Časopis pro pěstování matematiky

Rozměr: px
Začít zobrazení ze stránky:

Download "Časopis pro pěstování matematiky"

Transkript

1 Časopis pro pěstováí ateatiky Libuše Grygarová O jedo důkazu pricipu duality v lieárí prograováí Časopis pro pěstováí ateatiky, Vol. 110 (1985), No. 4, Persistet URL: Ters of use: Istitute of Matheatics AS CR, 1985 Istitute of Matheatics of the Acadey of Scieces of the Czech Republic provides access to digitized docuets strictly for persoal use. Each copy of ay part of this docuet ust cotai these Ters of use. This paper has bee digitized, optiized for electroic delivery ad staped with digital sigature withi the project DML-CZ: The Czech Digital Matheatics Library

2 Časopis pro pěstováí ateatiky, roč. 110 (1985), Praha O JEDNOM DŮKAZU PRINCIPU DUALITY V LINEÁRNÍM PROGRAMOVÁNÍ LIBUŠE GRYGAROVÁ, Praha (Došlo de 16. úora 1984) Pricip duality v lieárí prograováí je v literatuře dokazová růzýi způsoby. Poje duálí úlohy k úloze lieárího prograováí byl zavede J. vo Neuae v r Pricip duality forulovali a dokázali D. Gale, H. W. Kuh a A. W. Tucker v r [3] poocí Farkasova leatu, a jehož základě byly s růzýi oběai podáváy další důkazy uvedeého pricipu (apř. [9], [6]). Další skupia důkazů se opírá o věty siplexové etody (apř. [2], [l], [8]). Řada autorů vychází z Kuh-Tuckerových podíek z teorie kovexího prograováí a vět o oddělitelosti kovexích oži (apř. [4], [7]). Geoetrické důkazy pricipu duality jsou uvedey apř. v [10], [5], [12]. V předložeé čláku je podá stručý důkaz pricipu duality v lieárí prograováí založeý a zcela eleetárích pozatcích z kovexí aalýzy (vlastosti kovexích kuželů, viz apř. [11]). Současě s důkaze pricipu duality se zde ukazuje, jak lze a základě zalosti optiálího řešeí jedé z duálích úloh popsat ožiu všech optiálích řešeí druhé úlohy. ' 1 Defiice 1. Je-li K c E kovexí kužel s vrchole x, poto kužel p K(x ) : {x e E (x - x, y - x ) ^ 0, y e K} azýváe polárí kužele ke kuželi K v jeho vrcholu x. Platí: 1) p ( p K(x 0 )) K (věta o bipolaritě); 2) Je-li R : {xe E \ (c, x - x ) 0, c 4 o} daá ňadro via v E a H + : : {x G E (c, x - x ) > 0}, H": { x e E (c, x - x ) < 0} jí příslušé poloprostory, poto platí KaHox 0 + ce p K(x% KcH + ox -ce p K(x ) (Farkasova věta). 378

3 Defiice 2. Je-li M a, M + 0, x e,, libovolý bod, poto kužel P Nf (x ) : {x G 1 x x + ř(y - x ), yem, f 0} azýváe projekčí kužele ožiy M z bodu x. Platí: Je-li M kovexí ožia, poto P M (x ) je rověž kovexí ožiou v E. 2 Defiice 3. Je-li M c, Wl + 0 kovexí ožia, x e M libovolý bod, poto ožiu K M (x ) : P M (x ) azýváe styčý kužele ožiy M v její bodě x. Platí: Je-li M kovexí polyedr v E, poto P M (x ) P M (x ) K M (x ) pro každý bod x G M. Lea 1. Nechť M je kovexí polyedr s popise (1) M {xe E \ (o r, x) b r (r 1,..., )}, x e M libovolý bod a (2) / {re{1,...,} (o r,x ) b r }, poto (3) K M (x ) {x G E \ (a r, x) <, b r (r e /)}, (4) "K M ( X ) {x e E \ x x + X o r u r, u r^0(re /)}. re/ Důkaz. Pro libovolý bod x* e K M (x ) existuje podle defiic 2 a 3 bod y* e M a t* 0 tak, že x* x + t*(y* - x ). Poto podle (1) a (2) je (o r, x*) (o r, x ) + ř*((o r, y*) - (o r, x 0 )) b r (re/), tedy x* e {x. G E (o r, x) b r (r e /)}. Uvažuje yí libovolý bod x* G {X G (o r, x) b r (re/)}. Je-li x* x, poto x* G K M (x ). Je-li x* + x, x* G M, poto x* x + (x* - x ) a tedy opět x* G K M (x ). Je-li x* < iv!, poto pro dostatečě alé t* > 0 platí y : x + + t*(x* - x ) G M, odkud plye x* x + ljt^y - x ) G K M (X ). Tí je vztah (3) dokázá. Ozače K* : {x G E x x + X o r u r, u r 0 (r G /)}. rel Sado se ověří, že K* je kovexí kužel s vrchole x s vlastostí K* K*. Podle defiice 1, relací (2) a (3) platí PK*(x ) {x G E B ^ u r (o r, x - x ) 0, u r 0 (r e /)} {x e (c ř, x - x ) ^ 0 (r e /)} K wl x ). 379

4 Podle věty o bipolaritě je p ( p K*(x 0 )) p K M (x ) K* a vztah (4) je dokázá. Pozáka 1. Je-li M kovexí polyedr s popise (5) M {x e E \ (a r, x) ^ b r (r 1,..., ), x x 0 (a 1,..., )}, x e AI libovolý bod a (6) l 1 {re{l,...,}\(a r,x ) b r }, l 2 {ae {1,..., } x 0}, poto z leatu 1 plye, že (7) K M (x ) {x e (a r, x) ^b r (rs /,), *«0 (a e / 2 )}, (8) "K M (x ) {x e x, x + a, a t/, -»«(a e / 2 ), rell ** *? +. «ra "r (a e {1,.,"} \ '2), "rž0(re / x ), rel, i> a 0(ae/ 2 )}. Lea 2. Nechť M c ;j je libovolý kovexí polyedr a c e E, c f o libovolý bod. Bod x e M je optiálí řešeí úlohy lieárího prograováí (9) ax{(c,x) xem}! právě tehdy, je-li optiálí řešeí úlohy (10) ax((c,x) xev/)}!. Důkaz. Podle defiic 2 a 3 je M c K M (x ), odkud plye, že je-li x e M optiálí řešeí úlohy (10), je též optiálí řešeí úlohy (9). Naopak, je-li x optiálí řešeí úlohy (9), platí (c, x x ) ^ 0 pro všecha x e M. Podle defiic 2 a 3 je x e K M (x ) a zvolíe-li x* e K M (x ), x* # x libovolě, poto existuje y* e M, t* > 0 tak, že x* x + ř*(y* - x ). Odtud plye y* x + + l/í*(x* - x ), a protože y* e M, platí (c, y* - x ) (c, l/ř*(x* - x 0 )) l/í*(c, x* - x ) ^ 0 > (c, x* - x ) ^ 0. Vzhlede k libovolosti bodu x* e K M (x ) dostáváe odtud, že bod x je optiálí řešeí úlohy (10). 3 Uvažuje úlohu lieárího prograováí (11) ax{(c,x) xe/vl}!, (c + o), kde M á výza z (5). Věta 1. Nechť x je optiálí řešeí úlohy (11). Poto existují čísla w ^ 0 (r 1,..., ) tak, že platí 380

