2.6. Vedení pro střídavý proud
|
|
- Gabriela Sabina Procházková
- před 8 lety
- Počet zobrazení:
Transkript
1 2.6. Vedení pro střídavý proud Při výpočtu krátkých vedení počítáme většinou buď jen s činným odporem vedení (nn) nebo u vn s činným a induktivním odporem Krátká jednofázová vedení nn U krátkých vedení pro střídavý proud nn lze prakticky zanedbat všechny parametry vedení kromě činného odporu. Rozdíl mezi vedením pro stejnosměrný proud je pouze v tom, že spotřebiče střídavého proudu způsobují obecně určitý fázový posun mezi fázorem napětí a proudu ve vedení. Nejčastěji je zátěž induktivního charakteru (motory, zářivky, žárovky, apod.). Obr Náhradní elektrické schéma a fázorový diagram vedení nn Úbytek napětí na činném odporu vedení způsobený proudem procházejícím vedením, je ve fázi s tímto proudem, který jej způsobil. Je třeba ho přičíst k napětí na konci vedení Obr. 37. Rozdíl absolutních hodnot napětí na začátku a na konci vedení (algebraický úbytek napětí), který nás především u střídavého proudu zajímá, je dán s dostatečnou přesností vztahem [V] (103) Chyba způsobená promítnutím U 1, místo sklopením do reálné osy je zanedbatelná. Při výpočtu ztrát je však nutno uvažovat celkový (zdánlivý) proud. [W] (104) Třífázové vedení nn Při výpočtu předpokládáme souměrné zatížení všech tří fází, takže pak stačí stanovit úbytek napětí na jedné fázi. Za tohoto předpokladu platí stejné vztahy jako byly uvedeny v předcházející kapitole. [V] (105) kde R je odpor fázového vodiče (R=ρl/s) [Ω] Rozdílem je ovšem to, že úbytek napětí takto vypočtený je úbytkem napětí mezi fázovým vodičem a zemí. Sdružený úbytek napětí je pak obdobou vztahu U = 3 U f [V] (106) 51
2 Ztráty v trojfázové síti jsou pak [W] (107) Ztráty lze též vypočítat přímo z velikosti přenášeného výkonu [W] (108) Jednofázové i trojfázové vedení nn s více odběry se řeší podobně jako stejnosměrná vedení. Pokud známe u odběrů pouze jejich příkon P a cos, počítáme činnou a jalovou složku jejich proudových odběrů se zanedbáním skutečného úbytku napětí, tedy počítáme se jmenovitým sdruženým napětím: [A] (109) Průřez nulového vodiče Obr Trojfázová soustava s nulovým vodičem Pro rozvodné sítě nn se používá trojfázové soustavy s nulovým vodičem. Nulový vodič slouží k vyvedení uzlu u zdrojů a spotřebičů, zapojených do hvězdy (Obr. 38) a umožňuje odebírat proud též při fázovém napětí a chránit přístroje nulováním. Při souměrném zatížení této sítě, neprotéká nulovým vodičem žádný proud. Při n e s o u mě r ném zatížení, způsobeném jednofázovými spotřebiči, protéká nulovým vodičem vyrovnávací proud. Průřezy nulových vodičů se stanoví takto [1]: 2 Pro fázové vodiče o průřezu [mm ] Cu Al průřez nulového vodiče do 16 do 25 jako u fázových vodičů nad 16 nad 25 o stupeň nižší než u fázových vodičů nad 50 nad 70 postačí Cu 50, Al 70 Tab. X - Stanovení průřezu nulového vodiče 52
3 Vedení vn U vedení vn (zvláště pak venkovních) uvažujeme kromě činného odporu také induktivní reaktanci. Počítáme tedy s podélnou impedancí vedení Z = R + jx L. Pro tento případ platí náhradní elektrické schéma a fázorový diagram, přičemž U 1 je napětí na začátku vedení [V] U 2 napětí na konci vedení [V] I proud tekoucí vedením [A] 1 2 fázový posun proudu oproti napětí na začátku vedení [ ] fázový posun proudu oproti napětí na konci vedení [ ] Obr Náhradní el. schéma vedení vn U R úbytek napětí na odporu vedení [V] U L úbytek napětí na induktivní reaktanci vedení [V] Z z impedance zátěže [Ω] Obr Fázorový diagram vedení vn s induktivním charakterem zátěže Absolutní hodnotu rozdílu fázorů napětí na začátku a na konci vedení lze vyjádřit: (110) Z fázorového diagramu vedení vn (viz Obr. 40) je vidět, že jalové úbytky napětí na odporu a induktivní reaktanci vedení se vzájemně odečítají. Z tohoto důvodu většinou jalové úbytky zanedbáváme a úbytek napětí na vedení vn vyjadřujeme zjednodušeně jako součet činných složek úbytků na odporu a reaktanci: (111) což znamená, že obvykle uvažujeme úbytek napětí jako algebraický rozdíl mezi napětím na začátku a napětím na konci, který je dán průmětem fázoru napětí U do reálné osy napětí U
