MC230P83 Hmotnostní detekce v separačních metodách, Hmotnostní detekce v separačních metodách III.

Podobné dokumenty
Iontové zdroje II. Iontový zdroj. Data. Vzorek. Hmotnostní analyzátor. Zdroj vakua. Iontové zdroje pracující za sníženého tlaku

Iontové zdroje II. Iontový zdroj. Data. Vzorek. Hmotnostní analyzátor. Zdroj vakua. Iontové zdroje pracující za sníženého tlaku

MALDI, DESI, DAPPI, DART

Klinická a farmaceutická analýza. Petr Kozlík Katedra analytické chemie

Hmotnostní analyzátory I

Hmotnostní spektrometrie

Hmotnostní spektrometrie. Historie MS. Schéma MS

HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním

HMOTNOSTNÍ SPEKTROMETRIE

Ionizace, iontové zdroje

LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) Použití GC-MS spektrometrie

HMOTNOSTNÍ SPEKTROMETRIE

No. 1- určete MW, vysvětlení izotopů

Hmotnostní spektrometrie - Mass Spectrometry (MS)

INTERPRETACE HMOTNOSTNÍCH SPEKTER

Hmotnostní spektrometrie

Hmotnostní analyzátory a detektory iont

Indentifikace molekul a kvantitativní analýza pomocí MS

Hmotnostní analyzátory I

Zdroje iont používané v hmotnostní spektrometrii. Miloslav Šanda

Analytická technika HPLC-MS/MS a možnosti jejího využití v hygieně

HMOTNOSTNÍ SPEKTROMETRIE

ÚSTAV CHEMIE A ANALÝZY POTRAVIN

Laboratoř ze speciální analýzy potravin II. Úloha 3 - Plynová chromatografie (GC-MS)

Hmotnostní detekce v separačních metodách

Iontové zdroje I. Iontový zdroj. Data. Vzorek. Hmotnostní analyzátor. Zdroj vakua. Ionizace, vlastnosti iontových zdrojů, iontová optika

Spojení hmotové spektrometrie se separačními metodami

Hmotnostně spektrometrické zobrazování malých molekul

Chromatografie. Petr Breinek

MS analyzátory - II. Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253

Hmotnostní spektrometrie.

10. Tandemová hmotnostní spektrometrie. Princip tandemové hmotnostní spektrometrie

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec

Iontové zdroje. Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253

Metody spektrální. Metody hmotnostní spektrometrie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Hmotnostní detekce v separačních metodách IV.

Hmotnostní spektrometrie ve spojení se separačními metodami

Stručná historie hmotnostní spektrometrie. Analytická chemie II: Úvod do hmotnostní spektrometrie. Stručná historie hmotnostní spektrometrie.

ANORGANICKÁ HMOTNOSTNÍ SPEKTROMETRIE

Autoři: Pavel Zachař, David Sýkora Ukázky spekter k procvičování na semináři: Tento soubor je pouze prvním ilustrativním seznámením se základními prin

Ionizační manometry. Při ionizaci plynu o koncentraci n nejsou ionizovány všechny molekuly, ale jenom část z nich n i = γn ; γ < 1.

DETEKTORY pro kapalinovou chromatografii. Izolační a separační metody, 2018

Pražské analytické centrum inovací Projekt CZ / /0002 spolufinancovaný ESF a Státním rozpočtem ČR

Mass Spectrometry (MS) Lenka Veverková 2012

Separační metody v analytické chemii. Plynová chromatografie (GC) - princip

MENÍ A INTERPRETACE SPEKTER BIOMOLEKUL. Miloslav Šanda

Metody povrchové analýzy založené na detekci iontů. Pavel Matějka

CHROMATOGRAFIE ÚVOD Společný rys působením nemísících fází: jedna fáze je nepohyblivá (stacionární), druhá pohyblivá (mobilní).

Příprava materiálu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253

Vysokoúčinná kapalinová chromatografie Kvalitativní analýza

Přímá analýza reálných vzorků hmotnostní spektrometrií s využitím nanodesorpčního elektrospreje (nano-desi-ms)

Úvod do strukturní analýzy farmaceutických látek

HMOTNOSTNÍ SPEKTROMETRIE

Hmotnostní spektrometrie

Metody analýzy povrchu

Chromatografie. Petr Breinek. Chromatografie_2011 1

Hmotnostní spektrometrie

PLYNOVÁ CHROMATOGRAFIE (GC)

Molekulární modelování a bioinformatika. Hmotnostní spektrometrie I

Průtokové metody (Kontinuální měření v proudu kapaliny)

LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ. Stanovení těkavých látek

HPLC/MS tělních tekutin nový rozměr v medicinální diagnostice

Hmotnostní analyzátory II

Hmotnostní detekce biologicky významných sloučenin pro biotechnologie

S p e c i f i c k ý n á b o j e l e k t r o n u. Z hlediska mechanických účinků je magnetická síla vlastně silou dostředivou.

LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ. Stanovení těkavých látek

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU NEPOVOLENÝCH DOPLŇKOVÝCH LÁTEK METODOU LC-MS

Pondělí 10. září 2007

Theory Česky (Czech Republic)

Základy hmotnostní spektrometrie

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ELEKTROMIGRAČNÍ METODY

isolace analytu oddělení analytu od matrice (přečištění) zakoncentrování analytu stanovení analytu (analytů) ve vícesložkové směsi

INTERAKCE IONTŮ S POVRCHY II.

Metody separace. přírodních látek

Emise vyvolaná působením fotonů nebo částic

Zdroje optického záření

Hmotnostní spektrometrie

4. Chemická ionizace. (E el = ev, p CH4 = Pa, p M = 0,05 0,1 Pa) => 0,1 % analytu)

Analyzátor doby letu. (Time-of-Flight, TOF)

Při reálném chromatografickém ději nikdy nedojde k ustavení rovnováhy mezi oběma fázemi První ucelená teorie respektující uvedenou skutečnost byla

Hmotnostní spektrometrie. Hmotnostní spektrometrie 1

Analyzátory iontové pohyblivosti (iontová mobilita)

MALDI hmotnostní spektrometrie pro analýzu kovy značených proteinů. Typ laseru Vlnová délka UV-MALDI N 2

Detekce a detektory část 2

Metody analýzy povrchu

Úvod do spektrálních metod pro analýzu léčiv

Diagnostika bronchiálního. ho astmatu HPLC/MS analýzou. Kamila Syslová Ústav organické technologie

Základy interpretace MS spekter získaných měkkými ionizačními technikami. Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.

Experimentální metody strukturálního výzkumu. Hmotnostní spektrometrie

CRH/NPU I - Systém pro ultraúčinnou kapalinovou chromatografii (UHPLC) ve spojení s tandemovým hmotnostním spektrometrem (MS/MS)

METODY ANALÝZY POVRCHŮ

ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY

mobilní fáze pohyblivá - obsahuje dělené látky, které mají různou afinitu ke stacionární fázi.

Kapilární elektroforéza ve spojení s MS

Vysokoúčinná kapalinová chromatografie

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

Transkript:

Hmotnostní detekce v separačních metodách III. - Iontové zdroje - Iontové zdroje pracující za sníženého tlaku: EI/CI - Iontové zdroje pro spojení s planárními separacemi: MALDI, DESI, DAPPI, DART - Iontové zdroje pro prvkovou analýzu: ICP - Pohyb iontů v elektrických a magnetických polích - Hmotnostní analyzátory - Magnetický sektorový analyzátor - Analyzátor doby letu Iontové zdroje pracující za sníženého tlaku EI/CI

Iontový zdroj Vzorek Data Iontový zdroj Hmotnostní analyzátor Detektor Zdroj vakua Elektronová a chemická ionizace, EI a CI vlákno EI zdroje (filament) V EI módu molekuly interagují s elektrony (energie 70 ev) emitovanými ze žhaveného wolframového vlákna. Vznikají radikál-kationty (M + ), přebytek energie vede k jejich rozsáhlé fragmentaci. V CI módu je do ionového zdroje zaváděn reakční plyn, který interaguje s elektrony emitovanými z filamentu. Vzniká reaktivní plasma, která ionizuje analyt přenosem protonu ([M+H] + ). Fragmentace je silně potlačena.

Elektronová a chemická ionizace, EI a CI EI: M + e - -> M + + 2e - Ionizační energie IE: minimální množství energie, které musí být absorbováno neutrální molekulou aby došlo k ionizaci odstraněním elektronu. IE pro většinu molekul je v rozmezí 7-15 ev. Nejvyšší účinnost ionizace je kolem 70 ev. CI: M + [BH] + -> [M+H] + + B Protonová afinita PA: změna enthalpie spojená s protonizací (PA = -H r0 ). Protonizace (chemická ionizace) proběhne pouze pokud je reakce exotermní. Používané reakční plyny: methan, isobutan, amoniak. CH 4 CI: chemická ionizace s methanem tvorba reaktivních částic (např. CH 5+ ) CH 4 + e - -> CH + 4, CH + 3, CH + 2, CH +, C +, H + 2, H + CH + 4 + CH 4 -> CH + 5 + CH 3 Spektra EI a CI EI methionin CI