5 (12) c a ^a ra u r (ae/ 2 ), c a a ra u r (ae{l }\l 2 ), r i r 1 kde l 2 á výza z (6). Důkaz. Je-li x optiálí řešeí úlohy (11), pak je podle leatu 2 též optiálí řešeí úlohy (10) a tedy platí Ozačíe-li (c,x-x ) 0, xek Af (x ). R- :{xee (c,x-x ) 0}, poto ůžee psát K M (x ) < R~. Podle Farkasovy věty ( 1) platí pak x + ce e p K M (x ). Vzhlede k pozáce 1, vztahu (8), existují proto čísla u r 0 (r e / 2 ) l \ v 0 (a e l 2 ) tak, že C«Z ^a^ ~»a (^' 2 ) 5 C a O ra u r (a e{ 1,...,«} \/ 2 ). re/i re/i Defiujee-li ještě u 0(re{l,..., }\ Z^, pak odtud plye již (12). Pozáka 2. Bod u e E z věty 1 je zřejě bode ožiy (13) N : {ue E \ (a a, u) c a (a 1,..., ), u r 0 (r 1,..., )}, takže za předpokladu věty 1 je N 4 0. Pro každý bod xem z (5) a uen z(13) platí pak zřejě (14) (e,x)í.e Ew r ž(m). rlal Věta 2. Jc-/i úloha (11) řešitelá, pak je řešitelá též úloha lieárího prograováí (15) i{(b, u) uen}!, kde N á výza z (13), přičež pro každé optiálí řešeí x úlohy (11) a každé optiálí řešeí u úlohy (15) platí \c, x. ) (b, u ). Důkaz. Nechť x je optiálí řešeí úlohy (11), poto podle věty 1 a jejího důkazu existují čísla u r 0 (re^), u r 0 (re{l,...,}\í 1 ), která vyhovují vztahů (12), přičež l t a / 2 ají výza z (6). Podle (12) je dále (16) (c, x ) c a x c a x a rot t«a 1 a$h <x$h rí a r yx M, M? (fa,«) a 1 re/i re/i r 1 Podle pozáky 2 odtud plye, že (b, u) (b, u ) pro u e N a tedy u je optiálí řešeí úlohy (15). *) /JL á výza z (6). 381

6 Pro libovolé optiálí řešeí x* úlohy (11) a libovolé optiálí řešeí u* úlohy (15) platí pak (vzhlede k (16)) číž je věta dokázáa. (c, X*) (c, x ) (b, u ) (b, «,*), Defiice 4. Úlohu lieárího prograováí (15) azýváe duálí úlohou k priárí úloze (11). Důsledek 1. Je-li x optiálí řešeí úlohy (11) a \ l9 I 2 ají výza z (6), poto každý bod u* e N, pro který platí (17) u r *0 (re{l,...,}\/ 1 ), Z a ra u* c a (a e {1,..., } \\ 2 ) reh je optiálí řešeí úlohy (15). Věta 3. Je-li x optiálí řešeí úlohy (11) a \ l9 \ 2 ají výza z (6), poto pro ožiu N opt všech optiálích řešeí úlohy (15) platí N opt {u* e N\ u* 0 (r G {1,..., }\\ 1 ) 9 a ra u r * c a (ae{l,..., }\/ 2 )}. reh Důkaz. Je-li u* e N libovolý optiálí řešeí úlohy (15), poto podle věty 2 a pozáky 2 platí (18) (cx ) >: Z «*X* (*,"*) alrl Kdyby alespoň pro jedo r E {1,..., } \/ x bylo u* > 0, poto by vzhlede k (6) platilo Z Z x a a u: Z ",* Z a x + Z u* a ra x < (b, u*), alrl re/i al r^t al což je spor s (18). Kdyby alespoň pro jedo a e {1,..., } \ \ 2 platilo a ra u* > c a, poto vzhlede reh k (6) bycho dostali Z Z - *.V Z (Z -v,*) *? Z Z -v,**. 0 > (c, x ), alrl a$l2 rí a$l2 re/i což je opět spor s ^18). Bod u* splňuje tedy vztahy (17). Odtud a z důsledku 1 věty 2 plye již tvrzeí. Pozáka 3. Zcela aalogický způsobe se dá dokázat, že je-li u optiálí řešeí úlohy (15), přičež J x {ae {1,..., } (a a, u ) c a }, J 2 {re {1,..., } u r 0}, poto pro ožiu M opi všech optiálích řešeí úlohy (11) platí M opl {x* e M x* 0 (a e {1... } \/.), Z - *í fc r ( " e {1,... } \./ 2 )}. 382

7 Věta 4. (pricip duality). Úlohy (11) a (15) jsou řešitelé právě tehdy, jestliže současě řa 4 0, N 4 0. Pro libovolé optiálí řešeí x úlohy (11) a libovolě optiálí řešeí u úlohy (15) platí (c, x ) (b, u ). Důkaz. Nechť M 4 0, N 4 0. Podle pozáky 2 je lieárí fukce (c, x) a ožiě M shora oezeá a tedy úloha (11) je řešitelá. Aalogicky je cílová fukce (b, u) a ožiě N zdola oezeá a tedy úloha (15) je řešitelá. Jsou-li úlohy (11) a (15) řešitelé, poto utě N\ 4 0, N 4 0. Zbývající část tvrzeí plye z věty 2. Li/erafura [1] L. Collatz, W. Wetterlig: Optiierugsaufgabe. Sprigeг-Verlаg Berli [2] G. B. Datzig: Lieаre Progrаiеrug ud Erweiteruge. Spriger-Verlаg Вerli [3] D. Gale, H. W. Kuh, A. W. Tucker: Lieаr progrаig аd tһe theory of gаes. IT. C Koopаs (Ed.): Activity ааlysis of productio аd аllocаtio. New York [4] J. Havrda: Mаteаtické progrаovaí. SNTL Prаhа [5] D. B. Judi, E. G. Golstei: Lieаre Optiierug 1. Berli [6] A. Lašciak a kol.: Optiále progrаovаie. Alfа Brаtislаvа [7] D. G. Lueberger: Itroductio to lieаr аd olieаr progrаig. Addiso-Wesley. Publishig Copаy [8] M. Mahas: Optiаlizаčí etody. SNTL Prаhа [9] F. Noïička, J. Guddat, H. Hollatz: Theorie der lieаre Optiierug. Akаdeie-Verlаg Berli [10] F. Nožička: Ei geoetrischer Beweis des Duаlit tsprizips i der lieаre Optiierug. Mаth. Operаtiosforsch. u. Stаtist. 2 (1971) 1. [11] F. Nozička, L. Grygarová, K. Loatzsch: Geoetrie kovexeг Mege ud kovexe Aаlysis. Akаdeie-Verlаg Berli 1985 (kihа je v tisku). [12] G. Š. Rubištej: dodаtek v kize: Линeйныe нepавенcтва и cмeжные вoпpocы. Izdаtelstvo iostrаoj literаtury. Moskvа Authoґs address: Prаhа 1, Mаlostrаske. 25 (Mаteаticko-fyzikalí fаkultа UK). 383

Základy teorie matic

Základy teorie matic Základy teorie matic 7. Vektory a lineární transformace In: Otakar Borůvka (author): Základy teorie matic. (Czech). Praha: Academia, 1971. pp. 43--47. Persistent URL: http://dml.cz/dmlcz/401335 Terms of

Více

O dynamickém programování

O dynamickém programování O dynamickém programování 9. kapitola. Cauchy-Lagrangeova nerovnost In: Jaroslav Morávek (author): O dynamickém programování. (Czech). Praha: Mladá fronta, 1973. pp. 65 70. Persistent URL: http://dml.cz/dmlcz/403801

Více

Základy teorie matic

Základy teorie matic Základy teorie matic 16. Hodnost a nulita matice In: Otakar Borůvka (author): Základy teorie matic. (Czech). Praha: Academia, 1971. pp. 106--115. Persistent URL: http://dml.cz/dmlcz/401345 Terms of use:

