Vysoká škola technická a ekonomická V Českých Budějovicích ENS Nízkoenergetické a pasivní stavby Přednáška č. 10 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: Ing. Michal Kraus, Ph.D. Katedra stavebnictví
Technické soustavy Technické soustavy zajišťují kvalitu vnitřního prostředí v budovách a uspokojují hygienické požadavky uživatelů Technickými soustavami jsou označovány: Zdroje energie (teplo, chlad, elektřina) umístěné v budově Soustavy rozvodu a sdílené energie a látek od klimatizačních soustav zahrnující soustavy pro vytápění, chlazení, úpravu vlhkosti, větrání až po soustavy přípravy teplé vody a osvětlení Návrh optimálních zdrojů tepla, chladu a elektrické energie s nízkou potřebou primárních paliv a produkcí emisí až po návrh stavebního řešení a opatření Energetické zdroje slouží budově k vyrovnání rozdílu mezi energetickými toky během roku 2
Budova ENS Technické soustavy Diagram znázorňuje přeměnu primární energie na využitelnou energii ke krytí potřeb v budově Náročnost přeměny primární energie na jednotlivé energonositele se vyjadřuje konverzním faktorem přeměny F V budově se energonositel využívá přímo (teplo nebo chlad z dálkového rozvodu) nebo nepřímo přeměnou na jinou formu energonositele s charakterizovanou provozní účinností Těžba, zpracování, výroba, doprava Technické soustavy budov Energetická potřeba budovy Primární energie PE (neobnovitelná) Energonositelé Zemní plyn, kapalná paliva, tuhá paliva, elektrická energie, dálkové teplo a chlad Zdroje energie Teplo, chlad, elektřina Soustavy pro rozvod a sdílení energie Klimatizační soustavy Příprava teplé vody Vytápění Chlazení Větrání Příprava teplé vody Osvětlení Konverzní faktor F Provozní účinnost ŋ Potřeba energie Q 3
Vysoká škola technická a ekonomická V Českých Budějovicích ENS Zdroje elektrické energie
Zdroje elektrické energie V souvislosti se zajištěním dodávek elektrické energie se jeví nezbytný postupný přechod na decentralizovanou elektrickou soustavu: větší množství zdrojů elektrické energie o malých výkonech Fotovoltaické systémy Větrné mikroelektrárny mikrokogenerační technologie na bázi nízkoemisních paliv Zemní plyn Bioplyn Výkonově nestabilní zdroje lze vybavit akumulací elektrické energie nebo palivovými doplňkovými zdroji elektrické energie s vysokou regulační schopností Hybridní zdroje umožňují výkonově stabilní dodávku elektrické energie do nadřazené rozvodné sítě 5
Fotovoltaické systémy Fotovoltaika (zkráceně FV) je souhrnné označení pro technologii, která umožňuje přímou přeměnu slunečního záření na elektrickou energii Fotovoltaické systémy nabývají na důležitosti především v souvislosti s výrazným poklesem ceny technologie v posledních letech Fotovoltaické systémy jsou velmi časté a z hlediska návrhu relativně jednoduchých řešením vyvážení energetických toků v budově během roku Fotovoltaické systémy jsou bezhlučné, snadno integrovatelné do stavebních konstrukcí (fasády, střechy) Fotovoltaické panely lze využít jako součást architektonického řešení opláštění budov 6
Fotovoltaické systémy Více než 90 % fotovoltaických systémů je dnes založeno na krystalickém křemíku, ze kterého je vytvořen základní skladebný prvek fotovoltaický článek Fotovoltaické články využívají k produkci elektrické energie, tzv. Fotovoltaické jevu Běžná velikost fotovoltaických článků na bázi krystalického křemíku je 10 x 10 cm až 15 x 15 cm. Obvyklá tloušťka nepřesahuje 0,3 mm 7
Fotovoltaické systémy Výroba fotovoltaických článků Základní surovinou pro výrobu fotovoltaických článků je křemík, druhý nejrozšířenější prvek na Zemi. 8
