ZARŮSTÁNÍ, ČIŠTĚNÍ A ÚČINNOST VÝMĚNÍKŮ TEPLA V KANALIZACI: VÝSLEDKY PROVOZU FUNKČNÍCH VZORKŮ
|
|
- Dominika Matějková
- před 6 lety
- Počet zobrazení:
Transkript
1 ZARŮSTÁNÍ, ČIŠTĚNÍ A ÚČINNOST VÝMĚNÍKŮ TEPLA V KANALIZACI: VÝSLEDKY PROVOZU FUNKČNÍCH VZORKŮ Ivana Kabelková 1, David Stránský 2, Gabriela Štastná 3, Vojtěch Bareš 4 Abstract Two functional samples of in-sewer heat exchangers were installed in sewers with different hydraulic conditions (0.8 N/m 2 and 3 N/m 2, respectively). The research focused on the heat transfer efficiency due to surface fouling and on the effect of the mechanical cleaning (frequency 1 per 2 or 3 weeks). The amount of biofilm was higher at the site with lower shear stress (23.03±7.08 g/m 2 ) and cleaning reduced it to average 36%. However, the original amount was renewed already in about 35 days. In the sewer with higher shear stress there were only 15.89±5.46 g/m 2 of biofilm and cleaning kept the amount at about 18%. The biofilm renewal was slower (about half of the original amount after a month). At the first site the heat transfer efficiency dropped to 78-73% due to fouling, the cleaning recovered it to 90% and kept it above 82%. At the second site the decrease of the heat transfer efficiency was much less pronounced due to the small amount of the biofilm. Úvod Výměníky tepla získávající energii z odpadní vody ve stokové síti mohou být jedním z alternativních zdrojů energie pro vytápění i chlazení budov [2]. Výměníky umístěné přímo v jednotné kanalizaci však zarůstají biofilmem a jsou zanášeny sedimenty, čímž je snižována účinnost přestupu tepla až o 50% [1] [3] [7]. Proto musí být výměníky pravidelně čištěny nebo předimenzovány. Dosud však nebylo zodpovězeno, jak často musí být výměníky v jednotné kanalizaci čištěny, aby byl udržován přijatelný přestup tepla, a zda se liší se nutná frekvence čištění pro různé hydraulické podmínky. Tento článek se zabývá experimentálním provozem funkčních vzorků výměníku tepla vyvíjeného v rámci výzkumného projektu, instalovaných ve stokové síti v pilotním povodí [4]. Hlavní pozornost je zaměřena na sledování vývoje účinnosti přenosu tepla a vlivu čištění teplosměnné plochy. 1 Dr. Ing. Ivana Kabelková, České vysoké učení technické v Praze, Fakulta stavební, Katedra zdravotního a ekologického inženýrství, Thákurova 7, Praha 6 Dejvice, tel.: , kabelkova@fsv.cvut.cz 2 doc. Ing. David Stránský, Ph.D., České vysoké učení technické v Praze, Fakulta stavební, Katedra zdravotního a ekologického inženýrství, Thákurova 7, Praha 6 Dejvice, tel.: , stransky@fsv.cvut.cz 3 Mgr. Gabriela Šťastná, Ph.D., České vysoké učení technické v Praze, Fakulta stavební, Katedra zdravotního a ekologického inženýrství, Thákurova 7, Praha 6 Dejvice, tel.: , gabriela.stastna@fsv.cvut.cz 4 Ing. Vojtěch Bareš, Ph.D., České vysoké učení technické v Praze, Fakulta stavební, Katedra hydrauliky a hydrologie, Thákurova 7, Praha 6 Dejvice, tel.: , bares@fsv.cvut.cz
2 Materiál a metody Konstrukční řešení výměníku tepla Navržený výměník je deskového typu a je tvořen články z nerezové oceli o rozměrech 1800 x 250 x 30 mm zapojenými do série (Obr. 1). Tok oběhového média uvnitř každého článku usměrňují vnitřní přepážky, které jsou uspořádány vystřídaným způsobem a tvoří 35 tahů. Jednotlivé články jsou propojeny pomocí pružných hadicových propojek, které umožňují určitou vůli v přesnosti instalace a rovněž instalaci i v zakřivených úsecích stokové sítě. Články jsou kotveny ke stěně potrubí pomocí patek. Hrany a spoje modulů i náběhová hrana jsou zakryty nerezovými kusy ve tvaru U, které zajišťují hladký přechod. Ohřáté oběhové médium se vrací tlakovou hadicí z PE po vnější hraně výměníku. Jako teplonosná kapalina může být použita voda; v případě funkčních vzorků, kdy je nutno vzniklé teplo mařit (viz dále), byla použita bezglykolová kapalina PECASOL 2000 Solan. Obr. 1. Články tepelného výměníku Instalace funkčních vzorků v kanalizaci Pilotním povodím projektu je Hradec Králové. Pro instalaci funkčních vzorků výměníku byla na základě monitoringu a vyhodnocení potenciálu získávání tepelné energie a se souhlasem provozovatele stokové sítě vybrána 2 místa s odlišnými hydraulickými podmínkami profil Farářství na spojených kmenových stokách B a D (průměrné tečné napětí za bezdeštného stavu 0,8 N/m 2 ) a profil Nemocnice na kmenové stoce C (průměrné tečné napětí za bezdeštného stavu 3 N/m 2 ). V obou místech instalace jsou umístěny paralelně dva funkční vzorky výměníku tepla o ploše cca 2 m 2 (5 článků). Při provozu funkčních vzorků je nutno mařit vzniklé teplo. Použita byla chladicí jednotka od firmy JDK typu WDE s akumulační nádrží. Čištění výměníků a odběry vzorků biofilmu Levé větve funkčních vzorků výměníků byly čištěny, pravé nikoliv a slouží jako reference. Čištění bylo prováděno 1x za 2 až 3 týdny (15-21 dní). Jako nejvhodnější metoda bylo vyhodnoceno ruční mechanické čištění rýžovým kartáčem [6]. Před čištěním byly na nečištěných i na čištěných místech výměníku (na spojkách) odebírány vzorky biofilmu a sedimentů a laboratorně analyzována sušina a ztráta žíháním (tj. organická hmota). Ve dvou experimentech byl sledován též vliv intervalu čištění, kdy vzorky biofilmu byly odebrány z očištěných míst po 21 a 37 dnech, resp. po 18 a 35 dnech. Zároveň byl na základě on-line monitoringu vyhodnocován koeficient přestupu tepla.