Knihovny EI spekter NIST/EPA/NIH Mass Spectral Library Wiley Registry of Mass Spectral Data 276 248 EI spekter (70 ev) 234 284 MS/MS spekter, retenční indexy látek strukturní vzorce 719 000 spectra EI spekter (70 ev) strukturní vzorce Elektronová & chemická ionizace EI/CI iontový zdroj VG ZAB EQ

Elektronová & chemická ionizace EI/CI iontový zdroj Agilent - MSD Elektronová a chemická ionizace, EI, CI EI/CI je zdroj používaný pro GC/MS. Klasický způsob ionizace v organické MS. - poskytuje spektra, která jsou informačně obsažná, lze je interpretovat, prohledávat v databázích - dobrá kompatibilita s analyty vhodnými pro GC, vysoká citlivost, univerzální detekce EI někdy nelze určit ze spektra molekulovou hmotnost CI vyžaduje optimalizaci (výběr reakčního plynu a jeho tlaku) Využití: pro všechny analyty, které lze analyzovat pomocí GC

Elektronová a chemická ionizace, aplikace Př. identifikace organických látek v dechu kuřáka a nekuřáka metodou GC/Q-MS SPME 15 min, GC/MS, identifikace dle spekter, porovnání s knihovnou Nekuřák: ethanol, acetone, isoprene, carbon disulfide, 2- and 3-methylpentane, benzene, methylcyclopentane, hexane, toluene Kuřák- látky navíc: acetonitrile, furan, 3-methylfuran, 2,5-dimethylfuran, 2-butanone, octane, decane DOI 10.1002/bmc.1141 Elektronová a chemická ionizace, aplikace Př. Stanovení polycyklických aromatických uhlovodíků v odpadních vodách metodou GC/QqQMS/MS; SPE LODs < 0.1g/L Chromatogram směsi standardů DOI 10.1016/j.aca.2011.03.010

Studená elektronová ionizace Elektronová ionizace molekul, které jsou vibračně ochlazené supersonickou expanzí nosného plynu do vakua. Mobilní fáze z GC kolony je spolu s pomocným (make-up) plynem zavedena do trysky směřující do čerpaného prostoru (vakua). Dojde k expanzi plynu, při které se molekuly ochladí (zamrznou v určitém vibračním módu). Následuje ionizace elektrony ze žhaveného vlákna (filamentu). Výhody: vysoká intenzita molekulového píku rozdíly ve spektrech izomerů nižší šum, omezení chvostování píků způsobené zdrojem Studená elektronová ionizace http://www.avivanalytical.com/

Přímé spojení nanolc/ei-ms Mobilní fáze (300-500 nl/min) se zavádí přímo do iontového zdroje. Ve vysokém vakuu se tvoří aerosol dochází k rychlému odpaření rozpouštědla. Ve zdroji je vysoká teplota 300-400 C nutná ke kompenzaci výparného tepla. K ionizaci dochází v plynné fázi mechanismem EI (nedochází k CI). Vlastnosti - univerzální detektor pro malé molekuly - EI spektra (možnost porovnání s knihovnami) - ng citlivost v plném skenu (pg v SIM) Komerčně nedostupný A. Cappiello et al., http://en.wikipedia.org/ Iontové zdroje pro spojení s planárními separacemi MALDI, DESI, DAPPI, DART

MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, 2018 2007/2008 Spojení planárních separačních technik s MS Planární separační techniky jednoduché a rychlé chromatografické metody v plošném uspořádání Tenkovrstvá chromatografie (TLC) Separace na deskách (sklo, kov, plast) s tenkou vrstvou sorbentu. Adsorpční nebo rozdělovací chromatografie. - vysokoúčinná tenkovrstvá chromatografie (HPTLC) využívá stacionární fáze o malé a jednotné velikosti částic (vysoká separační účinnost), instrumentaci pro automatické dávkování Papírová chromatografie (PC) Separace na speciálních filtračních papírech Rozdělovací chromatografie (stacionární fáze je kapalina zachycená v papíru) - starší, málo používaná metoda MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, 2018 2007/2008 Spojení planárních separačních technik s MS Spojení planárních technik s MS: - nejprve se látky separují pomocí TLC (PC výjimečně), po odpaření rozpouštědla následuje analýza oddělených zón na desce či papíru Analýza látek z TLC desky 1/ automatizovaná extrakce & MS analýza extraktu 2/ desorpce analytů &přímá MS analýza 1/ 2/ DOI: 10.1039/C3MD00235G

MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, 2018 2007/2008 Spojení planárních separačních technik s MS On-line spojení TLC (PC) s hmotnostním spektrometrem (ionizace ESI nebo APCI). Extrakční rozpouštědlo dodávané čerpadlem vstupuje do eluční hlavice, která je v přímém kontaktu a s analyzovaným povrchem. Extrakt je následně unášen do API zdroje spektrometru. Zařízení je možné využít i pro analýzy jiných povrchů, např. řezů tkání. Firemní materiály ADVION MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, 2018 2007/2008 Spojení planárních separačních technik s MS Desorpci analytů z povrchu lze realizovat pomocí MALDI, DESI, DAPPI a dalších ambientních ionizačních technik - skenování povrchu, záznam signálu v ose desky, případně z celé plochy DOI: 10.1039/C3MD00235G

MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, 2018 2007/2008 Ionizace laserem za účasti matrice - MALDI Karas, M.; Bachmann, D.; Bahr, U.; Hillenkamp, F. Int. J. Mass Spectrom. Ion Proc. 1987, 78, 53-68. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. Rapid Comm. Mass Spectrom. 1988, 2, 151-153. Vzorek je po smísení s matricí vnesen do zdroje pro MALDI. Pomocí laserového pulsu dojde k desorpci. Primárně se ionizuje matrice, následnými reakcemi (nejčastěji přenos protonu) se ionizuje analyt. MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, 2018 2007/2008 Ionizace laserem za účasti matrice - MALDI MALDI je vhodná pro: - peptidy, proteiny, oligonukleotidy, - polymery - lipidy, uhlovodíky - nízkomolekulární netěkavé látky lasery () infračervené ultrafialové Ionty ve spektrech: [M+H] +, [M-H] -, adukty s alkalickými kovy Funkce matrice: absorpce energie laseru, zředění analytu, izolace molekul, ionizace

MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, 2018 2007/2008 Ionizace laserem za účasti matrice - MALDI Běžné matrice pro UV MALDI kyselina -kyano-4-hydroxyskořicová peptidy kyselina sinapová peptidy kyselina 2,5-dihydroxybenzoová obecné použití, lipidy, proteiny, peptidy kyselina 3-hydroxypikolinová nukleové kyseliny dithranol syntetické polymery TLC - MALDI MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, 2018 2007/2008 MALDI lze s výhodou kombinovat s TLC TLC deska se nechá vyschnout, pokryje se vhodnou matricí (sprejováním) a umístí se pomocí adaptéru na MALDI desku. Změří se MALDI spektra z vybraných bodů, případně se v režimu MALDI imaging sejmou spektra z celé desky (časově náročné)

Ambientní ionizace MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, 2018 2007/2008 přímá ionizace z povrchu analyzovaných objektů bez nutnosti extrakce analytů Výhody: - jednoduchost analýzy (odpadá složitá úprava vzorků) - vysoká propustnost vzorků - široká aplikační oblast (analýza výbušnin, léčiv, lipidů, metabolitů, peptidů a proteinů, forenzní analýza, analýza potravin, sledování chemický reakcí apod.) - možnost zobrazování distribuce látek na povrchu objektů - kombinace s planárními separačními technikami (TLC) MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, 2018 2007/2008 DESI Desorpční ionizace elektrosprejem Proud pozitivně nebo negativně nabitých kapiček vytvořený elektrosprejem je pod daným úhlem nasměrován na zkoumaný povrch. Ionty jsou tvořeny obdobně jako v ESI, vznikají [M+H] +, [M+Na] +, [M-H] -, [M+Cl] - apod. Účinnost ionizace ovlivňuje geometrické uspořádání (sprejovací úhel), typ a průtok rozpouštědla (typicky MeOH nebo MeOH/H 2 O), vlastnosti povrchu.

MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, 2018 2007/2008 DAPPI Desorpční fotoionizace za atmosférického tlaku Vyhřívaný aerosol tvořený rozpouštědlem a nebulizačním plynem je nasměrován na zkoumaný povrch. Dojde k desorpci analytů, které jsou následně v plynné fázi fotoionizovány UV výbojkou. Obdobně lze ionizovat pomocí koronového výboje na jehle (DAPCI). MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, 2018 2007/2008 DART Direct Analysis in Real Time Doutnavý výboj ve zdroji vytvoří plazmu, ze které jsou odstraněny nabité částice. Zbylé neutrální částice jsou v excitovaném stavu (metastabilní částice N*) a ionizují buď přímo analyt za tvorby radikál kationtu ( Penningova ionizace ), nebo vodu, která přenese proton na analyt -> tvorba [M+H] +. Tvorba radikál-kationtu: N* + M M + + e - + N Tvorba protonovaných molekul: N* + nh 2 O [(H 2 O) n-1 + H] + + OH + N [(H 2 O) n-1 + H] + + M [M+H] + + nh 2 O

MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, 2018 2007/2008 Ambientní ionizace pro detekci v TLC TLC/DESI-MS TLC/DART-MS doi:10.1016/j.chroma.2011.01.077 Př. Charakterizace sfingolipidů v oční čočce metodou TLC/DESI-MS doi:10.1016/j.bbalip.2014.05.006 Iontové zdroje pro prvkovou analýzu ICP

MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, 2018 2007/2008 Indukčně vázaná plasma - ICP Vzorek je zmlžen, vzniklý aerosol je po smíchání s argonem přiveden do plasmového hořáku. Horká plazma desolvatuje, atomizuje a ionizuje vzorek. Ionty jsou extrahovány z plazmy pomocí chlazených skimmerů a vedeny iontovou optikou do analyzátoru. Většina prvků poskytuje za podmínek ICP jednou nabité ionty. MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, 2018 2007/2008 Indukčně vázaná plasma - ICP Zdroj pro ultrastopová prvkovou analýzu. Umožňuje analyzovat téměř všechny prvky od lithia po uran s vysokou citlivostí. Aplikace: Kontrola kvality potravin, pitné vody, léčiv, biologie a medicína, geologie LC aplikace analýza metaloproteinů, organokovů, iontověvýměnná chromatografie anorganických iontů Vysoké množství solí vede ke kontaminaci (zanášení) zdroje a k matričním efektům ovlivňujícím signál (salinita mořské vody je ~40 g/l, krevní plasmy nebo krve ~25 g/l). Řeší se naředěním.

MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, 2018 2007/2008 Indukčně vázaná plasma - ICP MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, 2018 2007/2008 Indukčně vázaná plasma - ICP Příklad: Analýza sloučenin obsahujících arzen v pitné vodě Tetsushi Sakai: Agilent 5980-0262E (2003)

Pohyb iontů v elektrických a magnetických polích Vizualizace pohybu Rb + v iontové pasti (https://www.youtube.com/watch?v=qswobwuzub4) MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, 2018 2007/2008 Pohyb nabité částice v homog. elektrostatickém poli - homogenní elektrostatické pole mezi rovnoběžnými deskami s rozdílnými elektrickými potenciály elektrostatická síla F e působící na částici s nábojem q 1. směr okamžité rychlosti kladně nabité částice je rovnoběžný s vektorem E intenzity elektrického pole a má shodný směr + E = konst. v 1 v 2 + + v 1 < v 2 - elektrostatická síla F e působící na nabitou částici (ion) mění velikost její rychlosti - potenciální energie elektrostatického pole se mění na kinetickou energii elektronu -nabitá částice (ion) koná pohyb přímočarý a rovnoměrně zrychlený

MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, 2018 2007/2008 Pohyb nabité částice v homog. elektrostatickém poli - průchodem elektrostatického pole (urychlením) získá nabitá částice energii E el e: elementární náboj (e = 1,6 10 19 C), z: nábojové číslo, U: urychlovací napětí - potenciální energie E el se změní na kinetickou energii E k (částice se pohybuje), tj. - po průchodu elektrostatickým polem má získá nabitá částice rychlost v 2 MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, 2018 2007/2008 Pohyb nabité částice v homog. elektrostatickém poli 2. směr okamžité rychlosti kladně nabité částice je kolmý k vektoru E intenzity homogenního elektrického pole E = konst. + v + x v x v y,1 + v y,2 v y,1 < v y,2 - elektrostatická síla působící na nabitou částici mění směr její rychlosti a nabité částici uděluje zrychlení ve směru vektoru - částice koná ve směru osy x rovnoměrný pohyb a ve směru kolmém pohyb rovnoměrné zrychlený -nabitá částice se pohybuje po parabole k desce s opačným nábojem

Pohyb nabité částice v homogenním magnetickém poli - homogenní magnetické pole (např. mezi Helmholtzovými cívkami) magnetická síla F m působící na částici s rychlostí v a nábojem q sinα B: magnetické indukce homogenního magnetického pole α: úhel, který svírá směr magnetické indukce B se směrem rychlosti v 1. směr okamžité rychlosti nabité částice je shodný (nebo opačný) s vektorem magnetické indukce (α = 0 nebo α = 180 ) - magnetické pole na pohybující se částici s nábojem Q silově nepůsobí Pohyb nabité částice v homogenním magnetickém poli 2. směr okamžité rychlosti nabité částice je kolmý k vektoru magnetické indukce (α = 90 ); velikost magnetické síly je maximální + + - magnetické pole působí na částici tak, že zakřivuje její trajektorii do tvaru kružnice - F m se stává silou dostředivou (F m = F d ) +