Fotovoltaické systémy Výroba FV článků je energeticky náročná a velká pozornost je dnes věnována cestám vedoucím k jejímu zjednodušení Současné výrobní technologie umožňují zajímavá tvarová a barevná řešení FV článků 9
Fotovoltaické systémy Fotovoltaické panely můžeme rozdělit do třech skupin podle materiálu článků: Panely s články krystalického křemíku Panely s tenkovrstvými články (thin-film) (a-si, CdTe, CIS) Hybridní fotovoltaické panely Panely s články krystalického křemíku Mezi nejrozšířenější technologii vykazující vysokou účinnost patří křemíkové články, které je možno dále dělit na monokrystalické a polykrystalické Panely mají obvykle účinnost 13 15 % Životnost FV panelů na bázi krystalického křemíku je minimálně 25 let (garance výrobců) 10
Fotovoltaické systémy Fotovoltaické články z krystalického křemíku Jádro panelu je vytvořeno vakuovou laminací, kdy jsou sérioparalelně pospojované články zapouzdřeny do EVA fólie. Tento laminát je poté ze zadní strany opatřen kompozitní Tedlarovou fólií a z přední strany vysoce transparentním sklem. Pro zvýšení tuhosti je nakonec laminát zasazen do hliníkového rámu. Kontakty jsou vyvedeny ve svorkovnici na zadní straně panelu. 11
Fotovoltaické systémy Panely s tenkovrstvými články (thin-film) Články z amorfního křemíku (a-si) jsou nejstarší, nejlevnější ovšem s účinnosti pouze kolem 6 %. Výhodou je pružnost a ohebnost při tenkovrstvém provedení, nízká citlivost na zastínění a malý vliv teploty na výkon Tenkovrstvé články kromě technologie amorfního křemíku využívají i polykrystalických článků na bázi teluru kadmia (CdTe) s účinností okolo 10 % nebo složité struktury CIS nebo CIGS s účinností kolem 11 % Výhodou tenkovrstvé technologie je malá spotřeba materiálu a vynikající poměr cena/výkon při účinností do 10 % Problematický je obsah vzácných kovů Hybridní fotovoltaické panely HIT články jsou solární hybridní články kombinující krystalický a amorfní křemík Solární HIT panely dosahují účinnosti více než 18 % 12
Větrné mikroelektrárny Možnosti využití větrné energie se v minulosti nevěnovala příliš pozornost V současné době se soustřeďuje pozornost na větrné elektrárny o výkonu stovek až tisíců Wattů V souvislosti s využitím větrných elektráren je nutno zvážit vhodnost lokality a přítomnost překážek proudění vzduchu Oproti klasickým výkonným větrným elektrárnám mají mikroelektrárny nízkou rozbíhací rychlost větru (2 3 m/s), což umožňuje jejich použití v nízkých výškách nad terénem Většina větrných turbín o malých výkonech se řadí do skupin turbín s vodorovnou osou proudění, v blízkosti budov se stále více prosazují turbíny se svislou osou rotace 13
Větrné mikroelektrárny Turbíny se svislou osou rotace umožňují využít vítr přicházející ze všech směrů a jsou vhodnější pro použití v malých výškách na střechách budov uprostřed zástavby Turbíny lze integrovat na střechu nebo do průčelí tak, aby architektonicky nerušily více než televizní anténa či satelitní přijímač. 14
Mikrokogenerace Mikrokogenerací se rozumí kombinovaná výroba elektrické energie a tepla (KVET) v malých výkonech (cca do 50 kw) Kombinovaná výroba elektrické energie a tepla v místě spotřeby přináší eliminaci přenosových ztrát spojených s centrálními zdroji Instalace kogeneračních jednotek malých výkonů je umožněna díky pokročilému technologickému vývoji v oblasti malých motorů a turbín Produkovaná elektrická energie je buď využita přímo v budově nebo předána do nadřazené rozvodné sítě 15
