací úrovně využity pro průmyslové a obchodní odběratele, aby se omezily harmonické proudy, které mohou být přidány do sítě od těchto odběratelů. Plánovací úrovně jsou nižší než kompatibilní úrovně částečně proto, že je neznáma zátěž v síti (např. domácí spotřebiče), která může být pouze odhadnuta a částečně proto, že problém je statistický, který vyžaduje jistou opatrnost. Vztah mezi těmito parametry Na obr. 4 je ukázán vztah mezi těmito limity. Obr. 4 Vztah mezi mezí vyzařování (E), mezní odolnosti (I), kompatibilní úrovní (CL) a plánovací úrovní (PL) 5

Pochopení pojmu kompatibilní úroveň Závěry V normách jsou popsány hlavní limity, které regulují vyzařování rušení a odolnost zařízení připojených do sítí a je vysvětlen vztah mezi nimi. Zavedení těchto limitů je kompromis. Velmi nízká mez vyzařování vede k velmi nízké úrovni rušení, což dovoluje zavedení velmi nízké kompatibilní úrovně. Nižší úroveň odolnosti bude přijatelná, ale zvýší se výrobní náklady zařízení s nízkou emisí rušení. Naopak dovolíme-li vyšší úrovně vyzařování, bude nutno zvýšit kompatibilní úroveň a rovněž zvýšit úroveň odolnosti zařízení, což opět zvýší výrobní náklady. Odkazy a literatura [1] Bollen, Math H J, Understanding Power Quality Problems: Voltage Sags and Interruptions, IEEE Press Marketing, 2000. [2] IEC 61000-2-12. Electromagnetic Compatibility (EMC) - Part 2-12: Environment - Compatibility levels for low frequency conducted disturbances and signalling in public medium voltage power supply systems. [3] IEC 61000-3-2. Electromagnetic Compatibility (EMC) - Part 3-2: Limits - Limits for harmonic current emissions (equipment input current _16A per phase). 6

HUNGARIAN COPPER PROMOTION CENTRE Hungarian Copper Promotion Centre Képíró u. 9 H - 1053 Budapest Maďarsko Tel.: 00 361 266 4810 Tel.: 00 361 266 4804 E-mail: hcpc@euroweb.hu Website: www.hcpcinfo.org VŠB-TU Ostrava Fakulta elektrotechniky a informatiky Katedra el. měření 17. listopadu 15 CZ 708 33 Ostrava-Poruba Tel.: +420 597324279 Tel.: +420 596919597 E-mail: pavel.santarius@vsb.cz Website: homen.vsb.cz/san50/ European Copper Institute 168 Avenue de Tervueren B - 1150 Brussels Belgium Tel.: 00 32 2 777 70 70 Fax: 00 32 2 777 70 79 Email: eci@eurocopper.org Website: www.eurocopper.org