Více

Funkcionální rovnice

Funkcionální rovnice Funkcionální rovnice Úlohy k procvičení In: Ljubomir Davidov (author); Zlata Kufnerová (translator); Alois Kufner (translator): Funkcionální rovnice. (Czech). Praha: Mladá fronta, 1984. pp. 88 92. Persistent

Více

. viz věty 1.7 a 1.2 (čísla m a M lze vybrat tak, aby nerovnost platila v R n i R m ). Máme m f x h f x l h f x h f x l h M f x h f x l h

. viz věty 1.7 a 1.2 (čísla m a M lze vybrat tak, aby nerovnost platila v R n i R m ). Máme m f x h f x l h f x h f x l h M f x h f x l h MATEMATICKÁ ANALÝZA III předášky M. Krupky Zií seestr 999/. Derivace prvío řádu V této základí kapitole pojedáváe o dierecovatelosti zobrazeí : U R R (podožia U je vždy otevřeá). Zavádíe ěkolik základíc

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

7. Analytická geometrie

7. Analytická geometrie 7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp

Více

Základy teorie grupoidů a grup

Základy teorie grupoidů a grup Základy teorie grupoidů a grup 27. Cyklické grupy In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 198--202. Persistent

Více

Nalezení výchozího základního řešení. Je řešení optimální? ne Změna řešení

Nalezení výchozího základního řešení. Je řešení optimální? ne Změna řešení Sipleová etoda: - patří ezi uiverzálí etody řešeí úloh lieárího prograováí. - de o etodu iteračí, t. k optiálíu řešeí dospíváe postupě, krok za kroke. - výpočetí algoritus se v každé iteraci rozpadá do

Více

Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24.

Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Neurčité rovnice 4. Nejjednodušší rovnice neurčité 2. stupně In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Persistent URL: http://dml.cz/dmlcz/402869

Více

Základy teorie matic

Základy teorie matic Základy teorie matic 23. Klasifikace regulárních párů matic In: Otakar Borůvka (author): Základy teorie matic. (Czech). Praha: Academia, 1971. pp. 162--168. Persistent URL: http://dml.cz/dmlcz/401352 Terms

Více

O dynamickém programování

O dynamickém programování O dynamickém programování 7. kapitola. O jednom přiřazovacím problému In: Jaroslav Morávek (author): O dynamickém programování. (Czech). Praha: Mladá fronta, 1973. pp. 55 59. Persistent URL: http://dml.cz/dmlcz/403799

Více

Časopis pro pěstování matematiky a fysiky

Časopis pro pěstování matematiky a fysiky Časopis pro pěstování matematiky a fysiky Ferdinand Pietsch Výpočet cívky pro demonstraci magnetoindukce s optimálním využitím mědi v daném prostoru Časopis pro pěstování matematiky a fysiky, Vol. 62 (1933),

Více

Konvexní útvary. Kapitola 4. Opěrné roviny konvexního útvaru v prostoru

Konvexní útvary. Kapitola 4. Opěrné roviny konvexního útvaru v prostoru Konvexní útvary Kapitola 4. Opěrné roviny konvexního útvaru v prostoru In: Jan Vyšín (author): Konvexní útvary. (Czech). Praha: Mladá fronta, 1964. pp. 49 55. Persistent URL: http://dml.cz/dmlcz/403505

Více

Kongruence. 1. kapitola. Opakování základních pojmů o dělitelnosti

Kongruence. 1. kapitola. Opakování základních pojmů o dělitelnosti Kongruence 1. kapitola. Opakování základních pojmů o dělitelnosti In: Alois Apfelbeck (author): Kongruence. (Czech). Praha: Mladá fronta, 1968. pp. 3 9. Persistent URL: http://dml.cz/dmlcz/403653 Terms

Více

3. DIFERENCIÁLNÍ ROVNICE

3. DIFERENCIÁLNÍ ROVNICE 3 DIFERENCIÁLNÍ ROVNICE Difereciálí rovice (dále je DR) jsou veli důležitou částí ateatické aalýz, protože uožňují řešit celou řadu úloh z fzik a techické prae Občejé difereciálí rovice: rovice, v íž se

Více

Symetrické funkce. In: Alois Kufner (author): Symetrické funkce. (Czech). Praha: Mladá fronta, pp

Symetrické funkce. In: Alois Kufner (author): Symetrické funkce. (Czech). Praha: Mladá fronta, pp Symetrické funkce Kapitola III. Symetrické funkce n proměnných In: Alois Kufner (author): Symetrické funkce. (Czech). Praha: Mladá fronta, 1982. pp. 24 33. Persistent URL: http://dml.cz/dmlcz/404069 Terms

Více

Základy teorie grupoidů a grup

Základy teorie grupoidů a grup Základy teorie grupoidů a grup 12. Základní pojmy o grupoidech In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 94--100.

Více

í Í í í --- -á-----á-í Í í á--- --

í Í í í --- -á-----á-í Í í á--- -- í Í í í ááí Í í á é á č ý á č í ááí í í í á Č Č á í á í ří é ý ě í ž í Ž é á ř ř í ř ř ž č ý é č é á ó é ěí í Í ě ěř č í ě í ě ě ý á Č á á í é í í é í í č áí ž í Č í ž é á Š áá ř í ěří ěí ě í ě ý ú á ú

Více

Základy teorie grupoidů a grup

Základy teorie grupoidů a grup Základy teorie grupoidů a grup 13. Homomorfní zobrazení (deformace) grupoidů In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962.

Více

O dělitelnosti čísel celých

O dělitelnosti čísel celých O dělitelnosti čísel celých 9. kapitola. Malá věta Fermatova In: František Veselý (author): O dělitelnosti čísel celých. (Czech). Praha: Mladá fronta, 1966. pp. 98 105. Persistent URL: http://dml.cz/dmlcz/403572

Více

ý á ě ě ž ů ž čá ř á á é á á á Í Í Í Í é Í á ř á á é š é ž Á Íě ř Í Í á á á ě č é á Ť é á é é Í á á ň é úč ů č Ďě ř Í ů Í ě ě á ů š ý á ž á Í ó Ž ž ý

ý á ě ě ž ů ž čá ř á á é á á á Í Í Í Í é Í á ř á á é š é ž Á Íě ř Í Í á á á ě č é á Ť é á é é Í á á ň é úč ů č Ďě ř Í ů Í ě ě á ů š ý á ž á Í ó Ž ž ý á Í á á ř é ě č š š ž ý ř ě ý ý řč ů á á ž ž é ů á á á é Í é úž ý á ě ě ž ý á Í á ě š ý é ě é ů á á ě č ě ř á é ě ř ě é ěá á ř é ú ý ó č á ř á ř ž ě é é á á á ě ě á ž á á ě á ř á ž ý é á š ě š ý ý á ž

Více

Základy teorie grupoidů a grup

Základy teorie grupoidů a grup Základy teorie grupoidů a grup 4. Speciální rozklady In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 35--40. Persistent

Více

Kongruence. 5. kapitola. Soustavy kongruencí o jedné neznámé s několika moduly

Kongruence. 5. kapitola. Soustavy kongruencí o jedné neznámé s několika moduly Kongruence 5. kapitola. Soustavy kongruencí o jedné neznámé s několika moduly In: Alois Apfelbeck (author): Kongruence. (Czech). Praha: Mladá fronta, 1968. pp. 55 66. Persistent URL: http://dml.cz/dmlcz/403657