Mikrokogenerace Mikrokogenerační jednotky využívají různé technologie, z nichž nejpoužívanější jsou na bázi spalovacích motorů V současné době jde o využití technologií s účinností výroby elektrické energie 30 až 40 % a o celkové účinnosti 85 100 % (kondenzační režim) v závislosti na výkonu jednotek. Poměr mezi produkcí elektřiny a tepla je cca 1:2 Výhodou spalovacích motorů je široký rozsah použitelných kapalných i plynných paliv (nafta, biooleje, zemní plyn, bioplyn) Spalovací motory umožňují rychlý start a dobrou regulaci výkonu Odpadní teplo se odebírá z chlazení motoru a ze spalin Životnost spalovacích motorů je omezená vzhledem k opotřebení velkého počtu pohyblivých částí 16
Mikrokogenerace Plynové spalovací turbíny se využívají z důvodu nízkých emisí, kompaktnosti, vysoké životnosti a nízkých poplatků za údržbu Odpadní teplo se odebírá ze spalin Poměr výkonu produkce elektrické energie a tepla je stejný jako u spalovacích motorů (cca 1:2) Jako palivo nejčastěji zemní plyn Hlavní výhodou je kontinuální spalování ve spalovací komoře, jehož důsledkem jsou velmi nízké emise oxidů dusíku, cca desetkrát nižší než u spalovacích motorů Výkon turbín se pohybuje od cca 30 kw s elektrickou účinností 25 35 % a celkovou účinností 70 80 % dle využití tepla Spalovací vzduch i plyn jsou před vstupem do spalovací komory stlačovány turbokompresorem, což snižuje účinnost celého procesu 17
Mikrokogenerace Stirlingův motor je zástupce motorů s vnějším spalováním V praxi se objevují i první motory v kombinaci s plynovými kotli s poměrem produkce elektřiny a tepla okolo 1:10 Zásadní výhodou Stirlingova motoru je tichý chod a elektrické výkony již od 1 kw Princip konstrukce Stirlingova motoru spočívá ve dvou komorách o stejném tlaku a různé teplotě pracovní látky, které jsou odděleny písty. Plyn v obou komorách Stirlingova motoru je střídavě ohříván a chlazen vnějším ohřívačem a chladičem. Mezi ohřívačem a chladičem se pro zvýšení účinnosti zařazuje regenerátor, který akumuluje teplo plynu přecházejícího z ohřívače do chladiče a naopak. Pohyb pístu se v integrovaném generátoru přeměňuje na elektrickou energii, odpadní teplo se využívá k vyhřívání místností a přípravě teplé vody 18
Mikrokogenerace Stirlingův motor s plynovým kondenzačním kotlem, zdroj: Viessmann Schéma Stirlingova motoru, zdroj: Viessmann 19
Mikrokogenerace Palivové články pracující na principu přímé přeměny chemické energie paliva na elektrickou energii Základním druhem je vodíko - kyslíkový článek, který slučuje molekuly vodíku a kyslíku za přítomnosti katalyzátoru. Vzniká voda (vodní pára), teplo a z elektrod článku je odváděn elektrický proud Výhodou palivových článků je absence točivých prvků tichý chod, dlouhá životnost a nízké nároky na údržbu Kromě použití samotného vodíku se věnuje pozornost také dostupnějším palivům bohatých na vodík metan, zemní plyn, bioplyn Palivový článek vyžaduje zařízení pro úpravu paliva na čistý vodík 20
Mikrokogenerace Jako zdroje elektrické a tepelné energie pro budovy se využívají zejména vysokoteplotní palivové články na bázi tuhých oxidů (SOFC) s provozní teplotou 800 až 1000 C Místo kyslíku je za oxidační prostředek možné využít vzduch U malých zařízení se účinnost výroby elektrické energie pohybuje mezi 30 a 40 %, celková účinnost za předpokladu využití odpadního tepla je 85 % Produkovaný elektrický a tepelný výkon je cca srovnatelný 21
Mikrokogenerace Princip činnosti palivového článků Jedná se o galvanický článek, k jehož elektrodám jsou přiváděny jednak palivo (k anodě) a jednak okysličovadlo (ke katodě). Princip výroby elektřiny v palivovém článku spočívá tedy v dodávání paliva k anodě a okysličovadla ke katodě. Mezi těmito dvěma neprodyšně oddělenými elektrodovými prostory se nachází elektrolyt. Na katodě se oxidační činidlo redukuje na anionty (O2-), a ty pak reagují s H+ ionty na vodu. Palivové články mohou operovat nepřetržitě, pokud se nepřeruší přívod paliva a okysličovadla k elektrodám. 22