4 Vedení vvn Při výpočtech vedení vvn je třeba kromě odporu a induktivní reaktance uvažovat také s kapacitní admitancí a případně někdy i se svodem a koronou. S kapacitou vedení je třeba také někdy počítat u dlouhých vedení vn, především pak kabelových. Uvažujeme tedy tyto charakteristické vlastnosti vedení: R - činný odpor L - celková (úhrnná) indukčnost C - provozní kapacita G - celkový svod (svod + korona) [Ω/km] [H/km] [F/km] [S/km] Všechny tyto hodnoty jsou vztaženy na jednu fázi vedení a jsou pro symetrická nebo symetrizovaná vedení pro každou fázi stejné Přesné řešení vedení vvn Při přesném výpočtu se uvažuje rovnoměrné rozložení charakteristických vlastností podél celého vedení. Rovnoměrné rozložení kapacity a svodu podél vedení znamená, že se plynule mění proud i napětí se stoupající vzdáleností od začátku vedení. Pro odvození vztahů pro výpočet provozních parametrů (napětí, proud, fázový posun, činný a jalový výkon) vedení vyjdeme z předpokladu, že se skládá z elementárních čtyřpólů připojených za sebou. Každý čtyřpól nese charakteristické parametry vedení R, L, C, G a můžeme ho znázornit pomocí T-článku. Obr Elementární čtyřpól 54
5 Označme podélnou impedanci Z jako (110) a příčnou admitanci Y (111) přičemž (112) kde R a X jsou činný a induktivní odpor vedení [Ω/km] G a B svod a kapacitní vodivost vedení [S/km] Dále platí, že (113) kde p je míra přenosu, nebo též "činitel šíření" či "komplexní konstanta přenosu" Konstantu p lze rozdělit na reálnou a imaginární složku: (114) kde a je činitel útlumu, který je mírou změny velikosti napětí resp. proudu b fázový činitel, který je mírou natočení fázoru napětí resp. proudu (115) (116) pak lze psát (117) Vlnová impedance je (118) 55
6 Za použití výše uvedených vztahů z teoretické elektrotechniky můžeme stanovit provozní parametry vedení. Zpravidla známe napětí, proud a účiník na konci vedení neboť jsou dány charakterem zátěže a technickou normou. Potřebujeme vypočítat parametry na začátku vedení, tedy především potřebné vstupní napětí U 1 tak, aby na konci vedení bylo předepsané napětí U 2, které zákazník očekává. Pro poměry na začátku vedení tedy platí: (119) (120) Úpravou předchozích rovnic obdržíme podobné vztahy pro výpočet poměrů na konci vedení, při znalosti těchto na začátku. (121) (122) Tyto rovnice lze zjednodušeně psát zavedením tzv. Blondelových konstant: (123) a potom pro poměry na začátku vedení: (124) nebo na konci: (125) Výše uvedené rovnice obsahují hyperbolické funkce komplexních argumentů. Jejich hodnoty se stanovovaly pomocí tabulek či grafů hyperbolických funkcí nebo pomocí rozvinutí hyperbolických funkcí do řad. V dnešní době pokročilé a levné výpočetní techniky bývají běžně k dispozici kalkulátory s hyperbolickými funkcemi komplexních argumentů. Rovněž lze využít funkcí v tabulkových procesorech u osobních počítačů. Pokud kalkulačka neumí pracovat s komplexními čísly, lze využít následujících vztahů: (126) (127) 56
7 2.6. Vedení pro střídavý proud Pokud 2/ Ztráty Označme Mnohem Za použití v známe trojfázové podélnou vyšší úbytky výše Vedení nároky uvedených síti impedanci napětí jsou vn vvn pak v kvalitu, uzlech, vztahů Z jakotedy můžeme z teoretické především vypočítat elektrotechniky selektivnost jednotlivé ochran. můžeme proudy Jinak ve stanovit spojovacích zkraty provozní v mřížové vedeních parametry síti, díky sítě. Pro soustavu rovnic je charakteristické, že se v ní nevyskytuje ani U n, ani G n tedy napájecí bod. To platí i v případě vícero napájecích bodů. 57
METODICKÝ LIST Z ELEKTROENERGETIKY PRO 3. ROČNÍK řešené příklady
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ BRNO,KOUNICOVA16 METODICKÝ LIST Z ELEKTROENERGETIKY PRO 3. ROČNÍK řešené příklady Třída : K4 Název tématu : Metodický list z elektroenergetiky řešené příklady
Určeno pro posluchače bakalářských studijních programů FS
rčeno pro posluchače bakalářských studijních programů FS 3. STŘÍDAVÉ JEDNOFÁOVÉ OBVODY Příklad 3.: V obvodě sestávajícím ze sériové kombinace rezistoru, reálné cívky a kondenzátoru vypočítejte požadované
Zadané hodnoty: R L L = 0,1 H. U = 24 V f = 50 Hz
. STŘÍDAVÉ JEDNOFÁOVÉ OBVODY Příklad.: V elektrickém obvodě sestávajícím ze sériové kombinace rezistoru reálné cívky a kondenzátoru vypočítejte požadované veličiny určete také charakter obvodu a nakreslete
2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY
2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY Příklad 2.1: V obvodě sestávajícím ze sériové kombinace rezistoru reálné cívky a kondenzátoru vypočítejte požadované veličiny určete také charakter obvodu a nakreslete fázorový
2.4. Výpočty vedení obecně
2.4. Výpočty vedení obecně Při výpočtech silových vedení elektřiny neuvažujeme vždy všechny parametry vedení. Výpočty se dají zjednodušit tím, že se některé parametry v daném případě se zanedbatelným vlivem
Základy elektrotechniky
áklady elektrotechniky Přednáška Trojfázová soustava 1 Princip vzniku střídavého proudu 3f - soustavy 2 TROJFÁOÁ SOSTAA základní obrat ve výrobě a užití elektrické energie nesporné výhody při výrobě, přenosu
1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem
Praktické příklady z Elektrotechniky. Střídavé obvody.. Základní pojmy.. Jednoduché obvody se střídavým proudem Příklad : Stanovte napětí na ideálním kondenzátoru s kapacitou 0 µf, kterým prochází proud
Synchronní stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006
8. ELEKTRICKÉ TROJE TOČIVÉ Určeno pro posluchače bakalářských studijních programů F ynchronní stroje Ing. Vítězslav týskala h.d. únor 00 říklad 8. Základy napětí a proudy Řešené příklady Třífázový synchronní
TROJFÁZOVÁ SOUSTAVA ZÁKLADNÍ POJMY
TROJFÁOÁ SOSTAA základní obrat ve výrobě a užití elektrické energie nesporné výhody při výrobě, přenosu a přeměně elektrické energie na mechanickou Trojfázová symetrická soustava napětí: tři zdroje harmonického
7 Měření transformátoru nakrátko
7 7.1 adání úlohy a) změřte charakteristiku nakrátko pro proudy dané v tabulce b) vypočtěte poměrné napětí nakrátko u K pro jmenovitý proud transformátoru c) vypočtěte impedanci nakrátko K a její dílčí
STŘÍDAVÝ ELEKTRICKÝ PROUD Trojfázová soustava TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
STŘÍDAVÝ ELEKTRICKÝ PROUD Trojfázová soustava TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Vznik trojfázového napětí Průběh naznačený na obrázku je jednofázový,
Základy elektrotechniky
Základy elektrotechniky 5. přednáška Elektrický výkon a energie 1 Základní pojmy Okamžitá hodnota výkonu je deinována: p = u.i [W; V, A] spotřebičová orientace - napětí i proud na impedanci Z mají souhlasný
Identifikátor materiálu: VY_32_INOVACE_355
Identifikátor materiálu: VY_32_INOVACE_355 Anotace Autor Jazyk Očekávaný výstup Výuková prezentace.na jednotlivých snímcích jsou postupně odkrývány informace, které žák zapisuje či zakresluje do sešitu.
Měření výkonu jednofázového proudu
Měření výkonu jednofázového proudu Návod k laboratornímu cvičení Úkol: a) eznámit se s měřením činného výkonu zátěže elektrodynamickým wattmetrem se dvěma možnými způsoby zapojení napěťové cívky wattmetru.
TRANSFORMÁTORY Ing. Eva Navrátilová
STŘEDNÍ ŠOLA, HAVÍŘOV-ŠUMBAR, SÝOROVA 1/613 příspěvková organizace TRANSFORMÁTORY Ing. Eva Navrátilová - 1 - Transformátor jednofázový = netočivý elektrický stroj, který využívá elektromagnetickou indukci
3. Střídavé třífázové obvody
. třídavé tříázové obvody říklad.. V přívodním vedení trojázového elektrického sporáku na x 400 V, jehož topná tělesa jsou zapojena do trojúhelníku, byl naměřen proud 6 A. Jak velký proud prochází topným
Symetrické stavy v trojfázové soustavě
Pro obvod na obrázku Symetrické stavy v trojfázové soustavě a) sestavte admitanční matici obvodu b) stanovte viděnou impedanci v uzlu 3 a meziuzlovou viděnou impedanci mezi uzly 1 a 2 a c) stanovte zdánlivý
Elektrotechnika. Václav Vrána Jan Dudek
Elektrotechnika kázka výběru příkladp kladů na písemku p Václav Vrána Jan Dudek Příklad č.1 Zadání příkladu Odporový spotřebi ebič o celkovém m příkonu p P 1 kw je připojen p na souměrnou trojfázovou napájec
Energetická bilance elektrických strojů
Energetická bilance elektrických strojů Jiří Kubín TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,
Výkon střídavého proudu, účiník
ng. Jaromír Tyrbach Výkon střídavého proudu, účiník odle toho, kterého prvku obvodu se výkon týká, rozlišujeme u střídavých obvodů výkon činný, jalový a zdánlivý. Ve střídavých obvodech se neustále mění
Přenosové linky. Obr. 1: Náhradní obvod jednofázového vedení s rozprostřenými parametry
Přenosoé linky Na obr. je znázorněno náhradní schéma jednofázoého edení s rozprostřenými parametry o délce l (R označuje podélný odpor, X podélnou reaktanci, G příčnou konduktanci a B příčnou susceptanci,
Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.
FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických
Vítězslav Stýskala, Jan Dudek. Určeno pro studenty komb. formy FBI předmětu / 06 Elektrotechnika
Stýskala, 00 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala, Jan Dudek rčeno pro studenty komb. formy FB předmětu 45081 / 06 Elektrotechnika B. Obvody střídavé (AC) (všechny základní vztahy
6. ÚČINKY A MEZE HARMONICKÝCH
6. ÚČINKY A MEZE HARMONICKÝCH 6.1. Negativní účinky harmonických Poruchová činnost ochranných přístrojů nadproudové ochrany: chybné vypínání tepelné spouště proudové chrániče: chybné vypínání při nekorektním
Rezistor je součástka kmitočtově nezávislá, to znamená, že se chová stejně v obvodu AC i DC proudu (platí pro ideální rezistor).
Rezistor: Pasivní elektrotechnická součástka, jejíž hlavní vlastností je schopnost bránit průchodu elektrickému proudu. Tuto vlastnost nazýváme elektrický odpor. Do obvodu se zařazuje za účelem snížení
1.1 Měření parametrů transformátorů
1.1 Měření parametrů transformátorů Cíle kapitoly: Jedním z cílů úlohy je stanovit základní parametry dvou rozdílných třífázových transformátorů. Dvojice transformátorů tak bude podrobena měření naprázdno
V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3
. STEJNOSMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Z 5 5 4 4 6 Schéma. Z = 0 V = 0 Ω = 40 Ω = 40 Ω 4 = 60 Ω 5 = 90 Ω
Stupeň Datum ZKRATOVÉ POMĚRY Číslo přílohy 10
Projektant Šlapák Kreslil Šlapák ČVUT FEL Technická 1902/2, 166 27 Praha 6 - Dejvice MVE ŠTĚTÍ ELEKTROTECHNICKÁ ČÁST Stupeň Datum 5. 2016 ZKRATOVÉ POMĚRY Číslo přílohy 10 Obsah Seznam symbolů a zkratek...
V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3
. STEJNOSMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. 5 5 U 6 Schéma. = 0 V = 0 Ω = 0 Ω = 0 Ω = 60 Ω 5 = 90 Ω 6 = 0 Ω celkový
Určeno pro posluchače všech bakalářských studijních programů FS
rčeno pro posluchače všech bakalářských studijních programů FS. STEJNOSMĚNÉ OBVODY pravil ng. Vítězslav Stýskala, Ph D. září 005 Příklad. (výpočet obvodových veličin metodou postupného zjednodušováni a
Měření a automatizace
Měření a automatizace Číslicové měřící přístroje - princip činnosti - metody převodu napětí na číslo - chyby číslicových měřících přístrojů Základní pojmy v automatizaci - řízení, ovládání, regulace -
Měření transformátoru naprázdno a nakrátko
Měření u naprázdno a nakrátko Měření naprázdno Teoretický rozbor Stav naprázdno je stavem u, při kterém je I =. řesto primárním vinutím protéká proud I tzv. magnetizační, jenž je nutný pro vybuzení magnetického
NÁVRH TRANSFORMÁTORU. Postup školního výpočtu distribučního transformátoru
NÁVRH TRANSFORMÁTORU Postup školního výpočtu distribučního transformátoru Pro návrh transformátoru se zadává: - zdánlivý výkon S [kva ] - vstupní a výstupní sdružené napětí ve tvaru /U [V] - kmitočet f
Studijní opory předmětu Elektrotechnika
Studijní opory předmětu Elektrotechnika Doc. Ing. Vítězslav Stýskala Ph.D. Doc. Ing. Václav Kolář Ph.D. Obsah: 1. Elektrické obvody stejnosměrného proudu... 2 2. Elektrická měření... 3 3. Elektrické obvody
Elektroenergetika 1. Elektrické části elektrárenských bloků
Elektroenergetika 1 Elektrické části elektrárenských bloků Elektrická část elektrárny Hlavním úkolem elektrické části elektráren je: Vyvedení výkonu z elektrárny zprostředkování spojení alternátoru s elektrizační
Elektroenergetika 1. Elektrické části elektrárenských bloků
Elektrické části elektrárenských bloků Elektrická část elektrárny Hlavním úkolem elektrické části elektráren je: Vyvedení výkonu z elektrárny - zprostředkování spojení alternátoru s elektrizační soustavou
Nové pohledy na kompenzaci účiníku a eliminaci energetického rušení
Nové pohledy na kompenzaci účiníku a eliminaci energetického rušení Jiří Holoubek, ELCOM, a. s. Proč správně kompenzovat? Cenové rozhodnutí ERÚ č. 7/2009: Všechny regulované ceny distribučních služeb platí
6 Měření transformátoru naprázdno
6 6.1 Zadání úlohy a) změřte charakteristiku naprázdno pro napětí uvedená v tabulce b) změřte převod transformátoru c) vypočtěte poměrný proud naprázdno pro jmenovité napětí transformátoru d) vypočtěte
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROENERGETIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
Měření na 3fázovém transformátoru
Měření na 3fázovém transformátoru Transformátor naprázdno 0. 1. Zadání Změřte trojfázový transformátor v chodu naprázdno. Regulujte napájecí napětí v rozmezí 75 až 120 V, měřte proud naprázdno ve všech
3. Kmitočtové charakteristiky
3. Kmitočtové charakteristiky Po základním seznámení s programem ATP a jeho preprocesorem ATPDraw následuje využití jednotlivých prvků v jednoduchých obvodech. Jednotlivé příklady obvodů jsou uzpůsobeny
Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky
Tématické okruhy teoretických zkoušek Part 66 1 3.1 Teorie elektronu 1 1 1 Struktura a rozložení elektrických nábojů uvnitř: atomů, molekul, iontů, sloučenin; Molekulární struktura vodičů, polovodičů a
A B C. 3-F TRAFO dává z každé fáze stejný výkon, takže každá cívka je dimenzovaná na P sv = 630/3 = 210 kva = VA
3-f transformátor 630 kva s převodem U1 = 22 kv, U2 = 400/231V je ve spojení / Y, vypočítejte svorkové proudy I1 a I2 a pak napětí a proudy cívek primáru a sekundáru, napište ve fázorovém tvaru I. K.z.