3 Systém monitoringu Schéma monitoringu pro sledování účinnosti tepelných výměníků je uvedeno na Obr. 2. Obr. 2. Schéma zapojení výměníků a chladicího okruhu s vyznačenými místy měření a měřenými veličinami (modrá větev přivádí vodu do výměníku, červená ji odvádí) Teploty: t ov teplota odpadní vody v profilu instalace, teplota 3 teplota teplonosné kapaliny při vstupu do výměníků, teplota 2 teplota teplonosné kapaliny při výstupu z výměníků pro čištěný okruh, teplota 1 teplota teplonosné kapaliny při výstupu z výměníků pro nečištěný okruh, t ext venkovní teplota na povrchu (měřeno u chladicí jednotky JDK). Teploty jsou měřeny teplotními čidly Pt100 od výrobce Fiedler v intervalu 1 min. Pro měření teploty v odpadní vodě je čidlo opatřeno chráničkou z nerezového plechu, aby se zabránilo jeho poškození plovoucími nečistotami nebo při manipulaci v rámci instalace. Pro měření teplot v okruhu výměníku je čidlo umístěno v armaturním dílu určeném pro měření teploty. Průtoky: Q ov průtok odpadní vody v příslušném profilu q 1 průtok teplonosné kapaliny pro čištěný okruh q 2 průtok teplonosné kapaliny pro nečištěný okruh Průtok v kanalizačním potrubí je měřen přístrojem Sigma 950 od výrobce Hach v profilu Farářství a přístrojem výrobce Nivus v profilu Nemocnice. Průtoky q 1 a q 2 v okruzích s teplonosnou kapalinou jsou měřeny mechanicky lopatkovými vodoměry Flodis, přičemž jsou regulovány na stejnou hodnotu (z důvodu porovnatelnosti výkonu čištěné a nečištěné větve). Hodnoty jsou zaznamenávány v intervalu 1 min (q 1 a q 2 ), resp. 3 min (Q ov ). Výsledky Vliv čištění výměníku na množství biofilmu V profilu Farářství (Obr. 3) se díky velmi nízkému tečnému napětí v místě instalace výměníku (0,8 N/m 2 ) udržovalo na výměníku ve sledovaném období poměrně vysoké
4 množství biofilmu a sedimentů (organický podíl na nečištěných i čištěných plochách byl cca 54%). Množství biofilmu i sedimentů bylo čištěním sníženo v průměru na cca 36% (předpokládán lineární průběh nárůstu biofilmu). Sušina se snížila z průměrných 43,33±10,44 g/m 2 na průměrných 15,54±2,21 g/m 2, ztráta žíháním z průměrných 23,03±7,08 g/m 2 na 8,18±1,86 g/m 2. V profilu Nemocnice (Obr. 4) byl vzhledem k vyššímu tečnému napětí (3 N/m 2 ) v místě instalace výměník pokryt menším množstvím biofilmu a zejména sedimentů, kdy organický podíl nečištěných ploch byl 76%, čištěných ploch 88%. Účinnost čištění byla z časového hlediska podstatně vyšší, protože zde se díky čištění udržovalo množství sušiny v průměru na cca 15% a množství biofilmu na cca 18% hodnoty nečištěných ploch (sušina poklesla z 21,86±5,25 g/m 2 na 3,18±0,44 g/m 2, ztráta žíháním se snížila z 15,89±5,46 g/m 2 na 2,81±0,42 g/m 2 ). Obr. 3. Vývoj sušiny a množství biofilmu na čištěných a nečištěných plochách výměníku v profilu Farářství Obr. 4. Vývoj sušiny a množství biofilmu na čištěných a nečištěných plochách výměníku v profilu Nemocnice
5 Interval čištění hrál podstatně větší roli v profilu Farářství než v profilu Nemocnice. V profilu Farářství bylo původní množství biofilmu (tj. průměrné množství na nečištěných plochách) obnoveno zhruba po měsíci (přesněji 35 dnech) (Obr. 5). V profilu Nemocnice byl nárůst biofilmu pomalejší po měsíci od očištění ho bylo zhruba poloviční množství oproti nečištěným místům (Obr. 6). Obr. 5. Nárůst sušiny a biofilmu na očištěných plochách výměníku v profilu Farářství v závislosti na době po očištění Obr. 6. Nárůst sušiny a biofilmu na očištěných plochách výměníku v profilu Nemocnice v závislosti na době po očištění
6 Vliv čištění výměníku na přestup tepla Koeficient přestupu tepla k (kw.m -2.K -1 ) je vyjádřen jako: k = W / (A. LMTD) kde W je výkon v kw A je plocha výměníku v m 2 LMTD je střední logaritmický rozdíl teplot v K Pokles účinnosti přenosu tepla v důsledku zarůstáním biofilmem lze popsat pomocí tzv. fouling faktoru f (kw.m -2.K -1 ), který je vyjádřen následovně: 1/f = 1/k 1/k 0 kde k 0 je hodnota koeficientu přestupu tepla čistého výměníku bezprostředně po instalaci (referenční), k je aktuální hodnota koeficientu přestupu tepla. V Tab. 1 a na Obr. 7 jsou pro lokalitu Farářství shrnuty hodnoty koeficientu přestupu tepla a fouling faktoru pro různé fáze monitoringu pro nečištěnou pravou větev výměníku a před a po čištění levé větve. Hodnoty jsou normalizovány tak, aby byly srovnatelné s referenčním stavem. Fouling faktor dosahuje až 3,75 m 2.K kw -1, což koresponduje s [7], který uvádí hodnoty 0 až 5 m 2.K kw -1 podle intervalu čištění a místních podmínek z hlediska tvorby biofilmu. Tab. 1. Vliv čištění výměníku na koeficient přestupu tepla a fouling faktor v lokalitě Farářství Koeficient přestupu Výkon W [kw] tepla k [kw.m -2.K -1 1/f [m 2.K kw -1 ] ] Pořadí a datum čištění Nečištěná Čištěná Nečištěná Čištěná Nečištěná Čištěná větev větev větev větev větev větev reference ,500 0,497 1.čištění ,203 1,203 0,210 0,210 2,759 2,759 1,203 1,341 0,210 0,282 2,759 1,539 2.čištění ,102 1,280 0,173 0,245 3,752 2,064 1,102 1,322 0,173 0,269 3,752 1,700 3.čištění ,176 1,247 0,199 0,229 3,010 2,362 1,176 1,328 0,199 0,273 3,010 1,649 4.čištění ,145 1,240 0,188 0,225 3,316 2,425 1,145 1,306 0,188 0,260 3,316 1,841 Tepelný výkon jedné větve výměníku byl v referenčním stavu 1,5 kw. Zatímco relativní výkon nečištěné větve výměníku klesal v důsledku zarůstání biofilmem na 78-73%, čištěním byl výkon obnoven až téměř na 90% a udržován nad 82% (Obr. 8). K opětovnému poklesu výkonu však docházelo již po několika dnech po čištění.