Akumulace elektrické energie Zařízení pro využívání sluneční a větrné energie jsou charakteristická nestabilním výkonem Zdroje připojené k rozvodné sítí s akumulací elektrické energie vykrývají výkonové špičky Nejběžnější a nejznámější elektrochemické akumulátory akumulují elektrickou energie ve formě chemické energie: Nejrozšířenější jsou olověné akumulátory, které se vyznačují nízkou cenou, životnost 3 5 let, účinnost akumulace 70 80 % Pokročilejší jsou lithiové akumulátory, které mají vysokou hustotu energie a účinnost 80 90 %, vysoká cena, životnost cca 10 let Průtokové akumulátory s elektrodami na bázi oxidů vanadu mají vysokou kapacitu, účinnost 75 85 %, dlouhodobá životnost s neměnnými parametry 23
Akumulace elektrické energie Ve stádiu vývoje jsou superkondenzátory (ultrakapacitory), kde energie je akumulována do elektrického pole nabitého kondenzátoru. Umožňují přijmout velké množství náboje během krátké doby, jsou vhodné jako vyrovnávací akumulátory pro krátkodobé výkyvy (fotovoltaika, větrná energie) Trendy v oblasti akumulace elektrické energie souvisí s rozvojem elektromobility a využitím rezervovaných kapacit v bateriích jako akumulační záloha V případě přebytku elektrické energie v lokální rozvodné sítí je možné energii v nich akumulovat a v případě zvýšeného odběru ji vracet zpět do sítě 24
Vysoká škola technická a ekonomická V Českých Budějovicích ENS Zdroje tepla
Zdroje tepla Zdroje tepla se používají v budovách k vytápění, přípravě teplé vody a k ohřevu větracího vzduchu Při návrhu se doporučuje využít zdrojů tepla, které minimalizují potřebu primární energie obnovitelných zdrojů tepla Solární tepelní soustavy Tepelná čerpadla Kotle na spalování biopaliv Je nezbytné vyhnout se předimenzovaným zdrojům na spalování paliv (zemní plyn, biomasa) s omezenou regulací výkonu, které vykazují nadměrnou produkci spotřeby paliv a zvýšenou produkci emisí Pokud není zajištěná účinná regulace, je vhodné tepelný výkon rozložit do více menších jednotek řízených modulačně v kaskádě umožní reagovat na aktuální potřeby tepla 26
Elektrické kotle a ohřívače Elektrická energie je dostupná téměř všude Elektrická energie je jako zdroj tepla využitelná v podobě levných zařízení (elektrické vložky, tenké odporové kabely, topné fólie, sálavé panely, elektrické kotle, zásobníkové ohřívače, přímotopná otopná tělesa) s vysokou účinností přeměny 98 100 % Díky nepříznivé bilanci potřeby primární energie a svázané emise znečišťujících látek je použití elektrické energie jako hlavního zdroje tepla nevhodné Elektrické zdroje jsou vhodné jako doplňková či záložní zařízení pro snížení vysokých investičních nároků (oproti zdrojům využívající obnovitelnou energii) 27
Plynové a olejové kotle a ohřívače Z plynných paliv se používá především zemní plyn (rozváděný plynovody) a propan (tlakové zásobníky v blízkosti použití) Jako kapalná paliva se používají lehké topné oleje Spalováním plynných nebo kapalných paliv se jejich chemická energie přeměňuje na energii tepelnou sloučením se vzdušným kyslíkem za produkce vody, oxidu uhličitého, oxidu dusíku a dalších látek Pro spalování plynných nebo kapalných paliv se používají kotle: Standardní kotle bez kondenzace vodní páry ze spalin se jmenovanou účinnost cca 88 % Nízkoteplotní kotle s výměníkem odolným vůči korozi s účinností cca 92 % Kondenzační kotle navržené na provoz s kondenzací vodní páry ze spalin s nerezovým výměníkem a spalinovým ventilátorem, účinnost až 106 % 28