Více

ž ě é ú ž é ů á ž ú á š ú Í Ť č é ž ě š ý ěž é řá é é Í č é ž ý Í ě ť ě ě ž é úř ž ř ú ý ř žá ý ý ř ú ý ý ůž ý ř á ě á á ř ě é á á ě ř á ř á é á á é ž

ž ě é ú ž é ů á ž ú á š ú Í Ť č é ž ě š ý ěž é řá é é Í č é ž ý Í ě ť ě ě ž é úř ž ř ú ý ř žá ý ý ř ú ý ý ůž ý ř á ě á á ř ě é á á ě ř á ř á é á á é ž ň č ý ě ř š ž ř ř é ý á ř é š ě á ú č č ý ě ž é ř á ů á á á ť é ěř ů ť Ť ž č Í úž Ě ě š á é á ě á ř é ř ě ě ž áč ž ě ůž á ž ů á ů é á á á ř é š ě á ž ě š á š é ř áč ý ř ž é ř á ý é ě ž ž ý á ý ů ěř ť ě

Více

Matematicko-fyzikálny časopis

Matematicko-fyzikálny časopis Matematicko-fyzikálny časopis Václav Havel Poznámka o jednoznačnosti direktních rozkladů prvků v modulárních svazech konečné délky Matematicko-fyzikálny časopis, Vol. 5 (1955), No. 2, 90--93 Persistent

Více

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky Časopis pro pěstování matematiky Jiří Bečvář; Miloslav Nekvinda Poznámka o extrémech funkcí dvou a více proměnných Časopis pro pěstování matematiky, Vol. 81 (1956), No. 3, 267--271 Persistent URL: http://dml.cz/dmlcz/117194

Více

1. Přirozená topologie v R n

1. Přirozená topologie v R n MATEMATICKÁ ANALÝZA III předášy M Krupy Zií seestr 999/ Přirozeá topologie v R V prví části tohoto tetu zavádíe přirozeou topologii a ožiě R ejprve jao topologii orovaého prostoru a pa jao topologii součiu

Více

Č Á Á-Í Č Ř---Í é

Č Á Á-Í Č Ř---Í é Č - -Á- -Á-Í -Č - - -Ř-Í - - - - - - - é - í - -á- - - -í - č -á -áý -í - -í ť ý- -áč - Ú-Č - ňá - č -í - - -á- ěí ěřů -á -á-í ř- -á - á-í - -í -ě- -á- -ě -áé áš - -ýš - ů - ýč -ě - -ýě-í - -ří é -í -

Více

Polynomy v moderní algebře

Polynomy v moderní algebře Polynomy v moderní algebře 2. kapitola. Neutrální a inverzní prvek. Grupa In: Karel Hruša (author): Polynomy v moderní algebře. (Czech). Praha: Mladá fronta, 1970. pp. 15 28. Persistent URL: http://dml.cz/dmlcz/403713

Více

Časopis pro pěstování mathematiky a fysiky

Časopis pro pěstování mathematiky a fysiky Časopis pro pěstování mathematiky a fysiky Matyáš Lerch K didaktice veličin komplexních. [I.] Časopis pro pěstování mathematiky a fysiky, Vol. 20 (1891), No. 5, 265--269 Persistent URL: http://dml.cz/dmlcz/108855

Více

Základy teorie grupoidů a grup

Základy teorie grupoidů a grup Základy teorie grupoidů a grup 2. Rozklady v množině In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 22--27. Persistent

Více

Časopis pro pěstování mathematiky a fysiky

Časopis pro pěstování mathematiky a fysiky Časopis pro pěstování mathematiky a fysiky Úlohy Časopis pro pěstování mathematiky a fysiky, Vol. 43 (1914), No. 1, 140--144 Persistent URL: http://dml.cz/dmlcz/121666 Terms of use: Union of Czech Mathematicians

Více

Č š ř ř ř ř š ř Č Ř ň ž ř ř ý ř ř ž š ž š ř ň ý ř ú ý ř š ř ů ý ú š ž ž ř ř ř ž Ž š ř š Ž ř ž š š

Č š ř ř ř ř š ř Č Ř ň ž ř ř ý ř ř ž š ž š ř ň ý ř ú ý ř š ř ů ý ú š ž ž ř ř ř ž Ž š ř š Ž ř ž š š ý š Ú ž š ž š ý ž ř Ť šť Č ý ň ř ž ú š ý ž ý ř ů ž ž ř ř ý ů š ň ý ú ř šť š ý ú ž ý ú ó ú š š ů ř Č š ř ř ř ř š ř Č Ř ň ž ř ř ý ř ř ž š ž š ř ň ý ř ú ý ř š ř ů ý ú š ž ž ř ř ř ž Ž š ř š Ž ř ž š š ř Ž ý

Více

O dělitelnosti čísel celých

O dělitelnosti čísel celých O dělitelnosti čísel celých 6. kapitola. Nejmenší společný násobek In: František Veselý (author): O dělitelnosti čísel celých. (Czech). Praha: Mladá fronta, 1966. pp. 73 79. Persistent URL: http://dml.cz/dmlcz/403569

Více

Nerovnosti v trojúhelníku

Nerovnosti v trojúhelníku Nerovnosti v trojúhelníku Úvod In: Stanislav Horák (author): Nerovnosti v trojúhelníku. (Czech). Praha: Mladá fronta, 1986. pp. 5 12. Persistent URL: http://dml.cz/dmlcz/404130 Terms of use: Stanislav

Více

Časopis pro pěstování matematiky a fysiky

Časopis pro pěstování matematiky a fysiky Časopis pro pěstování matematiky a fysiky Jaroslav Bílek Pythagorova věta ve třetí třídě středních škol Časopis pro pěstování matematiky a fysiky, Vol. 66 (1937), No. 4, D265--D268 Persistent URL: http://dml.cz/dmlcz/123381

Více

----ř--á á--ě Ť Í č Í á-- ---é

----ř--á á--ě Ť Í č Í á-- ---é řá áě Ť Í č Í á é á á é č ý áí á č ý áí Í í ě í á áí á á ě á ě ý ý í í č Č í ú č Č á É Í Í í ří ň ž í í ě é č í í í Č Č í á Řř řě ěí í ěé í ě áě č í é é ů ěí č ý ří á č í ř á ý č áí í í ýš í ěí á á í í

Více

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE 1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;

Více

Časopis pro pěstování mathematiky a fysiky

Časopis pro pěstování mathematiky a fysiky Časopis pro pěstování mathematiky a fysiky František Kaňka Důsledky akusticko-dynamického principu. [IV.] Časopis pro pěstování mathematiky a fysiky, Vol. 47 (1918), No. 1, 25--31 Persistent URL: http://dml.cz/dmlcz/124004

Více

ří é Á -Č Ř---Í

ří é Á -Č Ř---Í - - -ří - - é - - - -Á -Č - - -Ř-Í - - á- - -á- - ň-í -á - - -í - č -á í - -áý -í - -í -áč - Í ÚČ ý- - č -í - -á-í - č í ěřů á- í -í ř- -á - á-í - - í -í - -ě ňá Í -í -é - - - - - - č á - - -Í - -ý -á-ří

Více

Časopis pro pěstování mathematiky a fysiky

Časopis pro pěstování mathematiky a fysiky Časopis pro pěstování mathematiky a fysiky Ladislav Klír Příspěvek ke geometrii trojúhelníku Časopis pro pěstování mathematiky a fysiky, Vol. 44 (1915), No. 1, 89--93 Persistent URL: http://dml.cz/dmlcz/122380

Více

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

Základy teorie grupoidů a grup

Základy teorie grupoidů a grup Základy teorie grupoidů a grup 26. Deformace a věty izomorfismu grup In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 192--197.