Pohyb nabité částice v homogenním magnetickém poli 3. směr okamžité rychlosti nabité částice je pod určitým úhlem vzhledem vektoru magnetické indukce (α 0, 90, 180 ) - nabitá částice se pohybuje po šroubovici Velikost rychlosti částice (a tedy i kinetická energie) se v magnetickém poli nemění. Směr se měnit může. Pohyb nabité částice v elektromagnetickém poli Pohybuje-li se částice současně v magnetickém i elektrickém poli, působí na ní jak síla elektrostatická F e, tak síla magnetická F m. Výslednicí obou těchto sil je síla F L, která se nazývá Lorentzova síla. značí vektorový součin Pozn. Někdy je jako Lorentzova síla označován pouze příspěvek magnetické síly

Hmotnostní analyzátory Hmotnostní analyzátor Vzorek Data Iontový zdroj Hmotnostní analyzátor Detektor Zdroj vakua Hmotnostní analyzátor je zařízení, které využívá elektrických a magnetických polí k separaci iontů v plynné fázi podle jejich poměru hmotnost/náboj (m/z).

Hmotnostní analyzátory TOF B Q LIT IT OT ICR Analyzátor doby letu Magnetický sektorový analyzátor Lineární kvadrupól Lineární kvadrupólová iontová past Iontová past Orbitrap Iontová cyklotronová resonance Hmotnostní analyzátory se liší principem měření, a tedy i svými vlastnostmi. Vhodný typ analyzátoru volíme dle aplikace. doi:10.1016/0168-1176(87)80030-7 Parametry hmotnostních analyzátorů Hmotnostní rozsah nejnižší a nejvyšší hodnota m/z, kterou lze s daným analyzátorem měřit Rozlišovací schopnost schopnost poskytnout rozlišené signály pro ionty s malým rozdílem hmotností Přesnost určení hmotnosti přesnost, se kterou lze měřit m/z iontů (udává se pro vnitřní i vnější kalibraci) Dynamický rozsah - počet koncentračních řádů, v nichž je odezva závislá na koncentraci Rychlost rychlost záznamu spekter

Parametry hmotnostních analyzátorů Magnetický sektorový analyzátor (B)

Magnetický sektorový analyzátor Ionty jsou urychleny vysokým napětím (4-8 kv) do magnetického pole vytvořeného elektromagnetem. Využívá se zakřivení dráhy iontů v magnetickém poli (poloměr dráhy iontů je úměrný poměru m/z). Při analýze iontů je detektor na fixní pozici, skenuje se buď magnetické pole nebo urychlovací napětí. Klasický typ analyzátoru používaný od počátků organické MS. Magnetický sektorový analyzátor Ionty upouštějí iontový zdroj po urychlení napětím U s rychlostí v: 2 V magnetickém poli se ionty začnou pohybovat po kruhové dráze s poloměrem r: Kombinací vztahů získáme výraz pro m/z ( základní rovnice hmotnostní spektrometrie dnes se takto již neoznačuje): 2 Magnetický sektorový analyzátor separuje ionty v prostoru na základě zakřivení dráhy iontů. Magnetický sektorový analyzátor lze skenovat buď změnou magnetické indukce B nebo urychlovacího napětí U.

Sektorové analyzátory s dvojitou fokusací Analyzátory s dvojitou fokusací kromě magnetického sektoru obsahují ještě elektrostatický sektor, který kompenzuje energetickou disperzi iontů a tak zvyšuje rozlišení. Elektrostatický sektorový analyzátor vytváří radiální elektrické pole mezi dvěma opačně nabitými deskami. Ionty o stejném m/z s různou kinetickou energií jsou zaostřeny (fokusovány) do jednoho místa. Elektrostatický analyzátor neseparuje monoenergetické ionty! Magnetické sektorové analyzátory Obecně: Klasický typ analyzátoru s vysokou rozlišovací schopností umožňující izolace při vysokém rozlišení, a vysokoenergetické MS/MS. Vysoký dynamický rozsah, avšak relativně pomalý. Typické aplikace stopová GC/MS dioxinů, furanů, bromovaných difenyletherů, polychlorovaných naftalenů (PCNs) apod. Rozlišení: do 100 000 (dvojitá fokusace) Přesnost určení hmotnosti: 5 ppm Hmotnostní rozsah: 20 000 Rychlost skenu: pomalý

Analyzátor doby letu (TOF) Analyzátor doby letu Měření doby letu částic o známé kinetické energii v trubici o fixní délce. Nabité částice (ionty) s různým m/z jsou urychleny elektrickým polem. Získají tak stejnou energii, ale různou rychlost. Čas, který je potřebný k překonání letové dráhy je rozdílný - těžší ionty potřebují delší čas než lehčí ionty. potenciální energie iontu v elektrickém poli E p 1 2 kinetická energie iontu E k 2 2 Příklad: Doba letu iontu o hmotnosti 1000 Da, napětí 20 kv, délka 1 m: t = 16 s