Plynové a olejové kotle a ohřívače Použití kondenzačních kotlů je spojeno s nízkoteplotními otopnými soustavami jako je podlahové a stěnové vytápění nebo velkoplošná otopná tělesa Současné kondenzační kotle se kromě efektivního využití energie zemního plynu vyznačují také plynulou regulací výkonu hořáku od 20 % do 100 % jmenovitého výkonu Ke standardním kotlům bez regulace je vhodné instalovat zásobník tepla. Kotel část tepla odevzdá do zásobníku a je provozován na jmenovitý výkon s vysokou účinností, místo častého cyklování Instalace zásobníku zvyšuje provozní účinnost kotle až o 30 % Pro spalování paliv obecně je nutné zajistit dostatečný přívod vzduchu. Pro budovy s velmi těsným pláštěm se nedoporučuje používat plynové spotřebiče, jako jsou sporáky a lokální topidla s přívodem spalovacího vzduchu z vnitřního prostoru 29
Spalovací zařízení na biopaliva Z dostupných technologií využití biomasy je využitelné především přímé spalování tuhých biopaliv (kusové dřevo, dřevní brikety, peletky, štěpka) a v omezené míře spalování kapalných biopaliv (bioleje, biolíh) Pro zajištění účinného spalování tuhých biopaliv je nezbytné použít zplyňovací kotle s dvoustupňovým spalováním, u nichž dochází ke zplyňování tuhého paliva v topeništi a následnému spalování plynů ve spalovací komoře Zplyňovací kotle s ručním přikládáním by měly pracovat při konstantním jmenovitém výkonu s vysokými provozními teplotami 80 90 C ve stabilním neměnném režimu (účinnost cca 85 %). Regulace výkonu je možná řízením přístupu spalovacího vzduchu. Omezená regulace výkonu a proměnlivé podmínky otopné soustavy vede k potřebě akumulace tepla v zásobníku. 30
Spalovací zařízení na biopaliva Automatické kotle jsou určeny pro sypké palivo ve formě dřevních a alternativních pelet, štěpky či pilin a jsou vybaveny mechanickou samočinnou dopravou paliva do spalovacího prostoru Provoz automatického kotle je bezobslužný, regulace výkonu se provádí řízením přívodu paliva mechanickým dávkováním nebo řízeným přívodem vzduchu. To umožňuje regulaci výkonu kotle v rozsahu 25 až 100 % s účinností kotle 85 až 92 % I automatické kotle se doporučuje vybavit akumulačním zásobníkem tepla 31
Spalovací zařízení na biopaliva 32
Spalovací zařízení na biopaliva Interiérová lokální topidla v podobě krbů, krbových vložek, krbových kamen či kachlových akumulačních kamen jsou velmi oblíbená v rodinných domech Otevřené krby a krbové vložky nejsou vhodné pro nízkou účinnost a významnou spotřebu spalovacího vzduchu z interiéru Z interiérových topidel jsou využitelná zejména krbová kamna vybavená integrovaným teplovodním výměníkem odvádějící významnou část tepelného výkonu do otopné vody Důležitou otázkou je řešení přívodu spalovacího vzduchu k topidlu. Nejvhodnějším řešením je samostatný přívod vzduchu z venkovního prostředí zvláštním potrubím napojeným přímo do krbových kamen Lokální zdroje tepla mohou způsobovat přehřívání objektu, v takovém případě je vhodné volit materiály vnitřního prostoru s dobrou akumulací tepla 33
Spalovací zařízení na biopaliva 34