Více

Polynomy v moderní algebře

Polynomy v moderní algebře Polynomy v moderní algebře Výsledky cvičení a návody k jejich řešení In: Karel Hruša (author): Polynomy v moderní algebře. (Czech). Praha: Mladá fronta, 1970. pp. 94 [102]. Persistent URL: http://dml.cz/dmlcz/403718

Více

Determinanty a matice v theorii a praxi

Determinanty a matice v theorii a praxi Determinanty a matice v theorii a praxi 1. Lineární závislost číselných soustav In: Václav Vodička (author): Determinanty a matice v theorii a praxi. Část druhá. (Czech). Praha: Jednota československých

Více

Kongruence. 4. kapitola. Kongruence o jedné neznámé. Lineární kongruence

Kongruence. 4. kapitola. Kongruence o jedné neznámé. Lineární kongruence Kongruence 4. kapitola. Kongruence o jedné neznámé. Lineární kongruence In: Alois Apfelbeck (author): Kongruence. (Czech). Praha: Mladá fronta, 1968. pp. 43 54. Persistent URL: http://dml.cz/dmlcz/403656

Více

-Á----Á á-ě-í í ú --ž í ú ----í š é -----š -ě é é í ---é -

-Á----Á á-ě-í í ú --ž í ú ----í š é -----š -ě é é í ---é - ÁÁ áěí í ú ž í ú í š é š ě é é í é í í ě í č ářž í í í Č á á á í é í í ě í č ářž í í á áč ř Č č í ž ó á áě á č ě řé í ěě ěý í í óů ěí ěš í řů á áž í ě é š ě í é š ě ř ý ř á áá á í ří é í ž á ý ř í Ž é

Více

O rovnicích s parametry

O rovnicích s parametry O rovnicích s parametry 3. kapitola. Kvadratické rovnice In: Jiří Váňa (author): O rovnicích s parametry. (Czech). Praha: Mladá fronta, 1964. pp. 45 [63]. Persistent URL: http://dml.cz/dmlcz/403496 Terms

Více

í í ú ř Í ř í á í é é é Í á ý ň ř í š í č í í á í í é í í í á á ó ě Í í ě í í í í í řá ů čč ř č á í í í ě á ě ě í á í š ť Í ě Í ř ě í ě č Í ř é č š ě

í í ú ř Í ř í á í é é é Í á ý ň ř í š í č í í á í í é í í í á á ó ě Í í ě í í í í í řá ů čč ř č á í í í ě á ě ě í á í š ť Í ě Í ř ě í ě č Í ř é č š ě ú ř Í ř á é é é Í á ý ň ř š č á é á á ó Í řá ů čč ř č á á á š ť Í Í ř č Í ř é č š á č ý č é ó á č ř ů á č č š á ů á Í á á é č ú ó ť ý Í ř č é Í č š á ř á é á ř á ř ů ř ř á áž á Í ý é é č ý čů á é é é č

Více

Aplikace matematiky. Terms of use: Aplikace matematiky, Vol. 3 (1958), No. 5, 372--375. Persistent URL: http://dml.cz/dmlcz/102630

Aplikace matematiky. Terms of use: Aplikace matematiky, Vol. 3 (1958), No. 5, 372--375. Persistent URL: http://dml.cz/dmlcz/102630 Aplikace matematiky František Šubart Odvození nejvýhodnějších dělících tlaků k-stupňové komprese, při ssacích teplotách lišících se v jednotlivých stupních Aplikace matematiky, Vol. 3 (1958), No. 5, 372--375

Více

á í í Č ť ó í íď ý í í íř ý ř ě Í č ť í á š á ý é ů á í ť č Í Í é ď ž é ž ť é éř ů í š ší ý í Í é á É í ě é ř í Í í é í ř ě á ó í í ě š ě ý á ř í á í

á í í Č ť ó í íď ý í í íř ý ř ě Í č ť í á š á ý é ů á í ť č Í Í é ď ž é ž ť é éř ů í š ší ý í Í é á É í ě é ř í Í í é í ř ě á ó í í ě š ě ý á ř í á í á Č ť ó ď ý ř ý ř ě Í č ť á š á ý é ů á ť č Í Í é ď ž é ž ť é éř ů š š ý Í é á É ě é ř Í é ř ě á ó ě š ě ý á ř á ě é Í Ž ý ť ó ř ý Í ů ů ů š Í ý é ý ý ů é ů š é ů ó Žá Í á Íř ě šř ó ř ě é ě é Ě š č á č

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Časopis pro pěstování matematiky a fysiky

Časopis pro pěstování matematiky a fysiky Časopis pro pěstování matematiky a fysiky Vladimír Knichal Čísla Gaussova. [I.] Časopis pro pěstování matematiky a fysiky, Vol. 62 (1933), No. 4-5, R73--R76 Persistent URL: http://dml.cz/dmlcz/123910 Terms

Více

Základy teorie grupoidů a grup

Základy teorie grupoidů a grup Základy teorie grupoidů a grup 11. Násobení v množinách In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 89--93. Persistent

Více

Č á - - í Č

Č á - - í Č Č á í Č É ÁÁí Í Č á í Š Š Ů ř é č č í č í í á ě ěří Č á áí Č á á á Í é í í ě í í č ářží í áč á ř á ěří í á í ě č á č ě Úč í ě č í ř í Ž é ěí á č Óý áí ěí é ú č é á č ý áí é ááí á á í Ž á í á č ří ý ů ří

Více

ě é ř š á á á á ě š á ž ř š é řž á ý á á ď ú š ú á á ěž ě š é Šř ž ú ě é á ú š š á ů á ú á ů á ů á ů á ů á ů ů á ů á ů á á ý ě ď ý ž ž ě ě ř á é ěř ž

ě é ř š á á á á ě š á ž ř š é řž á ý á á ď ú š ú á á ěž ě š é Šř ž ú ě é á ú š š á ů á ú á ů á ů á ů á ů á ů ů á ů á ů á á ý ě ď ý ž ž ě ě ř á é ěř ž Ř Ě Š úř š á Ř Á ÁŠ š ý á á ěá ř ě š úř š ý á ě ú á řá ď ě ě š ř ů á á ú ž á Ž á ď ě á ě ě ď ď ú ž é á á úáš ě ě š ú ě ď á ú ř řá ě ď á ú š áů ú á ů á ů á ů á ů ů ů ů á ů ú ť é š ú ě ě á ú š á ů á ú á

Více

Aplikace matematiky. Dana Lauerová A note to the theory of periodic solutions of a parabolic equation

Aplikace matematiky. Dana Lauerová A note to the theory of periodic solutions of a parabolic equation Aplikace matematiky Dana Lauerová A note to the theory of periodic solutions of a parabolic equation Aplikace matematiky, Vol. 25 (1980), No. 6, 457--460 Persistent URL: http://dml.cz/dmlcz/103885 Terms

Více

Staroegyptská matematika. Hieratické matematické texty

Staroegyptská matematika. Hieratické matematické texty Staroegyptská matematika. Hieratické matematické texty Staroegyptská matematika In: Hana Vymazalová (author): Staroegyptská matematika. Hieratické matematické texty. (Czech). Praha: Český egyptologický

Více

-ří ---- č - - -á řá--é á-í ř č -í é

-ří ---- č - - -á řá--é á-í ř č -í é ří č á řáé áí ř č í é š á á č í ě áč š á Ż ľ ĺ ą ář á ÁÁí ř é č á Úí í í ááí ř řý á é áž ĺ é ěří é áě ří ĺ ĺ ý áí áá š á á š ř ř č á áí í ř í á ř ĺ á č č Č ááí ří í š é č áž ž áí ě í ž í č í č áí ě áí

Více

O náhodě a pravděpodobnosti

O náhodě a pravděpodobnosti O náhodě a pravděpodobnosti 13. kapitola. Metoda maximální věrohodnosti neb o tom, jak odhadnout počet volně žijících divokých zvířat In: Adam Płocki (author); Eva Macháčková (translator); Vlastimil Macháček

Více

Úvod do neeukleidovské geometrie

Úvod do neeukleidovské geometrie Úvod do neeukleidovské geometrie Obsah In: Václav Hlavatý (author): Úvod do neeukleidovské geometrie. (Czech). Praha: Jednota československých matematiků a fysiků, 1926. pp. 209 [212]. Persistent URL:

Více

Determinanty a matice v theorii a praxi

Determinanty a matice v theorii a praxi Determinanty a matice v theorii a praxi Rejstřík In: Václav Vodička (author): Determinanty a matice v theorii a praxi. Část druhá. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp.