7 Obr. 7. Koeficient přestupu tepla k a fouling faktor 1/f pro nečištěnou a čištěnou větev výměníku tepla v profilu Farářství Obr. 8. Relativní výkon nečištěné a čištěné větve výměníku tepla v profilu Farářství V profilu Nemocnice snižování výkonu výměníku v důsledku zarůstání biofilmem není tak významné jako v případě Farářství (což koresponduje s nižším množstvím biofilmu). Závěry Zarůstání teplosměnné plochy výměníků tepla instalovaných ve stokové síti biofilmem a pokrývání sedimentem může vést k významnému poklesu jejich tepelného výkonu. Množství biofilmu i účinnost čištění se liší v závislosti na hydraulických podmínkách v místě instalace. Při nízkém tečném napětí je výměník pokryt větším množství sedimentu a biofilmu než při vyšším tečném napětí. Mechanickým čištěním lze výkon výměníku obnovit k 90%, avšak k opětovnému poklesu může dojít v řádu dnů.
8 Je tedy otázkou, zda místo častého čištění výměníku není vhodnější předjímat pokles výkonu odpovídajícím předimenzováním teplosměnné plochy. Pro zamýšlenou instalaci výměníku tepla ve stokové síti lze proto doporučit provést analýzu nákladů na čištění výměníku po celou dobu jeho očekávané životnosti ve srovnání s náklady na zvětšení teplosměnné plochy. Množství biofilmu v místě předpokládané instalace výměníku a nutnou četnost čištění lze zjistit pomocí in-situ odběrů vzorků biofilmu z pásků z materiálu výměníku instalovaných ve stoce. Poděkování Projekt č. TA Získávání tepelné energie z odpadní vody v kanalizačních sítích (enkan)" je řešen s finanční podporou TA ČR. Tepelný výměník je vyvíjen ve spolupráci s firmou ATEKO, a.s. Instalaci funkčního vzorku a jeho monitoring umožnily Vodovody a kanalizace Hradec Králové, a.s. a Královéhradecká provozní, a.s.. Literatura [1] Bott, T.R. (1995). Fouling of Heat Exchangers. Elsevier. [2] DWA M114 (2009). Energy from Wastewater Thermal and Potential Energy. DWA Hennef. [3] Characklis, W.G. (1981). Bioengineering report: Fouling biofilm development: A process analysis. Biotechnology and Bioengineering, 23(9), [4] Stránský, D., Kabelková, I., Jelínek, M., Bareš, V. a Šťastná, G. (2014a). Vývoj tepelných výměníků pro získávání tepla z odpadní vody v kanalizaci a výběr vhodných míst jejich instalace. Vodní hospodářství 64(8), [5] Stránský, D., Kabelková, I., Nový, Z., Bareš, V., Šťastná, G. (2014b). Teoretický potenciál získávání tepla z odpadní vody ve stokovém systému. Sborník 14. ročníku konference Městské vody, , Velké Bílovice, pp [6] Stránský, D., Kabelková, I., Bareš, V., Šťastná, G., Jelínek, M. (2015). Experimentální provoz funkčního vzorku výměníku tepla v reálných podmínkách kanalizace. Sborník 20. ročníku konference Nové metody a postupy při provozování čistíren odpadních vod, , Moravská Třebová, pp [7] Wanner, O. (2004). Wärmerückgewinnung aus Abwassersystemen. Dübendorf: EAWAG.
Experimentální provoz funkčního vzorku výměníku tepla v reálných podmínkách kanalizace
Experimentální provoz funkčního vzorku výměníku tepla v reálných podmínkách kanalizace Doc. Ing. David Stránský, PhD., Dr. Ing. Ivana Kabelková, Ing. Vojtěch Bareš, PhD., Mgr. Gabriela Šťastná, PhD. ČVUT
TEORETICKÝ POTENCIÁL ZÍSKÁVÁNÍ TEPLA Z ODPADNÍ VODY VE STOKOVÉM SYSTÉMU
TEORETICKÝ POTENCIÁL ZÍSKÁVÁNÍ TEPLA Z ODPADNÍ VODY VE STOKOVÉM SYSTÉMU David Stránský 1, Ivana Kabelková 1, Zdeněk Nový 1, Vojtěch Bareš 1 a Gabriela Štastná 1 Abstract The present paper deals with the
Příloha E Metodika pro zpracování situačních zpráv "Využití tepelné energie odpadní vody v kanalizaci"
Příloha E Metodika pro zpracování situačních zpráv "Využití tepelné energie odpadní vody v kanalizaci" Číslo projektu: TA03020600 Název projektu: Získávání tepelné energie z odpadní vody v kanalizačních
REALIZOVATELNÝ POTENCIÁL VYUŽITÍ TEPLA ODPADNÍ VODY V PILOTNÍM POVODÍ HRADEC KRÁLOVÉ
REALIZOVATELNÝ POTENCIÁL VYUŽITÍ TEPLA ODPADNÍ VODY V PILOTNÍM POVODÍ HRADEC KRÁLOVÉ David Stránský 1, Ivana Kabelková 2, Gabriela Štastná 3, Vojtěch Bareš 4, Petr Polák 5 Abstract Presented paper identifies
Topení a chlazení pomocí tepla z odpadní vody - HUBER ThermWin
WASTE WATER Solutions Topení a chlazení pomocí tepla z odpadní vody - HUBER ThermWin Zpětné získávání tepelné energie z komunálních a průmyslových odpadních vod Uc Ud Ub Ua a stoka b šachta s mechanickým
The Shower cleaner of contaminated spills
Název funkčního vzorku v originále Sprchový čistič kontaminovaných úkapů Název funkčního vzorku česky (anglicky) The Shower cleaner of contaminated spills Obrázek 1. Model sprchového čističe pro kontaminované
Možnosti větrání tepelnými čerpadly v obytných budovách
www.tzb-info.cz 3. 9. 2018 Možnosti větrání tepelnými čerpadly v obytných budovách Možnosti větrání tepelnými čerpadly v obytných budovách Uvedený příspěvek je zaměřený na možnosti využití tepelných čerpadel
ÚSPORY ENERGIE PŘI CHLAZENÍ VENKOVNÍHO VZDUCHU
2. Konference Klimatizace a větrání 212 OS 1 Klimatizace a větrání STP 212 ÚSPORY ENERGIE PŘI CHLAZENÍ VENKOVNÍHO VZDUCHU Vladimír Zmrhal ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut.cz
BAKALÁŘSKÁ PRÁCE VZDUCHOTECHNIKA
BAKALÁŘSKÁ PRÁCE VZDUCHOTECHNIKA analýza objektu rozdělení na funkční celky VZT, koncepční řešení celé budovy, vedoucí zadá 2 3 zařízení k dalšímu rozpracování tepelné bilance, průtoky vzduchu, tlakové
Funkční vzorek chlazení výfukového potrubí kogenerační jednotky
Funkční vzorek chlazení výfukového potrubí kogenerační jednotky Funkční vzorek FST KKE FV 017 16 Autoři: Ing. Roman Gášpár (KKE) Ing. Jiří Linhart (TEDOM) Bc. Tomáš Levý (KKE) Vedoucí pracoviště: Dr. Ing.