Tepelná čerpadla Tepelná čerpadla jsou zařízení, která umožňují cíleně čerpat tepelnou energii o nízké nevyužitelné teplotě a předávat ji do navazujících soustav s vyšší využitelnou teplotní hladinou Nízkopotencionální energie může být svou podstatou obnovitelná energie z okolního prostředí (vzduch, voda, země) nebo druhotná energie z odpadního vzduchu nebo vody Nejrozšířenějším druhem jsou parní kompresorová tepelná čerpadla, která fungují podobně jako běžná chladící zařízení V parním oběhu je chladícího účinku dosahováno vypařováním chladiva ve výparníku za nízkého tlaku a nízké teploty A topného účinku kondenzace chladiva v kondenzátoru za vysokého tlaku a vysoké teploty K odsávání par chladiva z výparníku a pro jejich stlačení na vyšší tlak se využívá kompresor Pro snížení tlaku na vypařování je mezi kondenzátorem a výparníkem expanzní ventil 35
Tepelná čerpadla Prvky tepelného čerpadla Pro pohon kompresoru se využívá elektromotor (elektricky poháněná kompresorová tepelná čerpadla) nebo plyn (plynem poháněná kompresorová tepelná čerpadla) 36
Tepelná čerpadla Sorpční tepelná čerpadla využívají pro přečerpávání tepla parního oběhu chladiva, avšak kompresor je nahrazen procesem sorpce a desorpce chladiva v kapalné nebo tuhé látce za přívodu tepla z přímého spalování paliva nebo nepřímo dodávaného v otopné vodě. Zdrojem tepla pro pohon zařízení může být plynový kotel, kotel na biomasu nebo solární tepelná soustava Absorpční tepelné čerpadlo Vitosorp Viessmann 37
Tepelná čerpadla Mírou efektivity přečerpávání tepla je topný faktor COP, tj. poměr mezi tepelnou energií dodanou čerpadlem a potřebou hnací energie Topný faktor je závislý na teplotě obnovitelného či druhotného zdroje tepla, z něhož je teplo odebíráno a na teplotě odběru tepla, kam je teplo odevzdáváno Obecně platí, že čím menší rozdíl mezi teplotními hladinami, tím vyšší je efektivita přečerpávání tepla a tím menší jsou nároky na hnací energii Do provozní hodnoty topného faktoru je nutné zahrnout i pomocnou energii všech zařízení (čerpadla, ventilátory, regulace, ) 38
Tepelná čerpadla TČ se zkráceně označují zdroj tepla/ přenašeč tepla např. tepelné čerpadlo vzduch/voda odebírá teplo z okolního vzduchu a předává vodě do topného systému Tepelné čerpadlo vzduch/vzduch předává teplo vnitřnímu vzduchu a je tedy určeno pro teplovzdušné vytápění nebo klimatizaci Nejobvyklejší kombinace jsou vzduch/voda, vzduch/vzduch, voda/voda, země/voda 1) TČ využívající vzduch okolí 2/ TČ využívající vodu ze studní 3/ TČ využívající povrchovou vodu 4/ TČ využívající hloubkové vrty 5/ TČ využívající zemní plošný kolektor 39
Solární tepelné soustavy Solární tepelné soustavy využívají fototermální přeměnu energie slunečního záření v tepelnou energii v solárních kolektorech a teplo je odváděno nejčastěji do tepelného akumulátoru pro využití v době potřeby Návrh solárních soustav musí zohledňovat místní potřebu energie teplo se využívá přímo v budově Vlastním zdrojem tepla jsou solární kolektory, které lze rozlišit: Podle druhu teplonosné látky vzduchové nebo kapalinové Podle konstrukčního uspořádání nezasklené, zasklené, ploché, trubkové jednostěnné, trubkové dvoustěnné Sydney V případě celoročního využití kapalinových solárních soustav je pak nutné použít jako teplonosnou látku nemrznoucí směsi tzv. glykolovou směs 40
Solární tepelné soustavy Z akumulačního zásobníku je tepelná energie prostřednictvím oběhových čerpadel rozváděna na místo určení Ochlazená voda je pak oběhovými čerpadly sekundární strany systému přiváděna zpět do akumulačního zásobníku tepla pro další ohřev Ochlazená teplonosná látka je přiváděna oběhovým čerpadlem zpět do solárního panelu pro opětovné získání sluneční energie. 41
Solární tepelné soustavy Solární kolektor 42
Solární tepelné soustavy Typy solárních kolektorů 43
Solární tepelné soustavy Vzduchové solární kolektory Teplonosnou látkou je vzduch Vzduch se ohřívá vně nebo uvnitř absorbéru Spotřeba elektrické energie na pohon 44