VÝUKOVÝ MATERIÁL. Pro vzdělanější Šluknovsko. 32 Inovace a zkvalitnění výuky prostřednictvím ICT. 0210 Bc. David Pietschmann.
VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Autor Tematická oblast Číslo a název materiálu Anotace Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková
Měření závislosti indukčnosti cívky (Distribuce elektrické energie - BDEE)
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Měření závislosti indukčnosti cívky (Distribuce elektrické energie - BDEE) Autoři textu: Ing. Jan Varmuža Květen 2013 epower
LABORATORNÍ PROTOKOL Z PŘEDMĚTU SILNOPROUDÁ ELEKTROTECHNIKA
LABORATORNÍ PROTOKOL Z PŘEDMĚTU SILNOPROUDÁ ELEKTROTECHNIKA Transformátor Měření zatěžovací a převodní charakteristiky. Zadání. Změřte zatěžovací charakteristiku transformátoru a graficky znázorněte závislost
Symetrizace 1f a 3f spotřebičů Symetrizace 1f a 3f spotřebičů
Symetrizace 1f a 3f spotřebičů Symetrizace 1f a 3f spotřebičů 5.10.2002 V mnoha průmyslových aplikacích se setkáváme s velkými zařízeními připojenými na síť elektrické energie. Tyto spotřebiče by měly
13 Měření na sériovém rezonančním obvodu
13 13.1 Zadání 1) Změřte hodnotu indukčnosti cívky a kapacity kondenzátoru RC můstkem, z naměřených hodnot vypočítej rezonanční kmitočet. 2) Generátorem nastavujte frekvenci v rozsahu od 0,1 * f REZ do
R 4 U 3 R 6 R 20 R 3 I I 2
. TEJNOMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. 6 chéma. = V = Ω = Ω = Ω = 6 Ω = 9 Ω 6 = Ω rčit: celkový odpor C,,,,,,,,
Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 8. TRANSFORMÁTORY
Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - T Ostrava 8. TRANSFORMÁTORY 8. Princip činnosti 8. Provozní stavy skutečného transformátoru 8.. Transformátor naprázdno 8.. Transformátor
LABORATORNÍ CVIČENÍ Elektrotechnika a elektronika
VUT FSI BRNO ÚVSSaR, ODBOR ELEKTROTECHNIKY JMÉNO: ŠKOLNÍ ROK: 2010/2011 PŘEDNÁŠKOVÁ SKUPINA: 1E/95 LABORATORNÍ CVIČENÍ Elektrotechnika a elektronika ROČNÍK: 1. KROUŽEK: 2EL SEMESTR: LETNÍ UČITEL: Ing.
Zpráva o měření. Střední průmyslová škola elektrotechnická Havířov. Úloha: Měření výkonu. Třída: 3.C. Skupina: 3. Zpráva číslo: 8. Den:
Střední průmyslová škola elektrotechnická Havířov Zpráva o měření Třída: 3.C Skupina: 3 Schéma zapojení: Úloha: Měření výkonu Zpráva číslo: 8 Den: 06.04.2006 Seznam měřících přístrojů: 3x R 52 Ohmů Lutron
PSK1-15. Metalické vedení. Úvod
PSK1-15 Název školy: Autor: Anotace: Vzdělávací oblast: Předmět: Tematická oblast: Výsledky vzdělávání: Klíčová slova: Druh učebního materiálu: Typ vzdělávání: Ověřeno: Zdroj: Vyšší odborná škola a Střední
Transformátor trojfázový
Transformátor trojfázový distribuční transformátory přenášejí elektricky výkon ve všech 3 fázích v praxi lze použít: a) 3 jednofázové transformátory větší spotřeba materiálu v záloze stačí jeden transformátor
2 Teoretický úvod 3. 4 Schéma zapojení 6. 4.2 Měření třemi wattmetry (Aronovo zapojení)... 6. 5.2 Tabulka hodnot pro měření dvěmi wattmetry...