Analýza sálavého toku podlahového a stropního vytápění Výzkumná zpráva
Analýza sálavého toku podlahového a stropního vytápění Výzkumná zpráva Ing. Daniel Adamovský, Ph.D. Ing. Martin Kny, Ph.D. 20. 8. 2018 OBSAH 1 PŘEDMĚT ZAKÁZKY... 3 1.1 Základní údaje zakázky... 3 1.2 Specifikace
Kompaktní kompresorové chladiče
Kompaktní kompresorové chladiče Vzduchem chlazený kondenzátor Vodou chlazený kondenzátor Kompresorový chladič se vzduchem chlazeným kondenzátorem Ohřátý chladící vzduch z kondenzátoru Desuperheater 100%
Funkční vzorek průmyslového motoru pro provoz na rostlinný olej
Funkční vzorek průmyslového motoru pro provoz na rostlinný olej V laboratořích Katedry vozidel a motorů Technické univerzity v Liberci byl vyvinut motor pro pohon kogenerační jednotky spalující rostlinný
ALTERNATIVNÍ ZDROJE ENERGIE
ALTERNATIVNÍ ZDROJE ENERGIE Využití energie slunce Na zemský povrch dopadá průměrně 0,2 kw/m 2 V ČR dopadne na 1 m 2 přibližně 1000 kwh energie ročně Je několik možností, jak přeměnit energii slunečního
Technické specifikace přístrojů pro část D zadávací dokumentace veřejné zakázky Laboratorní přístroje II pro projekt UniCRE
Příloha č. 4 Technické specifikace přístrojů pro část D zadávací dokumentace veřejné zakázky Laboratorní přístroje II pro projekt UniCRE Kryostaty Oběhový kryostat, 2 ks Identifikace: KO-KA1, KO-KA2 Použití:
Optimalizace teplosměnné plochy kondenzátoru brýdových par ze sušení biomasy
Optimalizace teplosměnné plochy kondenzátoru brýdových par ze sušení biomasy Jan HAVLÍK 1,*, Tomáš Dlouhý 1 1 České vysoké učení technické v Praze, Fakulta strojní, Ústav energetiky, Technická 4, 16607
WP13: Aerodynamika motorového prostoru a chlazení: AV/T/EV pro SVA priority [A] [F] Vedoucí konsorcia podílející se na pracovním balíčku
Aerodynamika motorového prostoru a chlazení: AV/T/EV pro SVA priority [A][F] WP13: Aerodynamika motorového prostoru a chlazení: AV/T/EV pro SVA priority [A] [F] Vedoucí konsorcia podílející se na pracovním
VLIV OKRAJOVÝCH PODMÍNEK NA VÝSLEDEK ZKOUŠKY TEPELNÉHO VÝKONU SOLÁRNÍHO KOLEKTORU
Energeticky efektivní budovy 2015 sympozium Společnosti pro techniku prostředí 15. října 2015, Buštěhrad VLIV OKRAJOVÝCH PODMÍNEK NA VÝSLEDEK ZKOUŠKY TEPELNÉHO VÝKONU SOLÁRNÍHO KOLEKTORU Bořivoj Šourek,
Kondenzace brýdové páry ze sušení biomasy
Kondenzace brýdové páry ze sušení biomasy Jan HAVLÍK 1,*, Tomáš DLOUHÝ 1 1 České vysoké učení technické v Praze, Fakulta strojní, Ústav energetiky, Technická 4, 16607 Praha 6, Česká republika * Email:
1/58 Solární soustavy
1/58 Solární soustavy hydraulická zapojení zásobníky tepla tepelné výměníky 2/58 Přehled solárních soustav příprava teplé vody kombinované soustavy ohřev bazénové vody hydraulická zapojení typické zisky
SYMPATIK Vila Aku. Obrázek RD
SYMPATIK Vila Aku Obrázek RD Obr. Budova SYSTHERM SYMPATIK Vila Aku je předávací stanice, určená pro individuální vytápění a přípravu teplé vody v rodinných domech a malých objektech připojených na systémy
Chlazení kapalin. řada WDE. www.jdk.cz. CT120_CZ WDE (Rev.04-11)
Chlazení kapalin řada WDE www.jdk.cz CT120_CZ WDE (Rev.04-11) Technický popis WDE-S1K je řada kompaktních chladičů kapalin (chillerů) s nerezovým deskovým výparníkem a se zabudovanou akumulační nádobou
TEPELNÁ ČERPADLA VZDUCH/VODA WPL 20/26 AZ POPIS PŘÍSTROJE, FUNKCE
TEPELNÁ ČERPADLA VZDUCH/VODA WPL 20/26 AZ POPIS PŘÍSTROJE, FUNKCE Popis přístroje Systém tepelného čerpadla vzduch voda s malou potřebou místa pro instalaci tvoří tepelné čerpadlo k venkovní instalaci
Funkční vzorek průmyslového motoru pro provoz na rostlinný olej
Funkční vzorek průmyslového motoru pro provoz na rostlinný olej V laboratořích Katedry vozidel a motorů Technické univerzity v Liberci byl vyvinut motor pro pohon kogenerační jednotky spalující rostlinný
HYDRAULICKÉ AGREGÁTY HA
HYDRAULICKÉ AGREGÁTY HA POUŽITÍ Hydraulické agregáty řady HA jsou určeny pro nejrůznější aplikace. Jsou navrženy dle konkrétních požadavků zákazníka. Parametry použitých hydraulických prvků určují rozsah
Energetický posudek. Energetický posudek str. 1 z 9 Zateplení bytového domu Náměstí Osvoboditelů 1364/3 Praha 5 Radotín
Energetický posudek str. 1 z 9 Energetický posudek Předmět energetického posudku Bytový dům Náměstí Osvoboditelů 1364/3 Praha 5 Braník Datum 14.10.2014 Vypracovala Ing. Miluše Drmlová, PhD. Č. oprávnění
ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ
ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ Rok vzniku: 29 Umístěno na: Vysoké učení technické v Brně, Fakulta strojního ženýrství, Technická 2, 616 69 Brno, Hala C3/Energetický ústav
Akumulační nádrže NAD, NADO, UKV AKUMULAČNÍ NÁDRŽE NAD, NADO 250, 500, 750, 1000 UKV 102, 300, 500
kumulační nádrže ND, NDO, UKV KUMULČNÍ NÁDRŽ ND, NDO 250, 500, 750, 000 UKV 02, 300, 500 ND 500 v8 Jediná akumulační nádrž na českém trhu k umístění v exteriéru NOVINK na straně 9 OBSH ND 250 v, ND 500
Po přestávce pokračujme na téma Chlazení
Březen 2019 Back to Start Po přestávce pokračujme na téma Chlazení Ing. Petr Jáchym jachym.petr@hydac.cz Novotného lávka 6.března 2019 Proč chladit? Zajistit optimální podmínky nosiče energie = pracovní
Monitoring ve zdravotním inženýrství
Logistika Monitoring ve zdravotním inženýrství David Stránský stransky@fsv.cvut.cz Gabriela Šťastná Iva Čiháková Bohumil Šťastný Úterý 10:45 12:15 C219 Ukončení předmětu Zápočtový test V případě neúspěchu
ZPRÁVA O KONTROLE KOTLŮ A ROZVODŮ TEPELNÉ ENERGIE
EMI-TEST s.r.o. Na Sibiři 451 549 54 Police nad Metují ZPRÁVA O KONTROLE KOTLŮ A ROZVODŮ TEPELNÉ ENERGIE podle 3 odstavec 1 a 3 vyhlášky 194/2013 Sb., o kontrole kotlů a rozvodů tepelné energie číslo 0043/14
Přehled produktů Alfa Laval pro přenos tepla
Díky více než 125 letům věnovaným výzkumu a vývoji a miliónům instalací v oblasti vytápění a chlazení po celém světě pro nás neexistují žádné hranice, žádná omezení. Kompaktní předávací stanice Alfa Laval
Malý výměník tepla VTM NÁVOD K POUŽITÍ [ 1 / 5 ] 1. POPIS VÝMĚNÍKU
Malý výměník tepla VTM NÁVOD K POUŽITÍ [ 1 / 5 ] 1. POPIS VÝMĚNÍKU 1.1. Malý výměník tepla VTM není, ve smyslu směrnice evropského parlamentu 97/23/ES, tlakové zařízení. 1.2. Výměník je teplosměnný trubkový
Rekuperační jednotky
Rekuperační jednotky Vysoká účinnost výměníku účinnosti jednotky a komfortu vnitřního prostředí je dosaženo koncepcí výměníku, v němž dochází k rekuperaci energie vnitřního a venkovního vzduchu a takto
Stavební inženýrství 4 roky 1. a 2. ročník společný studijní plán, volba oboru od 3. roku
Bakalářské studijní programy a jejich obory Stavební inženýrství 4 roky 1. a 2. ročník společný studijní plán, volba oboru od 3. roku Vodní hospodářství a vodní stavby Proč si zvolit obor Vodní hospodářství
Budovy a energie Obnovitelné zdroje energie
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra technických zařízení budov Budovy a energie Obnovitelné zdroje energie doc. Ing. Michal Kabrhel, Ph.D. Verze 2.17 Solární energie Kolektory
Fotovoltaický ohřev teplé vody v zásobnících DZ Dražice
Fotovoltaický ohřev teplé vody v zásobnících DZ Dražice Fotovoltaický systém využívá k ohřevu teplé vody elektrickou energii, která je vyrobena fotovoltaickými panely. K přenosu tepla do vody se využívá
Tepelné čerpadlo země/voda určené pro vnitřní instalaci o topném výkonu 5,9 kw
Tepelná čerpadla Logatherm WPS země/voda v kompaktním provedení a zvláštnosti Použití Tepelné čerpadlo země/voda s maximální výstupní teplotou 65 C Vnitřní provedení s regulátorem REGO 637J zařízení Je
Solární teplo pro rodinný dům - otázky / odpovědi
1/24 Solární teplo pro rodinný dům - otázky / odpovědi Tomáš Matuška Československá společnost pro sluneční energii (ČSSE) Novotného lávka 5, 116 68 Praha 1 Česká republika info@solarnispolecnost.cz 2/24
ZÁSOBOVÁNÍ HASIVY ZÁSOBOVÁNÍ VODOU
Fakulta bezpečnostního inženýrství VŠB TUO ZÁSOBOVÁNÍ HASIVY ZÁSOBOVÁNÍ VODOU Názvosloví a definice odborných termínů doc. Ing. Šárka Kročová, Ph.D. VODÁRENSTVÍ Technický obor, který se zabývá jímáním,
Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky
Konference ANSYS 2009 Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky J. Štěch Západočeská univerzita v Plzni, Katedra energetických strojů a zařízení jstech@kke.zcu.cz
Refence z firmy DOMETIC Slovakia s.r.o.
Refence z firmy DOMETIC Slovakia s.r.o. V březnu 2010 byl u firmy DOMETIC Slovakia s.r.o. ve Fil'akovu na Slovensku instalován předsériový model MK 55-75. V rámci instalace byla na zařízení provedena měření
REKONSTRUKCE VYTÁPĚNÍ ZŠ A TĚLOCVIČNY LOUČOVICE
REKONSTRUKCE VYTÁPĚNÍ ZŠ A TĚLOCVIČNY LOUČOVICE Objekt Základní školy a tělocvičny v obci Loučovice Loučovice 231, 382 76 Loučovice Stupeň dokumentace: Dokumentace pro výběr zhotovitele (DVZ) Zodpovědný
DX KIT2. JOHNSON CONTROLS INTERNATIONAL, spol. s r.o.
2018 2019 DX KIT2 JOHNSON CONTROLS INTERNATIONAL, spol. s r.o. DX KIT série 2 je sestava složená z řídicí jednotky a expanzního ventilu, která umožňuje připojení zařízení jiných výrobců obsahující tepelné
Teorie přenosu tepla Deskové výměníky tepla
Teorie přenosu tepla Deskové výměníky tepla Teorie přenosu tepla Následující stránky vám pomohou lépe porozumnět tomu, jak fungují výměníky tepla. Jasně a jednoduše popíšeme základní principy přenosu tepla.
Deskové výměníky. nerezové deskové výměníky izolované čerpadlové skupiny pro přípravu teplé vody. Úsporné řešení pro vaše topení TECHNICKÝ KATALOG
TECHNICKÝ KATALOG Deskové výměníky nerezové deskové výměníky izolované čerpadlové skupiny pro přípravu teplé vody REGULUS spol. s r.o. Do Koutů 1897/3, 143 00 Praha 4 Tel.: 241 764 506, Fax: 241 763 976
Technické údaje SI 75TER+
Technické údaje SI 75TER+ Informace o zařízení SI 75TER+ Provedení - Zdroj tepla Solanky - Provedení Univerzální konstrukce reverzibilní - Regulace WPM 2007 integrovaný - Místo instalace Indoor - Výkonnostní
Zpráva č. 66/13. Měření teplotního pole ve spalovací komoře kotle HK102
Vysoká škola báňská Technická univerzita Ostrava Výzkumné energetické centrum 17. listopadu 15/2172 708 33 OstravaPoruba Zpráva č. 66/13 Měření teplotního pole ve spalovací komoře kotle HK102 Ředitel VEC:
Technické údaje VFBMC148
anfoss HP-H Zajištění vytápění a přípravy teplé vody. Technologie TWS zajišťuje rychlou přípravu teplé vody s nízkými provozními náklady. Velká vestavěná nádrž na 180 litrů teplé vody. Popis hlavních součástí..........................................................
CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE
CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE Autoři: Ing. Michal KŮS, Ph.D., Západočeská univerzita v Plzni - Výzkumné centrum Nové technologie, e-mail: mks@ntc.zcu.cz Anotace: V článku je uvedeno porovnání
Vliv olejů po termické depolymerizaci na kovové konstrukční materiály
Vliv olejů po termické depolymerizaci na kovové konstrukční materiály Ing. Libor Baraňák Ph. D, doc. Miroslav Bačiak Ph.D., ENRESS s.r.o., Praha baranak@enress.eu Náš příspěvek na konferenci řeší problematiku
21.6.2011. Projekt realizovaný na SPŠ Nové Město nad Metují
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 03 - TP ing. Jan Šritr 1 ing. Jan Šritr 2 1 Potrubí
Kroková hodnocení kombinovaného namáhání systémů s tenkými vrstvami. Roman Reindl, Ivo Štěpánek, Radek Poskočil, Jiří Hána
Kroková hodnocení kombinovaného namáhání systémů s tenkými vrstvami Step by Step Analysis of Combination Stress of Systems with Thin Films Roman Reindl, Ivo Štěpánek, Radek Poskočil, Jiří Hána Západočeská
Solární systémy. Termomechanický a termoelektrický princip
Solární systémy Termomechanický a termoelektrický princip Absorbce světla a generace tepla Absorpce je způsobena interakcí světla s částicemi hmoty (elektrony a jádry) Je-li energie částice před interakcí
Technická specifikace jednotlivých částí solárního systému. www.sunfield.cz
Technická specifikace jednotlivých částí solárního systému www.sunfield.cz 1. Solární trubicové kolektory HEAT-PIPE Počet trubic (ks) 12 15 18 20 24 30 Doporučený 100 L 125 L 150 L 166 L 200 L 250 L objem
Deskové výměníky. nerezové deskové výměníky izolované čerpadlové skupiny pro přípravu teplé vody. Úsporné řešení pro vaše topení
TECHNICKÝ KATALOG Deskové výměníky nerezové deskové výměníky izolované čerpadlové skupiny pro přípravu teplé vody www.regulus.cz VÝMĚNÍKY TEPLA Nerezové deskové výměníky DV193 Deskové výměníky určené k
TEPELNÁ ČERPADLA EKOLOGICKÁ A ÚSPORNÁ ŘEŠENÍ PRO RODINNÉ DOMY, BYTOVÉ DOMY, VEŘEJNÉ OBJEKTY A FIRMY
TEPELNÁ ČERPADLA EKOLOGICKÁ A ÚSPORNÁ ŘEŠENÍ PRO RODINNÉ DOMY, BYTOVÉ DOMY, VEŘEJNÉ OBJEKTY A FIRMY Systém topení a ohřevu TUV s tepelným čerpadlem VZDUCH-VODA KOMPAKT Vhodný pro všechny typy objektů včetně
SOLÁRNÍ SYSTÉM S DLOUHODOBOU AKUMULACÍ TEPLA VE SLATIŇANECH ANALÝZA PROVOZU
SOLÁRNÍ SYSTÉM S DLOUHODOBOU AKUMULACÍ TEPLA VE SLATIŇANECH ANALÝZA PROVOZU Martin Kny student Ph.D., ČVUT v Praze, fakulta stavební, katedra technických zařízení budov martin.kny@fsv.cvut.cz Konference
Technické údaje. Danfoss DHP-L Zajištění vytápění a připravenost pro napojení samostatného ohřívače a zásobníku teplé vody DWH.
anfoss HP-L Zajištění vytápění a připravenost pro napojení samostatného ohřívače a zásobníku teplé vody WH. Popis hlavních součástí.......................................................... 2 Obsah dodávky.................................................................
Cirkulační vzduchový zemní výměník tepla
Cirkulační vzduchový zemní výměník tepla Apollo ID: 25875 Datum: 31. 12. 2011 Typ výstupu: G funkční vzorek Autoři: Popis: Kolbábek Antonín, Ing., Jaroš Michal, Doc. Ing. Ph.D. Jedná se o experimentální
Technické údaje LA 60TUR+
Technické údaje LA TUR+ Informace o zařízení LA TUR+ Provedení - Zdroj tepla Venkovní vzduch - Provedení Univerzální konstrukce reverzibilní - Regulace - Výpočet teplotního množství integrovaný - Místo
Regulátor ECL Comfort 110 Pro střídavé napětí 230 V a 24 V
Datový list Regulátor ECL Comfort 110 Pro střídavé napětí 230 V a 24 V a zároveň je prostřednictvím čipové karty a komunikačního rozhraní uzpůsoben pro využití v nových aplikacích. Konstrukce regulátoru
Příloha P.9.4 POSOUZENÍ INVESTIČNÍHO ZÁMĚRU ZÁSOBOVÁNÍ VODOU PODSYCHROVSKÉHO RYBNÍKA
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební K144 - Katedra zdravotního a ekologického inženýrství Thákurova 7, 166 29 Praha 6 POSOUZENÍ POVODÍ A KAPACITY JIRENSKÉHO POTOKA V KATASTRÁLNÍM ÚZEMÍ
Tepelná čerpadla. Proč Vaillant? Tradice, kvalita, inovace, zákaznický servis. arotherm VWL vzduch/voda
Tepelná čerpadla Proč Vaillant? Tradice, kvalita, inovace, zákaznický servis. arotherm VWL vzduch/voda Tepelná čerpadla arotherm VWL vzduch/voda Vzduch jako zdroj tepla Tepelná čerpadla Vaillant arotherm
Sledování změn obsahu volného aktivního chloru při dopravě pitné vody
Sledování změn obsahu volného aktivního chloru při dopravě pitné vody Ing. Kateřina Slavíčková, Prof. Ing. Alexander Grünald, Csc., Ing. Marek Slavíček Katedra zdravotního inženýrství, Fakulta stavební,
Technický list pro tepelné čerpadlo země-voda HP3BW-model B
Technický list pro tepelné čerpadlo země-voda HP3BW-model B Technický popis TČ Tepelné čerpadlo země-voda, voda-voda s označením HPBW B je kompaktní zařízení pro instalaci do vnitřního prostředí, které
Komponenty VZT rozvodů
Specifikace Rozměry PODMÍNKY PROVOZU Ohřívač je určen pro provoz v krytých prostorách s okolní teplotou od 30 C do +50 C (prostředí obyčejné základní dle ČSN 33 2320) k ohřevu čistého vzduchu bez prachu
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Kolektor: SK 218 Objednatel:
AKUMULAČNÍ NÁDRŽE NAD, NADO 250, 500, 750, 1000. Tradice od roku 1956
AKUMULAČNÍ NÁDRŽE NAD, NADO 250, 500, 750, 1000 UKV 102, 300, 500 Tradice od roku 1956 AKUMULAČNÍ NÁDRŽE Akumulační nádrže slouží k akumulaci přebytečného tepla od jeho zdroje. Zdrojem tepla může být kotel
Energetické vzdělávání. prof. Ing. Ingrid Šenitková, CSc.
Energetické vzdělávání prof. Ing. Ingrid Šenitková, CSc. Kontrola klimatizačních systémů Podnikat v energetických odvětvích na území ČR lze na základě zákona č. 458/2000 Sb. (energetický zákon) ve znění
OPERATIVNÍ TEPLOTA V PROSTORU S CHLADICÍM STROPEM
ANOTACE OPERATIVNÍ TEPLOTA V PROSTORU S CHLADICÍM STROPEM Ing. Vladimír Zmrhal, Ph.D. ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Technická 4, 66 7 Praha 6 Vladimir.Zmrhal@fs.cvut.cz Pro hodnocení
TECHNICKÁ ZPRÁVA TZB
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ Katedra konstrukcí pozemních staveb TECHNICKÁ ZPRÁVA TZB BAKALÁŘSKÁ PRÁCE AUTOR PRÁCE: Annette Řehořková VEDOUCÍ PRÁCE: Ing. Lenka Hanzalová, Ph.D.
Centrum kompetence automobilového průmyslu Josefa Božka - AutoSympo a Kolokvium Božek 2. a , Roztoky -
Popis obsahu balíčku WP13: Aerodynamika motorového prostoru a chlazení WP13: Aerodynamika motorového prostoru a chlazení Vedoucí konsorcia podílející se na pracovním balíčku České vysoké učení technické
Akumulační nádrže NAD, NADO, UKV AKUMULAČNÍ NÁDRŽE NAD, NADO 250, 500, 750, 1000 UKV 102, 300, 500
kumulační nádrže ND, NDO, UKV KUMULČNÍ NÁDRŽ ND, NDO 250, 500, 750, 0 UKV 102, 300, 500 ND 250 v1 ND 500 v1 ND 750 v1 ND 0 v1 ND 250 v1 Maximální tlak vody v nádobě 0,3 MPa Maximální teplota topné vody
Měření pohybu kapaliny a změn teplot v reálném modelu tepelného výměníku metodou PLIF
Měření pohybu kapaliny a změn teplot v reálném modelu tepelného výměníku metodou PLIF Jakub Hoffmann TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál
Vitocal 222-G. 3.1 Popis výrobku
Vitocal -G. Popis výrobku A Plně hermetický kompresor Compliant Scroll B Sekundární čerpadlo (topná voda) C Primární čerpadlo (solanka) D Třícestný přepínací ventil Vytápění/ohřev pitné vody E Výměník
Základní technický popis kogenerační jednotky EG-50
Energas Czech s.r.o. Na výsluní 201/13 100 00 Praha 10 Základní technický popis kogenerační jednotky EG-50 (platí pro model 2016-01) Výrobce: Energas Czech s.r.o., Na výsluní 201/13, 100 00 Praha 10 Popis
Tepelná technika. Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007
Tepelná technika Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007 Tepelné konstanty technických látek Základní vztahy Pro proces sdílení tepla platí základní
Obec Petrůvka Petrůvka 90, Petrůvka
Obec Petrůvka Petrůvka 90, 763 21 Petrůvka www.obecpetruvka.cz, urad@obecpetruvka.cz PLÁN FINANCOVÁNÍ OBNOVY VODOVODU A KANALIZACE V MAJETKU OBCE PETRŮVKA NA OBDOBÍ 2017-2026 DUBEN 2017 OBSAH: OBSAH:...
Měření a hodnocení rychlosti koroze při procesu úpravy vody
Měření a hodnocení rychlosti koroze při procesu úpravy vody Ing. Kateřina Slavíčková, Ph.D. 1) prof. Ing. Alexander Grünwald,CSc 1), Ing. Marek Slavíček, Ph.D. 1), Ing. Bohumil Šťastný Ph.D. 1), Ing. Klára
Izolované potrubí HR WTW (EPE system)
Izolované potrubí HR WTW (EPE system) Technická příruční dokumentace 1 Osah 1 Izolované vzduchotechnické potrubí... 3 2 Přehledné schéma systému... 4 3 Graf závislosti tlakové ztráty jako funkce průtoku
VÍCE-VÝMĚNÍKOVÁ TEPELNÁ ČERPADLA
VÍCE-VÝMĚNÍKOVÁ TEPELNÁ ČERPADLA ForArch 2015 Ing. Jan Sedlář, Univerzitní Centrum Energeticky Efektivních Budov České Vysoké Učení Technické v Praze OBSAH Motivace k vývoji tepelných čerpadel pokročilejších
POSSIBLE GENERALISATION OF DECREASE IN MECHANICAL PROPERTIES OF CARBON STEEL (ČSN ) ON OTHER STEELS
MOŽNOST ZOBECNĚNÍ POKLESU MECHANICKÝCH VLASTNOSTÍ OCELI 12 022 NA DALŠÍ MATERIÁLY POSSIBLE GENERALISATION OF DECREASE IN MECHANICAL PROPERTIES OF CARBON STEEL (ČSN 12 022) ON OTHER STEELS Josef ČMAKAL,
Vliv prosklených ploch na vnitřní pohodu prostředí
Vliv prosklených ploch na vnitřní pohodu prostředí Jiří Ježek 1, Jan Schwarzer 2 1 Oknotherm spol. s r.o. 2 ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Abstrakt Obsahem příspěvku je určení
Tepelná čerpadla IVT s.r.o.,průmyslová 5, 108 21 PRAHA 10 Tel: 272 088 155, Fax: 272 088 166, E-mail: ivt@veskom.cz www.cerpadla-ivt.
Tepelná čerpadla IVT s.r.o.,průmyslová 5, 108 21 PRAHA 10 Tel: 272 088 155, Fax: 272 088 166, E-mail: ivt@veskom.cz www.cerpadla-ivt.cz Obsah: Tepelná čerpadla pro rodinné domy a menší objekty Vzduch /
elios nová zelená úsporám Solární systémy pro ohřev teplé vody a podporu vytápění
elios nová zelená úsporám Solární systémy pro ohřev teplé vody a podporu vytápění Vysoce účinné sluneční ploché kolektory Xelios vyráběné v EU jsou osvědčeným výrobkem nejen v evropských klimatických podmínkách.
The machine for manipulation with hazardous wastes
Název funkčního vzorku v originále Stroj pro přepravu nebezpečných odpadů Název funkčního vzorku anglicky The machine for manipulation with hazardous wastes C B A Obrázek 1 Počítačový 3D-model funkčního
Brněnská 30, Žďár nad Sázavou, tel./fax: , gsm: ,
www.powerplastics.cz Brněnská 30, 591 01 Žďár nad Sázavou, tel./fax: +420 566 630 843, gsm: +420 775 630 843, info@powerplastics.cz OBSAH Úvod... 3 Technická specifikace... 4 Popis filtru... 6 Popis činnosti
Trysky pro distributor vzduchu fluidního kotle v úpravě pro spalování biomasy
Trysky pro distributor vzduchu fluidního kotle v úpravě pro spalování biomasy Jan HRDLIČKA 1, * 1 ČVUT v Praze, Fakulta strojní, Ústav energetiky, Technická 4, 166 07 Praha 6 * Email: jan.hrdlicka@fs.cvut.cz
Mikrobiální kontaminace sedimentů. Dana Baudišová
Mikrobiální kontaminace sedimentů Dana Baudišová Proč mikrobiologické analýzy sedimentů? Sedimenty významně přispívají ke mikrobiální kontaminaci toků v období zvýšených průtoků a na rozdíl od chemických
Analýza provozu obecní výtopny na biomasu v Hostětíně v období 2002 2004
Analýza provozu obecní výtopny na biomasu v Hostětíně v období 22 24 Tato zpráva obsahuje analýzu provozu obecní výtopny na biomasu v Hostětíně v období 22 24, která byla uvedena do provozu v roce 2 a
Maxi S - sek. Tlakově závislá kompaktní předávací stanice pro vytápění a přípravu teplé vody
Maxi S - sek Společnost Alfa Laval zúročila své mnohaleté zkušenosti z oblasti centrálního zásobování teplem v technologiích přinášejících maximálně energeticky úsporná řešení. Řada kompaktních předávacích
4.3 Opatření přijatá na ochranu životního prostředí a náklady s tím spojené
4.3 Opatření přijatá na ochranu životního prostředí a náklady s tím spojené 4.3.1 Opatření na ochranu životního prostředí Projekt zahrnoval řešení problematiky likvidace odpadních vod v regionu Trutnovsko.
některých případech byly materiály po doformování nesoudržné).
VYUŽITÍ ORGANICKÝCH ODPADŮ PRO VÝROBU TEPELNĚ IZOLAČNÍCH MALT A OMÍTEK UTILIZATION OF ORGANIC WASTES FOR PRODUCTION OF INSULATING MORTARS AND PLASTERS Jméno autora: Doc. RNDr. Ing. Stanislav Šťastník,
Technické parametry certifikace
POKYNY PRO PROJEKTANTY TECHNICKÉ PARAMETRY REKUPERAČNÍHO VÝMĚNÍKU POUŽITÉ ZKRATKY: RV rekuperační výměník AIRETHERM TOV teplá odpadní voda TUV teplá užitková voda SOV splašková odpadní voda Pokyny pro
ceník produktů Proč Vaillant? Tradice, kvalita, inovace, technická podpora.
ceník produktů Proč Vaillant? Tradice, kvalita, inovace, technická podpora. platný od 1.1.2013 Obsah 1. Závěsné kotle 1.1 Závěsné kotle pro vytápění atmotec/turbotec plus 4 1.2 Závěsné kotle kombinované
Tepelné čerpadlo s vysokou teplotou topné vody vzduch / voda Aqualis Caleo aby nahradilo klasický kotel na tuhá paliva. 13,7 až 19,4 kw Využití
Tepelné čerpadlo je navrženo tak, aby nahradilo klasický kotel na tuhá paliva. Teplota topné vody: +65 C při -12 C Výkon topení: 13,7 až 19,4 kw Využití je tepelné čerpadlo s vysokou teplotou topné vody
IDENTIFIKAČNÍ ÚDAJE. Stavebník : HOTEL FREUD s.r.o. Ostravice 190 739 14, Ostravice. Místo stavby : parc. č. 530/1, 530/2 k.ú.
IDENTIFIKAČNÍ ÚDAJE Stavebník : HOTEL FREUD s.r.o. Ostravice 190 739 14, Ostravice Místo stavby : parc. č. 530/1, 530/2 k.ú. Ostravice Okres : Frýdek - Místek Zhotovitel : C.E.I.S. CZ s.r.o. Masarykovy
VAŠE ÚSPORY PRACUJE PRO
? VHODNÝ PRO NOVOSTAVBU I REKONSTRUKCI NÍZKÁ KONSTRUKČNÍ VÝŠKA DO MM INOVATIVNÍ ŠVÉDSKÁ TECHNOLOGIE VYŠŠÍ COP PRO TEPELNÁ ČERPADLA ŽIVOTNOST POTRUBÍ 80 LET EKOLOGICKY ŠETRNÝ VÝROBEK RYCHLÁ REAKCE SYSTÉMU
ceník tepelných čerpadel Vaillant Proč Vaillant? Tradice, kvalita, inovace, technická podpora.
ceník tepelných čerpadel Vaillant Proč Vaillant? Tradice, kvalita, inovace, technická podpora. platný od 1..01 Obsah Příklady hydraulických schémat zapojení tepelných čerpadel. Více v projekčních podkladech