Solární tepelné soustavy Vzduchové solární kolektory Možná integrace do střešního pláště 45
Solární tepelné soustavy Vzduchové solární kolektory 46
Solární tepelné soustavy Kapalinové solární kolektory Teplonosnou látkou je kapalina (voda, nemrznoucí směs, olej) Energie pohlcená na povrchu absorbéru je odváděna teplonosnou látkou proudící uvnitř trubek absorbéru 47
Solární tepelné soustavy Nekryté solární kolektory Vhodné pro sezonní aplikace, ohřev bazénové vody Výrazně závislé na okolních podmínkách (teplota, proudění vzduchu) 48
Solární tepelné soustavy Ploché kryté solární kolektory 49
Solární tepelné soustavy Vakuové trubkové solární kolektory Jednostěnná vakuová trubka Dvoustěnná vakuová trubka (Sydney) 50
Solární tepelné soustavy Vakuové trubkové solární kolektory 51
Solární tepelné soustavy Vakuové trubkové solární kolektory 52
Solární tepelné soustavy Solární kolektory s reflektory 53
Solární tepelné soustavy Podmínky pro umístění solárních kolektorů Vhodná orientace střechy - ideální je přímá orientace na jižní stranu, případně mírný odklon na jiho-jihozápad (od 8 do 15 od jihu). Při orientaci kolektorové plochy na jih je tedy tato schopna absorbovat téměř veškeré celodenní sluneční záření Vhodný sklon střechy - umístění kolektorové plochy je nejefektivnější pod úhlem 45 v případě, že jde o požadavek na celoroční využití systému, u sezónního ohřevu bazénů je vhodnější instalovat kolektorovou plochu do 30, pro přitápění objektu, jehož využití připadá na podzim, zimu a jaro se volí sklon 90 Příklad orientace a sklony solárních panelů 54
Solární tepelné soustavy Výhody solárních kolektorů Slunce jako nevyčerpatelný zdroj ekologicky šetrné energie Nízké provozní náklady na získávání energie Vyrobená energie ze slunečního záření může nahradit 20 50 % potřeby tepla k vytápění objektu, 50 70 % potřeby tepla k ohřevu užitkové vody, 70 95 % potřeby tepla pro ohřev vody v bazénu Vysoká životnost systému výrobci udávaná 15-20 let Nenáročná a téměř bezúdržbová obsluha Nevýhody solárních kolektorů Sluneční energii nelze využít jako samostatný zdroj tepla. Pro celoroční využití je nutný doplňkový zdroj energie Poměrně vysoká počáteční finanční investice Při instalaci solární soustavy do stávajícího objektu jsou nutné stavební úpravy (zateplení, úprava topné soustavy, změna doplňkového zdroje) 55
Akumulace tepla Většina soustav pro využití obnovitelných zdrojů tepla (solární tepelné soustavy, tepelná čerpadla, zdroje na spalování tuhých biopaliv) vyžadují pro efektivní provoz akumulaci tepla Většina dostupných zásobníků pracuje na principu akumulace citelného tepla (vodní zásobníky) Ve fázi vývoje a zkoušení jsou termochemické zásobníky s využitím sorpce a chemických reakcí U solárních soustav je požadavek na akumulaci dán především nestálým přísunem sluneční energie pro pokrytí nepravidelné potřeby tepla během dne a roku Zásobník tepla umožňuje otopné soustavě překlenout dobu blokace vysokého tarifu elektrické energie 56
Akumulace tepla Zásobníky tepla rozdělujeme podle funkce Akumulované energie na zásobníky TV Akumulační nádrže otopné vody Velikost zásobníku TV nebo akumulační nádrže většinou volíme na 1-1,5 denní zásobu tepla U zásobníků TV se návrh velikosti provádí podle počtu osob Spotřeba vody se většinou udává 50-80 litrů/osoba/den Vzhledem k nestálému přísunu energie od slunce je vhodné velikost zásobníku lehce předimenzovat. 57
Akumulace tepla 58
Dotazy či připomínky: michal.kraus@vsb.cz ENS Děkuji za pozornost Ing. Michal Kraus, Ph.D. info@krausmichal.cz 59