Měření trojfázového činného výkonu Obsah 1 Zadání 3 2 Teoretický úvod 3 2.1 Vznik a přenos třífázového proudu a napětí................ 3 2.2 Zapojení do hvězdy............................. 3 2.3 Zapojení
1.1 Paralelní spolupráce transformátorů stejného nebo rozdílného výkonu
1.1 Paralelní spolupráce transformátorů stejného nebo rozdílného výkonu Cíle kapitoly: Cílem úlohy je ověřit teoretické znalosti při provozu dvou a více transformátorů paralelně. Dalším úkolem bude změřit
Míra vjemu flikru: flikr (blikání): pocit nestálého zrakového vnímání vyvolaný světelným podnětem, jehož jas nebo spektrální rozložení kolísá v čase
. KVLIT NPĚTÍ.. Odchylky napájecího napětí n ± % (v intervalu deseti minut 95% průměrných efektivních hodnot během každého týdne) spínání velkých zátěží jako např. pohony s motory, obloukové pece, bojlery,
Elektrický výkon v obvodu se střídavým proudem. Účinnost, účinník, činný a jalový proud
Elektrický výkon v obvodu se střídavým proudem Účinnost, účinník, činný a jalový proud U obvodu s odporem je U a I ve fázi. Za předpokladu, že se rovnají hodnoty U,I : 1. U(efektivní)= U(stejnosměrnému)
1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy:
1 Pracovní úkoly 1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy: (a) cívka bez jádra (b) cívka s otevřeným jádrem (c) cívka s uzavřeným jádrem 2. Přímou metodou změřte odpor
Cvičení 11. B1B14ZEL1 / Základy elektrotechnického inženýrství
Cvičení 11 B1B14ZEL1 / Základy elektrotechnického inženýrství Obsah cvičení 1) Výpočet proudů v obvodu Metodou postupného zjednodušování Pomocí Kirchhoffových zákonů Metodou smyčkových proudů 2) Nezatížený
DIGITÁLNÍ UČEBNÍ MATERIÁL
DIGITÁLNÍ UČEBNÍ MATERIÁL škola Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 číslo projektu číslo učebního materiálu předmět, tematický celek ročník CZ.1.07/1.5.00/34.1037 VY_32_INOVACE_ZIL_VEL_123_12
ELEKTROTECHNIKA 2 TEMATICKÉ OKRUHY
EEKTOTECHNK TEMTCKÉ OKHY. Harmonický ustálený stav imitance a výkon Harmonicky proměnné veličiny. Vyjádření fázorů jednotlivými tvary komplexních čísel. Symbolický počet a jeho využití při řešení harmonicky
Základy elektrotechniky
Základy elektrotechniky Přednáška Transformátory deální transformátor r 0; 0 bez rozptylu mag. toků 0, Φ Φmax. sinωt ndukované napětí: u i N d N dt... cos t max imax N..f. 4,44..f.N d ui N i 4,44. max.f.n
E L E K T R I C K Á M Ě Ř E N Í
Střední škola, Havířov Šumbark, Sýkorova 1/613, příspěvková organizace E L E K T R I C K Á M Ě Ř E N Í R O Č N Í K MĚŘENÍ ZÁKLDNÍCH ELEKTRICKÝCH ELIČIN Ing. Bouchala Petr Jméno a příjmení Třída Školní
NÁLEŽITOSTI ŽÁDOSTI O PŘIPOJENÍ VÝROBNY ELEKTŘINY K PŘENOSOVÉ NEBO DISTRIBUČNÍ SOUSTAVĚ
Příloha č. 1 k vyhlášce č. 51/2006 Sb. NÁLEŽITOSTI ŽÁDOSTI O PŘIPOJENÍ VÝROBNY ELEKTŘINY K PŘENOSOVÉ NEBO DISTRIBUČNÍ SOUSTAVĚ 1. Obchodní firma - vyplňuje žadatel podnikatel zapsaný Část B - údaje o zařízení
Elektřina a magnetizmus rozvod elektrické energie
DUM Základy přírodních věd DUM III/2-T3-19 Téma: rozvod elektrické energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý a Mgr. Josef Kormaník VÝKLAD Elektřina a magnetizmus rozvod
Tel. kalibrace: Platnost: od
1 e-mail : obchod@secel.cz http:// www.meraky.eu www.secel.cz Platnost: od 1. 1. 2019 SEC electronic s.r.o. Arnošta z Pardubic 2762 530 02 Pardubice Tel. obchod: + 420 466 301 331 GSM: + 420 603 245 230
1 Měření paralelní kompenzace v zapojení do trojúhelníku a do hvězdy pro symetrické a nesymetrické zátěže
1 Měření paralelní kompenzace v zapoení do troúhelníku a do hvězdy pro symetrické a nesymetrické zátěže íle úlohy: Trofázová paralelní kompenzace e v praxi honě využívaná. Úloha studenty seznámí s vlivem
Harmonický průběh napětí a proudu v obvodu
Harmonický průběh napětí a proudu v obvodu Ing. Martin Černík, Ph.D. Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace. Veličiny elektrických obvodů napětí u(t) okamžitá hodnota,
Profilová část maturitní zkoušky 2015/2016