Více

Staroegyptská matematika. Hieratické matematické texty

Staroegyptská matematika. Hieratické matematické texty Staroegyptská matematika. Hieratické matematické texty Počítání se zlomky In: Hana Vymazalová (author): Staroegyptská matematika. Hieratické matematické texty. (Czech). Praha: Český egyptologický ústav

Více

Spojitost a limita funkcí jedné reálné proměnné

Spojitost a limita funkcí jedné reálné proměnné Spojitost a limita fukcí jedé reálé proměé Pozámka Vyšetřeí spojitosti fukce je možo podle defiice převést a výpočet limity V dalším se proto soustředíme je problém výpočtu limit Pozámka Limitu fukce v

Více

1.2. MOCNINA A ODMOCNINA

1.2. MOCNINA A ODMOCNINA .. MOCNINA A ODMOCNINA V této kpitole se dozvíte: jk je defiová oci s přirozeý, celý, rcioálí oecý reálý epoete jké jsou její vlstosti; jk je defiová přirozeá odoci, jké jsou její vlstosti jk se dá vyjádřit

Více

Definice obecné mocniny

Definice obecné mocniny Defiice obecé mociy Zavedeí obecé mociy omocí ity číselé oslouosti lze rovést ěkolika zůsoby Níže uvedeý zůsob využívá k defiici eoeciálí fukce itu V dalším budeme otřebovat ásledující dvě erovosti: Lemma

Více

ů Í ď Í í Č ó š Í á ť ř ú í é á é á ááý á Í Ú í ý ý á á Í ť ď ď á á Í í ý á ě é é ď á řá Í ň á Í č íí Í ý í í í á ť í č í Í á á í ř ř á ě č á á í é ó

ů Í ď Í í Č ó š Í á ť ř ú í é á é á ááý á Í Ú í ý ý á á Í ť ď ď á á Í í ý á ě é é ď á řá Í ň á Í č íí Í ý í í í á ť í č í Í á á í ř ř á ě č á á í é ó ů Í ď Í í Č ó š Í á ť ř ú í é á é á ááý á Í Ú í ý ý á á Í ť ď ď á á Í í ý á ě é é ď á řá Í ň á Í č íí Í ý í í í á ť í č í Í á á í ř ř á ě č á á í é ó ř í í í í á ř Ť ří Í č á ě á ť ř řá ý á í í á ď Í Ě

Více

á ř č á é Ž ř ů á á ř á Čá Ž ř á á é ž ř á á Š ý é ř é ř á ř Š ář ř ž á ř ý ž á ř á ý ú ů á ř ý á á ú ň ý ř č á č ř Ž á á Žá ý ý ř ý ř č ú ř ůž á žá ý

á ř č á é Ž ř ů á á ř á Čá Ž ř á á é ž ř á á Š ý é ř é ř á ř Š ář ř ž á ř ý ž á ř á ý ú ů á ř ý á á ú ň ý ř č á č ř Ž á á Žá ý ý ř ý ř č ú ř ůž á žá ý á á á é áí ř ý Čá áš ř ý ý á Š ář á Šá á á č ů á á ř ř éč č á č Č á ž á ř ů áš é á ž á Í á ř é úř Ž š ř á š úč á ř Ž é ú ů é č č é á ž á řá á á áš š úř ý á á á ý á Ž š é á á ř ů á á ř á ú ů é á Ž é ř á

Více

Plochy stavebně-inženýrské praxe

Plochy stavebně-inženýrské praxe Plochy stavebně-inženýrské praxe 9. Plochy rourové In: František Kadeřávek (author): Plochy stavebně-inženýrské praxe. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp. 95 98. Persistent

Více

O nerovnostech a nerovnicích

O nerovnostech a nerovnicích O nerovnostech a nerovnicích Kapitola 3. Množiny In: František Veselý (author); Jan Vyšín (other); Jiří Veselý (other): O nerovnostech a nerovnicích. (Czech). Praha: Mladá fronta, 1982. pp. 19 22. Persistent

Více

Kapitola 4 Euklidovské prostory

Kapitola 4 Euklidovské prostory Kapitola 4 Euklidovské prostory 4.1. Defiice euklidovského prostoru 4.1.1. DEFINICE Nechť E je vektorový prostor ad tělesem reálých čísel R,, : E 2 R. E se azývá euklidovský prostor, platí-li: (I) Pro

Více

ěží č ú ú á í í í é ř ě í Ž ž ě á ý ť á í é ž á é š ý ý č ý á č š á ří ú ě ž ěť á Ž ž ž ř ž ř é č ě ť á ří č í á ě ž ú ú í é ě ě ž ř ě š ě ž ť ú é ž é

ěží č ú ú á í í í é ř ě í Ž ž ě á ý ť á í é ž á é š ý ý č ý á č š á ří ú ě ž ěť á Ž ž ž ř ž ř é č ě ť á ří č í á ě ž ú ú í é ě ě ž ř ě š ě ž ť ú é ž é ř čí ř í ě ž ú š í ý ť í ž ý š č áš ů ó ří á ž ž ěš í á ě ř ď í á ý š ý ě áž š ě í ř ř ščí áš ě ř ž ř š ě š ě š ž š č č ý č É ř ě ě ě á í ě ř ú ý á í ý ě ú ď í é ř í č ý ďí ě ší á š ř ýš ě ý á ž í Žá č

Více

PANM 16. List of participants. http://project.dml.cz. Terms of use:

PANM 16. List of participants. http://project.dml.cz. Terms of use: PANM 16 List of participants In: Jan Chleboun and Karel Segeth and Jakub Šístek and Tomáš Vejchodský (eds.): Programs and Algorithms of Numerical Mathematics, Proceedings of Seminar. Dolní Maxov, June

Více

ý Í č ší í ě í ů ý í ě á íó í í á ě í ě í š í ť é ř š ě Í é é Í á í ří í íř í íž í í í í ů ží í ý í ů í ší ěá Í á é á í í ě ě í ó ý ý í í í ť í á ší í

ý Í č ší í ě í ů ý í ě á íó í í á ě í ě í š í ť é ř š ě Í é é Í á í ří í íř í íž í í í í ů ží í ý í ů í ší ěá Í á é á í í ě ě í ó ý ý í í í ť í á ší í ý Í č š ě ů ý ě á ó á ě ě š ť é ř š ě Í é é Í á ř ř ž ů ž ý ů š ěá Í á é á ě ě ó ý ý ť á š ě ž é é č Á ž á Í ř Ě ó é ř á ú Í ě ý é ě š č ý Í ě ř ů ě ú ň Í ť é ě ě š Ě ó á ř č ě ó ů ř ř á Íř ží ř ě č ě