Lineární uspořádání TOF MS odpuzovací elektroda (repeller) 20 kv extrakční mřížka 18 kv mřížka 0 V ionty E = 0 urychlovací mřížka 0 V L detektor Zdroje iontů: - pulzní zdroje (doba pulzu ns), tvorba balíčků (obláčků) iontů - ideální zdroj: vytvoří všechny ionty ve stejném čase, ve stejném místě, se stejnou rychlostí ve směru k detektoru a s nulovými rychlostmi v ostatních směrech - reálné zdroje: disperze času a místa vzniku iontů, různé počáteční rychlosti a směry pohybu Tvorba iontů pro TOF MS: pulzní zdroje Extrakce konstantním elektrickým polem - pulzní ionizace (např. MALDI), konstantní elektrické pole Extrakce napěťovým pulzem - pulzní ionizace (např. MALDI), pulzní elektrické pole (pulsed extraction, delayed extraction, time-lag focusing) - kontinuální zavádění iontů v kolmém směru, pulzní elektrické pole (orthogonal extraction, orthogonal acceleration) pulzní ionizace laserem z ortogonální extrakce iontů

Reálné iontové zdroje pro TOF MS A1 A2 A3 Vliv počáteční prostorové distribuce iontů A1: odpuzovací elektroda; A2: extrakční mřížka; A3: urychlovací mřížka Ionty vzniklé v různé vzdálenosti od odpuzovací elektrody stráví různě dlouhou dobu pod vlivem pole. Ionty tak získají různé rychlosti a kinetické energie (čím jsou dále od akcelerační mřížky, tím mají větší rychlost a energii). F V určitém místě rychlejší ionty doženou pomalejší (primární ohnisko). Primární ohnisko nelze využít k detekci, ionty o různém m/z nejsou ještě dostatečně rozděleny. Reálné iontové zdroje pro TOF MS Vliv počátečních rychlostí a směrů pohybu iontů Ionty s počáteční rychlostí směrem k detektoru dorazí dříve. Ionty s opačným směrem jsou nejdříve zpomaleny, otočeny, a tím se zpozdí. Počáteční rychlost v kolmém směru způsobuje drift iontu z osy letové trubice. - + Korekce směru iontů se provádí pomocí dvojice elektrod ( steering plates ). V reálných iontových zdrojích dochází ke snižování rozlišení.

Zlepšení rozlišení v TOF MS I. Vysoká urychlovací napětí II. Reflektron III. Opožděná extrakce iontů IV. Dlouhá letová dráha I. Vysoká urychlovací napětí 1 2 1 2 2 v: celková rychlost iontu; v 0 : počáteční rychlosti iontu Při vyšších urychlovacích napětích se snižuje relativní příspěvek počáteční rychlosti k celkové rychlosti iontu. II. Reflektron: elektrostatické iontové zrcadlo odpuzovací elektroda (repeller) extrakční mřížka reflektron, - ionty se stejným m/z v (E k ) > v (E k ) urychlovací mřížka detektor - reflektron: soustava elektrod s postupně se zvyšujícím potenciálem - ionty s větší E k pronikají hlouběji do elektrostatického pole, tím se prodlouží dráha a dojde k jejich zpoždění - hloubka průniku do elektrostatického pole nezávisí na m/z, pouze na E k - detektor je v oblasti sekundárního (reflektronového) ohniska Rozlišení se zvyšuje na úkor citlivosti a snížení hmotnostního rozsahu.

III. Opožděná extrakce iontů µs napětí na odpuzovací elektrodě (MALDI desce) t 0 odpuzovací elektroda extrakční mřížka urychlovací mřížka 18 kv 18 kv 0 V t 0 t Po vytvoření iontů pulzním zdrojem (např. MALDI) se urychlovací napětí vloží až po malé časové prodlevě (t ). Ionty se při E = 0 rozdělí podle rychlostí. t 20 kv 18 kv 0 V Po vložení napěťového pulsu (E > 0) získají pomalejší ionty více energie a rychlosti iontů se vyrovnají. t x 18 kv 18 kv 0 V Izobarické ionty se pohybují trubicí s užší distribucí rychlostí, zlepšuje se rozlišení. Brown, Lennon Anal. Chem. 67 (1995) 1998. IV. Letová dráha rozlišení v TOF MS: 2 t - doba letu; Δt -časový interval detekce iontů se stejným poměrem m/z Vyšší rozlišení lze dosáhnout prodloužením dráhy letících iontů. Výrazné prodlužování letové trubice nepraktické: řešením je opakované použití stejné dráhy pro prodloužení doby letu iontů - technická řešení: 1/ bezmřížkové elektrostatické reflektrony TOF s vícenásobným odrazem iontového svazku 2/ elektrostatické sektory TOF s vícenásobným otočením iontového svazku analyzátory s otevřenou nebo uzavřenou dráhou (uzavřená dráha: lehčí ionty mohou vykonat více otáček, nejednoznačná spektra).

Typy analyzátorů podle letové dráhy Lineární TOF TOF s vícenásobným odrazem iontového svazku TOF s vícenásobným otočením iontového svazku TOF s jedním odrazem iontového svazku (reflektron) uzavřená dráha uzavřená dráha otevřená dráha otevřená dráha Int. J. Mass Spectrom. 349 350 (2013) 134 TOF s vícenásobným odrazem iontového svazku Folded Flight Path (FFP) Ionty ze zdroje jsou odráženy iontovými zrcadly a směrovány sérií fokusačních prvků umístěných v řadě uprostřed. Podle režimu měření ionty prochází různou trajektorií a s tím souvisí i dosažené rozlišení. Bezmřížková iontová zrcadla vysoká transmise (>50 % v High resolution módu) Délka analyzátoru 75 cm, maximálně 64 odrazů (celková dráha až 40 m) Rozlišení max. 100 000 FWHM, přesnost určení hmotnosti <1 ppm, Rychlost sběru dat do 200 spekter za sekundu LECO Corporation

TOF s vícenásobným otočením iontového svazku MULTUM: Konstrukční řada analyzátorů TOF z Univerzity v Osace původně vyvíjený pro projekt COSAC (ROSETTA space mission). - základem 4 válcovité elektrostatické sektory - R > 350 000 (po 500 cyklech) - nízké ztráty iontů (1-2 % na cyklus) - malé rozměry mobilní přístroje MULTUM-S II Anal. Chem. 2010, 82, 8456 8463; J. Mass Spectrom. 2003; 38: 1125 1142 TOF s vícenásobným otočením iontového svazku SpiralTOF ion optic system Konstrukční řešení: 4 toroidní elektrostatické sektory s otvory, iontový svazek se několikrát otočí celková dráha iontů ~ 17 m - refokusace iontového svazku během každého cyklu nedochází k disperzi vysoké rozlišení Parametry: -vysoké rozlišení 60 000-80 000 -vysoká přesnost určení m/z:1 ppm s vnitřní kalibrací, 10 ppm s vnější kalibrací -dobrá citlivost -malé rozměry ( benchtop přístroje) - součást MALDI-TOF/TOF Jeol

Fragmentace za zdrojem (post source decay, PSD) laser pulzní selektor (deflektor) rozpad metastabilního iontu v oblasti mezi deflektorem a reflektronem: PSD + m m 1 m 2 - napěťový puls aplikovaný na selektor umožňuje výběr prekurzoru (okno až 1 Da) - prekurzory s vyšší energií se samovolně rozpadají v letové trubici - fragmenty mají stejnou rychlost jako prekurzor, ale jinou energii - reflektron se využije pro separaci iontů podle kinetické energie: těžší ion s vyšší E k pronikne hlouběji do reflektronu a tím se zpozdí - omezená schopnost lineárního reflektronu pokrýt velké rozdíly v E k : spektrum se skládá z více měření při různém potenciálu reflektronu - kvadratický reflektron umožňuje změřit celé PSD spektrum najednou TOF/TOF analýza Dvě odlišná řešení: TOF/TOF s CID kolizní celou TOF/TOF s CID kolizní celou: Po výběru prekurzoru selektorem jsou ionty fragmentovány v kolizní cele (CID). Produkty jsou následně akcelerovány do reflektronu. TOF/TOF s LIFT celou: Nedochází k CID, ale detekují se ionty vzniklé samovolným rozpadem prekurzorů za iontovým zdrojem (postsource decay, PSD). Prekurzory i PSD fragmenty mají stejnou rychlost (vznikly až po urychlení).v LIFT cele jsou ionty urychleny napěťovým pulsem a získají tak různé rychlosti. Dále procházejí reflektronem a jsou detekovány. TOF/TOF s LIFT celou

Hmotnostní analyzátory TOF: shrnutí - velký (teoreticky neomezený) hmotnostní rozsah - záznam celého spektra pro každý pulz (neskenující zařízení) - velká rychlost záznamu dat (možnost spojení s rychlými separacemi) - vysoká citlivost díky velké propustnosti iontů - lze dosáhnout vysokých rozlišení a přesností měření m/z