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: počítačové
Kontaktní adresa METRA BLANSKO s.r.o. Pražská 2536/ BLANSKO Telefon :
1 e-mail : mcu@metra.cz Kontaktní adresa METRA BLANSKO s.r.o. http:// www.metra.cz Pražská 2536/7 678 01 BLANSKO Telefon : +420 602 410 258 Platnost: od 1. 1. 2018 Uvedené ceny jsou v CZK bez DPH a bez
Dimenzování vodičů v rozvodech NN
Dimenzování vodičů v rozvodech NN Kritéria pro dimenzování vodičů: přípustné oteplení hospodárnost mechanické namáhání dovolený úbytek napětí účinky zkratových proudů správná funkce ochrany před úrazem
C p. R d dielektrické ztráty R sk odpor závislý na frekvenci C p kapacita mezi přívody a závity
RIEDL 3.EB-6-1/8 1.ZADÁNÍ a) Změřte indukčnosti předložených cívek ohmovou metodou při obou možných způsobech zapojení měřících přístrojů. b) Měření proveďte při kmitočtech měřeného proudu 50, 100, 400
12. Elektrotechnika 1 Stejnosměrné obvody Kirchhoffovy zákony
. Elektrotechnika Stejnosměrné obvody Kirchhoffovy zákony . Elektrotechnika Kirchhoffovy zákony Při řešení elektrických obvodů, tedy různě propojených sítí tvořených zdroji, odpory (kapacitami a indukčnostmi)
ŘEŠENÉ PŘÍKLADY K DOPLNĚNÍ VÝUKY
ŘEŠENÉ PŘÍKLDY K DOPLNĚNÍ ÝKY. TÝDEN Příklad. K baterii s vnitřním napětím a vnitřním odporem i je připojen vnější odpor (viz obr..). rčete proud, který prochází obvodem, úbytek napětí Δ na vnitřním odporu
METODICKÝ LIST Z ELEKTROENERGETIKY PRO 3. ROČNÍK
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ BRNO,KOUNICOVA16 METODICKÝ LIST Z ELEKTROENERGETIKY PRO 3. ROČNÍK Třída : K4 Název tématu : Metodický list z elektroenergetiky Školní rok: 2009/2010 Obsah 1. Rozdělení
MĚŘENÍ Laboratorní cvičení z měření Měření vlastní a vzájemné indukčnosti část Teoretický rozbor
MĚŘENÍ Laboratorní cvičení z měření část 3-1-1 Teoretický rozbor Výukový materiál Číslo projektu: CZ.1.07/1.5.00/34.0093 Šablona: III/ Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 0 Číslo materiálu:
Elektrická vedení druhy, požadavky, dimenzování
Elektrická vedení druhy, požadavky, dimenzování Určeno pro studenty kombinované formy FS, předmětu Elektrotechnika II Jan Dudek leden 2007 Elektrická vedení Slouží k přenosu elektrické energie a signálů
Vliv přenosu jalového výkonu na ztráty v distribučních sítích. František Žák AMPÉR 21. březen 2018
Vliv přenosu jalového výkonu na ztráty v distribučních sítích František Žák AMPÉR 21. březen 2018 Eliminace přetoku jalového výkonu Eliminace jalového výkonu induktivního charakteru Indukční stroje Některé
Přechodné jevy v elektrizačních soustavách
vičení z předmětu Přechodné jevy v elektrizačních soustavách Další doporučená literatura: 1. Beran, Mertlová, Hájek: Přenos a rozvod elektrické energie. Hájek: Přechodné jevy v elektrizačních soustavách
IN-EL, spol. s r. o., Gorkého 2573, Pardubice. ČÁST I: JIŠTĚNÍ ELEKTRICKÝCH ZAŘÍZENÍ 15 Úvod 15
Obsah ČÁST I: JIŠTĚNÍ ELEKTRICKÝCH ZAŘÍZENÍ 15 Úvod 15 1. NEJPOUŽÍVANĚJŠÍ JISTICÍ PRVKY 17 1.1 Pojistka 17 1.1.1 Výhody a nevýhody pojistek 19 1.2 Jistič 19 1.2.1 Výhody jističů 20 1.2.2 Nevýhoda jističů
11. OCHRANA PŘED ÚRAZEM ELEKTRICKÝM PROUDEM. Příklad 11.1
11. OCHRN PŘED ÚRZEM ELEKTRICKÝM PRODEM Příklad 11.1 Vypočítejte velikost dotykového napětí d na spotřebiči, který je připojen na rozvodnou soustavu 3 50 Hz, 400 V/TN-C, jestliže dojde k průrazu fázového
Vznik střídavého proudu Obvod střídavého proudu Výkon Střídavý proud v energetice
Střídavý proud Vznik střídavého proudu Obvod střídavého proudu Výkon Střídavý proud v energetice Vznik střídavého proudu Výroba střídavého napětí:. indukční - při otáčivé pohybu cívky v agnetické poli
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTRONIKY A VÝKONOVÉ ELEKTRONIKY BAKALÁŘSKÁ PRÁCE 1f transformátor vedoucí práce: Ing. Lukáš BOUZEK 2012 autor: Michal NOVOTNÝ 2012 Anotace
Asynchronní stroje. Fakulta elektrotechniky a informatiky VŠB TUO. Ing. Tomáš Mlčák, Ph.D. Katedra elektrotechniky.