Více

ř ž ť ť čá á ý ý á á áč ž ý ě ě ů á ř ž ř á ř ž ř ž ň á ř ř ř ý ěř ž ž ý č á ř ý č č šť á á Ú ý ó ž ť č ž á ě á š ě ř á á ě ůř ů ě š á ř ž á ě ř ř š ž

ř ž ť ť čá á ý ý á á áč ž ý ě ě ů á ř ž ř á ř ž ř ž ň á ř ř ř ý ěř ž ž ý č á ř ý č č šť á á Ú ý ó ž ť č ž á ě á š ě ř á á ě ůř ů ě š á ř ž á ě ř ř š ž á ůž č á č á č á á ň á č á á ů ěř ů ěř á ě ř ň á č č ý ý ě š ě žá á ý á ř ě ú ř á ž ž á ř ě ě Í ě á á č ě á ř ě á ř ř ě ý ú ť ř á á ě ě á á ěě ý á š Ť á ě á á š Í á ž á ě ě ž ě á á á á ě ů ž š ě ý ř Ž

Více

á ž á ř á ě é á ý ř é ř ý ý š ě š ě é ěř é Í ý ě ř é ě ý ř á úř á á úř á á ň Š á é ě á á é é á ě ý á é ú ž á ě é é ó á ý ý ý ě ýš é á ůž ý ř š ý é úř

á ž á ř á ě é á ý ř é ř ý ý š ě š ě é ěř é Í ý ě ř é ě ý ř á úř á á úř á á ň Š á é ě á á é é á ě ý á é ú ž á ě é é ó á ý ý ý ě ýš é á ůž ý ř š ý é úř Ě Ý ÚŘ á ž ý ě é á áš ř ř á á ý úř ý á á ř á áš Í Í ě ý úř á úř ř š ý á ě ě š ř ů á á á úř ř š ý á á ú á á řá á ě ě š ř ů ř ř ž á žá á ý úř á á á ě ř á á á á á á Í á á ě ň é ř á á á ě é Š šř ž ý á šř á

Více

á č č é úč ř á á ů č č é úč ř ř é é á č Š á é é á Í á č ů č á ž Ť á é Ť ř Š á á ů á č á ž ř Í ř Š č ř ť č Í á ž č á Č á á á ř Š á á č Š á á ář č ů á á

á č č é úč ř á á ů č č é úč ř ř é é á č Š á é é á Í á č ů č á ž Ť á é Ť ř Š á á ů á č á ž ř Í ř Š č ř ť č Í á ž č á Č á á á ř Š á á č Š á á ář č ů á á á č á é ř ý ř ž á á ďá č á ž é á ž ů é ů á á á Ž á ř č á ú é ů é á ú á ř é ř Š ř ž č ž ú ý č ř Š ř á Í č Č é ř é ú Š Š ř č á ž á ý ř á á á ř ó č ú á ó ř ó č ť řá é á ář ž Ž žáď é éú á žá é ř ů á á á ž

Více

Booleova algebra. 1. kapitola. Množiny a Vennovy diagramy

Booleova algebra. 1. kapitola. Množiny a Vennovy diagramy Booleova algebra 1. kapitola. Množiny a Vennovy diagramy In: Oldřich Odvárko (author): Booleova algebra. (Czech). Praha: Mladá fronta, 1973. pp. 5 14. Persistent URL: http://dml.cz/dmlcz/403767 Terms of

Více

Časopis pro pěstování mathematiky a fysiky

Časopis pro pěstování mathematiky a fysiky Časopis pro pěstování mathematiky a fysiky Václav Hübner Stanovení pláště rotačního kužele obsaženého mezi dvěma sečnými rovinami Časopis pro pěstování mathematiky a fysiky, Vol. 33 (1904), No. 3, 321--331

Více

Historický vývoj geometrických transformací

Historický vývoj geometrických transformací Historický vývoj geometrických transformací Věcný rejstřík In: Dana Trkovská (author): Historický vývoj geometrických transformací. (Czech). Praha: Katedra didaktiky matematiky MFF UK, 2015. pp. 171 174.

Více

Časopis pro pěstování mathematiky a fysiky

Časopis pro pěstování mathematiky a fysiky Časopis pro pěstování mathematiky a fysiky František Kaňka Důsledky akusticko-dynamického principu. [V.] Časopis pro pěstování mathematiky a fysiky, Vol. 47 (1918), No. 2-3, 158--163 Persistent URL: http://dml.cz/dmlcz/122325

Více

Časopis pro pěstování mathematiky a fysiky

Časopis pro pěstování mathematiky a fysiky Časopis pro pěstování mathematiky a fysiky Josef Langr O čtyřúhelníku, jemuž lze vepsati i opsati kružnici Časopis pro pěstování mathematiky a fysiky, Vol. 28 (1899), No. 3, 244--250 Persistent URL: http://dml.cz/dmlcz/122234

Více

Zlatý řez nejen v matematice

Zlatý řez nejen v matematice Zlatý řez nejen v matematice Příloha A In: Vlasta Chmelíková (author): Zlatý řez nejen v matematice. (Czech). Praha: Katedra didaktiky matematiky MFF UK, 2009. pp. 157 166. Persistent URL: http://dml.cz/dmlcz/400805

Více

ř ěž Ú Í ř Í Í Ž ř Ž Í Ž Ú ž ň ú ř Í Ú ž š ě ň ú Í Í Ó Č š

ř ěž Ú Í ř Í Í Ž ř Ž Í Ž Ú ž ň ú ř Í Ú ž š ě ň ú Í Í Ó Č š Ú ú Č ř ě ě Č ř ěž ú Í ř ě ě ž ň řž ú Ú ě ř Í ř ěž Ú Í ř Í Í Ž ř Ž Í Ž Ú ž ň ú ř Í Ú ž š ě ň ú Í Í Ó Č š ř Í ěž ú ř Š Š Í ř ř š ě Í Ž ň ř ě ň Í ř ě ř ř ě ě Í Í Í ě Í ř ě Í ř ěž Ú š Í ř ň ř ú ř Ž ú ř Ú

Více

Jubilejní almanach Jednoty čs. matematiků a fyziků 1862 1987

Jubilejní almanach Jednoty čs. matematiků a fyziků 1862 1987 Jubilejní almanach Jednoty čs. matematiků a fyziků 1862 1987 Zdeněk Horský Písemnosti z pozůstalosti prof. dr. A. Seydlera In: Libor Pátý (editor): Jubilejní almanach Jednoty čs. matematiků a fyziků 1862

Více

š í í š ó ý ř Č é ó ěí í č é Č ý í áš ěě ý ý ú í ý ů ý ý ě á ý ď í ž ž á č í á ž ř é í í í ě í í ý á í ý ě á é ř š á ý š í é ů č ú ě ý í ř í í ř í Í ž

š í í š ó ý ř Č é ó ěí í č é Č ý í áš ěě ý ý ú í ý ů ý ý ě á ý ď í ž ž á č í á ž ř é í í í ě í í ý á í ý ě á é ř š á ý š í é ů č ú ě ý í ř í í ř í Í ž ě áňí š í í š ó ý ř Č é ó ěí í č é Č ý í áš ěě ý ý ú í ý ů ý ý ě á ý ď í ž ž á č í á ž ř é í í í ě í í ý á í ý ě á é ř š á ý š í é ů č ú ě ý í ř í í ř í Í ž ý ý ý ě ší í í ý ě í ěč ý ů ží í í ří í ů ř

Více

ú ů ů á á č ž éš ú ů á ř á ů é á š á ú ž á á č ú ů á á č ž é š ú ů á ř ý á á ú ů á á č ú ý ů č ú ř ůž á ř ý ů č ú ř ů á ř ů č č ú č č ú Č á ý ú áš é Í

ú ů ů á á č ž éš ú ů á ř á ů é á š á ú ž á á č ú ů á á č ž é š ú ů á ř ý á á ú ů á á č ú ý ů č ú ř ůž á ř ý ů č ú ř ů á ř ů č č ú č č ú Č á ý ú áš é Í á á é ř ý Čá ý Č é ř ů á ř á á á ř Ú Č ú ů ď é á ž Ť Š é á ů é áš á á ř č č ý č á ý á é áď á ý ý Ú á š é š é š á á Ť ž ů ř č á á é á á ř ý ď ý ř ý č č á ú ů ů á á č ž éš ú ů á ř á ů é á š á ú ž á á č ú

Více

á ý é í č ří Ť á íč é í ž č ř Í é Ť č í ž á ý ý á é č í ý ř ří í ž ř é ř á á í ý ý ů í Í ř ů Ž á á á ž ří š ě Í ž č é ří ř í ř í Ť ý š ý ř í ý ů ří ř

á ý é í č ří Ť á íč é í ž č ř Í é Ť č í ž á ý ý á é č í ý ř ří í ž ř é ř á á í ý ý ů í Í ř ů Ž á á á ž ří š ě Í ž č é ří ř í ř í Ť ý š ý ř í ý ů ří ř á ý č ř Ť á č ž č ř Í Ť č ž á ý ý á č ý ř ř ž ř ř á á ý ý ů Í ř ů Ž á á á ž ř š ě Í ž č ř ř ř Ť ý š ý ř ý ů ř ř á š á Í ř ý ý ř ř č ř ř Í š ý Í Ť č ř á Í ó č ř ý ž ý Í ř č ž á ř ž ý ž ří ř š Í É Í ř Í

Více

Co víme o přirozených číslech

Co víme o přirozených číslech Co víme o přirozených číslech 2. Dělení se zbytkem a dělení beze zbytku In: Jiří Sedláček (author): Co víme o přirozených číslech. (Czech). Praha: Mladá fronta, 1961. pp. 9 15. Persistent URL: http://dml.cz/dmlcz/403438

Více

Pokroky matematiky, fyziky a astronomie

Pokroky matematiky, fyziky a astronomie Pokroky matematiky, fyziky a astronomie Emil Calda; Oldřich Odvárko Speciální třídy na SVVŠ v Praze pro žáky nadané v matematice a fyzice Pokroky matematiky, fyziky a astronomie, Vol. 13 (1968), No. 5,

Více

Malý výlet do moderní matematiky

Malý výlet do moderní matematiky Malý výlet do moderní matematiky Úvod [též symboly] In: Milan Koman (author); Jan Vyšín (author): Malý výlet do moderní matematiky. (Czech). Praha: Mladá fronta, 1972. pp. 3 6. Persistent URL: http://dml.cz/dmlcz/403755

Více

Komplexní čísla a funkce

Komplexní čísla a funkce Komplexní čísla a funkce 3. kapitola. Geometrické znázornění množin komplexních čísel In: Jiří Jarník (author): Komplexní čísla a funkce. (Czech). Praha: Mladá fronta, 1967. pp. 35 43. Persistent URL:

Více

Časopis pro pěstování matematiky a fysiky

Časopis pro pěstování matematiky a fysiky Časopis pro pěstování matematiky a fysiky Josef Štěpánek O rovnicích kulového zrcadla vypuklého a čoček rozptylných Časopis pro pěstování matematiky a fysiky, Vol. 57 (1928), No. 2, D17--D20 Persistent

Více

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica Cyril Dočkal Automatické elektromagnetické váhy Acta Universitatis Palackianae Olomucensis. Facultas Rerum

Více

Co víme o přirozených číslech

Co víme o přirozených číslech Co víme o přirozených číslech 4. Největší společný dělitel a nejmenší společný násobek In: Jiří Sedláček (author): Co víme o přirozených číslech. (Czech). Praha: Mladá fronta, 1961. pp. 24 31. Persistent

Více

ď Í óč á ě ú óí í ť ú í ý ý Ě Í ý ě í ě í ě í ě Í Í Í ó í Í í í É ó í í á ě í í ě í ó ří č ý Ýú í í í Í ě ú Ě ě Í í Í á ý ý í É í í Í Í óí Ó ě á í Í á

ď Í óč á ě ú óí í ť ú í ý ý Ě Í ý ě í ě í ě í ě Í Í Í ó í Í í í É ó í í á ě í í ě í ó ří č ý Ýú í í í Í ě ú Ě ě Í í Í á ý ý í É í í Í Í óí Ó ě á í Í á ď Í óč á ě ú óí ť ú ý ý Ě Í ý ě ě ě ě Í Í Í ó Í É ó á ě ě ó ř č ý Ýú Í ě ú Ě ě Í Í á ý ý É Í Í óí Ó ě á Í á é ě ó É Í á Ě ř é ů ř á ú č ř ě ý á ó ď ý Ú ř ř ú ř ó Ť ó ó Íě ě ú ý ě ý é Í ě Í ů ů é á ě á

Více

ěý í č Č Ě í í í č Č ě¾ í ú č á ř č í ú č Áí í í í í ú ří ř ¾ ó ř¹ í ¾ í é á áů á í ě á ú í ř í ú řě á í ú ě řýý Ě Ýč É Ř č č í

ěý í č Č Ě í í í č Č ě¾ í ú č á ř č í ú č Áí í í í í ú ří ř ¾ ó ř¹ í ¾ í é á áů á í ě á ú í ř í ú řě á í ú ě řýý Ě Ýč É Ř č č í ř Ň ť ť ř ť ó ú č í í á č í í í ó ó áí í í č í č á ú č Í ť ř á ý ¾ ěé ě ú č ¾ ý ú í ěý í č Č Ě í í í č Č ě¾ í ú č á ř č í ú č Áí í í í í ú ří ř ¾ ó ř¹ í ¾ í é á áů á í ě á ú í ř í ú řě á í ú ě řýý Ě Ýč

Více

ď ů ů ů ř ů ěž ř á ĚŽÍ áů ď ó ů š é áž ď á á ď á é á é ů ď ěží ď á ěž ď ó é ř Á ĚŽ Í ý á á é ěž ď á ď ý ář ď ěž ÁŘ ď é ď é áď ď č č ď Ř ý á č ý Í č Í

ď ů ů ů ř ů ěž ř á ĚŽÍ áů ď ó ů š é áž ď á á ď á é á é ů ď ěží ď á ěž ď ó é ř Á ĚŽ Í ý á á é ěž ď á ď ý ář ď ěž ÁŘ ď é ď é áď ď č č ď Ř ý á č ý Í č Í Výkonný výbor Ceské boxerské asociace schválil dne 13. července 20.10 Techniclc{ a soutěžn pravidla účinnó aď 3a. kdng' 2010 ď ů ů ů ř ů ěž ř á ĚŽÍ áů ď ó ů š é áž ď á á ď á é á é ů ď ěží ď á ěž ď ó é

Více

č ňé ď í ďí É ý ě á ě ž č í í ť á é áž ě í í ě í ě ř á áž ě í í áž ě í í ň Í č í č č í

č ňé ď í ďí É ý ě á ě ž č í í ť á é áž ě í í ě í ě ř á áž ě í í áž ě í í ň Í č í č č í ňé ď ď É ý ě á ě ž ť á é áž ě ě ě ř á áž ě áž ě ň Í Í š Á Í Ó á ď ů á ď á á á ě á ý ě é Í Í é á ě é é Ú ý ů ň ě é á á ů ě á á áš é á á á á á á á ť Č ď ů ý ů ě á ď ý ď ď ý á ě ů á ď á á ů é á á ě ý á ý

Více