Asynchronní stroje Ing. Tomáš Mlčák, Ph.D. Fakulta elektrotechniky a informatiky VŠB TUO Katedra elektrotechniky www.fei.vsb.cz/kat452 PEZ I Stýskala, 2002 ASYNCHRONNÍ STROJE Obecně Asynchronní stroj (AS)
Západočeská univerzita v Plzni DIPLOMOVÁ PRÁCE
Západočeská univerzita v Plzni Fakulta elektrotechnická Katedra elektroenergetiky a ekologie DIPLOMOVÁ PRÁCE Výpočet činných ztrát na transponovaném a netransponovaném vedení Autor práce: Bc. Tomáš Nazarčík
FYZIKA II. Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování)
FYZIKA II Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování) Osnova přednášky činitel jakosti, vektorové diagramy v komplexní rovině Sériový RLC obvod - fázový posuv, rezonance
Nové zkušenosti s výpočetním vyhodnocováním nebezpečného vlivu venkovního vedení vvn na blízké potrubní systémy
Nové zkušenosti s výpočetním vyhodnocováním nebezpečného vlivu venkovního vedení vvn na blízké potrubní systémy Karel NOHÁČ, Zbyněk JANDA 24 Problematika vyhodnocování vzájemného elektromagnetického ovlivňování
Základy elektrotechniky
Základy elektrotechniky Přednáška Asynchronní motory 1 Elektrické stroje Elektrické stroje jsou vždy měniče energie jejichž rozdělení a provedení je závislé na: druhu použitého proudu a výstupní formě
3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.
Pracovní úkoly. Změřte účiník: a) rezistoru, b) kondenzátoru C = 0 µf) c) cívky. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost
Katedra elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava MĚŘENÍ NA JEDNOFÁZOVÉM TRANSFORMÁTORU.
Katedra elektrotechniky Fakulta elektrotechniky a informatiky VŠB - TU Ostrava MĚŘENÍ NA JEDNOFÁZOVÉM ANSFORMÁTORU Návod do měření Ing. Václav Kolář Ing. Vítězslav Stýskala Leden 997 poslední úprava leden
C L ~ 5. ZDROJE A ŠÍŘENÍ HARMONICKÝCH. 5.1 Vznik neharmonického napětí. Vznik harmonického signálu Oscilátor příklad jednoduchého LC obvodu:
5. ZDROJE A ŠÍŘENÍ HARMONICKÝCH 5.1 Vznik neharmonického napětí Vznik harmonického signálu Oscilátor příklad jednoduchého LC obvodu: C L ~ Přístrojová technika: generátory Příčiny neharmonického napětí
U1, U2 vnější napětí dvojbranu I1, I2 vnější proudy dvojbranu
DVOJBRANY Definice a rozdělení dvojbranů Dvojbran libovolný obvod, který je s jinými částmi obvodu spojen dvěma páry svorek (vstupní a výstupní svorky). K analýze chování obvodu postačí popsat daný dvojbran
1. Měření výkonu souměrné zátěže se středním vodičem
MĚŘENÍ ÝKON TOJFÁZOÉ SÍTI 1. Měření výkonu souměrné zátěže se středním vodičem Úkol: Sestavte trojfázovou zátěž zapojením stejných odporů do hvězdy a pomocí 1 wattmetru určete výkon. ři výpočtu uvažujte
Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením.
Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Na čem závisí účinnost vedení? účinnost vedení závisí na činiteli útlumu β a na činiteli odrazu
Základní vztahy v elektrických
Základní vztahy v elektrických obvodech Ing. Martin Černík, Ph.D. Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace. Klasifikace elektrických obvodů analogové číslicové lineární
Synchronní stroje. Φ f. n 1. I f. tlumicí (rozběhové) vinutí
Synchronní stroje Synchronní stroje n 1 Φ f n 1 Φ f I f I f I f tlumicí (rozběhové) vinutí Stator: jako u asynchronního stroje ( 3 fáz vinutí, vytvářející kruhové pole ) n 1 = 60.f 1 / p Rotor: I f ss.
Elektroenergetika 2 (A1B15EN2) LS 2015/2016
Elektroenergetika (A1B15EN) LS 015/016 Témata Elektrické parametry vedení a prvků ES Stejnosměrná a střídavá vedení nn, vn Vedení vvn, náhradní články Uzlové sítě Vlny na vedení Zkraty Zemní spojení Stabilita
Transformátory. Mění napětí, frekvence zůstává
Transformátory Mění napětí, frevence zůstává Princip funce Maxwell-Faradayův záon o induovaném napětí e u i d dt N d dt Jednofázový transformátor Vstupní vinutí Magneticý obvod Φ h0 u u i0 N i 0 N u i0
ZEL. Pracovní sešit. Základy elektrotechniky pro E1
ZEL Základy elektrotechniky pro E1 T1 Základní pojmy v elektrotechnice: Základní jednotky soustavy SI: Základní veličina Značka Základní jednotky Značka Některé odvozené jednotky používané v elektrotechnice: