3. Lineární diferenciální rovnice úvod do teorie

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "3. Lineární diferenciální rovnice úvod do teorie"

Transkript

1 : Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se dá zapsat ve tvaru: y p ( ) y p ( ) y p ( ) y q( ) (3) ( ) ( ) Fukce p,, p se azývají koeficiety lieárí difereciálí rovice Jestliže jsou fukce p,, p kostatí, hovoříme o lieárí difereciálí rovici s kostatími koeficiety Fukce q() se azývá pravá straa lieárí difereciálí rovice Jestliže q je ulová fukce, rovice (3) se azývá homogeí, ebo rovice bez pravé stray Pozámka 3 Vždy budeme předpokládat, že fukce p,, p a q jsou spojité a ějakém itervalu I = (a, b), a < b Příklad 3 (a) Rovice (3) je lieárí, y y y si( ) l( 3) (3) p( ), p ( ), si( ) q ( ) l( 3) (b) Řešeí rovice budeme uvažovat a itervalech, a kterých jsou všechy fukce p, p, q spojité, tj a itervalech (-3, -),(-, -), (-, ), (, + Pozámka 3 Rovice (3) se azývá lieárí, protože zobrazeí L, L[ y]: y p ( ) y p ( ) y p ( ) y, (33) ( ) ( ) je lieárí zobrazeí, tj L[ y y] L[ y] L[ y], (34) L[ y] L[ y] Podroběji, echť fukce p,, p jsou spojité a itervalu I = (a, b), a < b Ozačíme-li ( k symbolem C ) ( I ) k-krát spojitě diferecovatelé fukce a eprázdém itervalu I, pak ( k C ) ( I ) je lieárí prostor a L je lieárí zobrazeí:

2 : Josef Hekrdla lieárí difereciálí rovice úvod do teorie ( k ) () L : C ( I ) C ( I ) Relace f f je lieárí zobrazeí Kompozice lieárích zobrazeí je lieárí zobrazeí, ( ) ( ) ( ) tj pro libovolé k je ( f g) k f k g k, lieárích zobrazeí je lieárí zobrazeí, tj ( k) ( k) ( g) ( g ) Lieálí kombiace je lieárí zobrazeí L[ y]: pk( ) y k ( k ) Lieárí difereciálí rovici (3) můžeme pomocí zobrazeí L zapsat stručě L[ y] q (35) Struktura možiy všech řešeí rovice (35) (tj obecého řešeí) je stejá jako struktura řešeí lieárí soustavy rovic, která je záma z úvodu do algebry Vlastosti řešeí soustavy rovic byly totiž odvozey pouze z liearity podobého zobrazeí a z toho, že defiičí obor i obor hodot tohoto zobrazeí jsou lieárí prostory, tj z podmíek (34) Pojmy a výsledky můžeme proto z lieárí algebry bezezbytku přejmout Partikulárí řešeí, je kterékoliv vybraé řešeí rovice (35) Budeme-li potřebovat jej odlišit od ostatích typů řešeí, apř od obecého (tj od formule, která popisuje možiu všech řešeí rovice), budeme jej ozačovat ŷ, platí tedy: L[ yˆ ] q Řešeí homogeí rovice, je řešeím přidružeé homogeí rovice Budeme-li potřebovat jej odlišit od řešeí partikulárího ebo obecého, budeme jej ozačovat y, platí tedy: Ly [ ] (36) Z algebry je zámo, že možia všech řešeí lieárí homogeí rovice tvoří lieárí podprostor zvaý jádro zobrazeí L, ozačme jej ker(l) Pro dimezi tohoto jádra později odvodíme velmi zajímavý vztah: dim ker(l) = řád dif rovice (35) Obecé řešeí rovice, tj možia všech řešeí rovice (35), je opět dáa zámým výsledkem z lieárí algebry Je-li ŷ libovolě vybraé partikulárí řešeí, pak platí: { y L[ y] q} { yˆ y L[ y ] }, ebo stručě L[ y] q y yˆ ker( L), (37) kde jsme ozačili yˆ ker( L) { yˆ y L[ y ] }

3 : Josef Hekrdla lieárí difereciálí rovice úvod do teorie Pozámka 33 (pricip superpozice) Sloví spojeí pricip superpozice eí ozačeím obecě platého, apř fyzikálího zákoa či pricipu Je to pouze jié ozačeí vlastostí ějakého lieárího zobrazeí, ebo vlastostí z ěj odvozeých Pricip superpozice je často chápá v ásledujícím smyslu, který sado vyplývá z liearity zobrazeí L: Je-li y řešeím li dif rovice s pravou straou q, tj L[ y] q, je-li y řešeím li dif rovice s pravou straou q, tj L[ y] q, pak y y je řešeím rovice s pravou straou q q, tj L[ y y] q q Věta 3 (o eisteci a jedozačosti) Mějme lieárí difereciálí rovici -tého řádu y p ( ) y p ( ) y p ( ) y q( ), (38) ( ) ( ) kde fukce p,, p a q jsou spojité a itervalu I = (a, b), a < b Pak platí: Pro každý bod I a libovolý vektor ( b, b,, b ) eistuje jedié řešeí y C ( ) I rovice (38), které splňuje dále uvedeé počátečí podmíky: y( ) b, y( ) b, ( ) y ( ) b Piccardovy aproimace aplikovaé a soustavu dif rov řádu ekvivaletí s (38) S pomocí Věty 3 můžeme řešit otázku dimeze ker(l) Pozámka 34 Fukce y,, y jsou a eprázdém itervalu I lieárě ezávislé (zkratka LN), právě když platí: cy a I c c c (39) Podmíka cy a I je ekvivaletí s podmíkou I( ( ) ( ) ) Podmíka cy cy a I tedy reprezetuje ekoečě moho algebraických rovic, tj soustavu ekoečě moha lieárích rovic 3

4 : Josef Hekrdla lieárí difereciálí rovice úvod do teorie Vybereme-li libovolě,,, k I, pak musí platit: ( ) ( ), ( ) ( ), ( ) ( ), 3 3 c ( ) ( ) y k k Je zřejmé, že takto lze vygeerovat soustavu lieárích rovic o espočetě moha rovicích Pokud jsou fukce y,, y diferecovatelé, pak je možo sestavovat další soustavy rovic ( derivováím rovice (39), apř patří-li fukce do C ) ( I), pak a I platí: cy cy cy,,, ( ) ( ) Věta 3 (dim ker(l) = řád L) Nechť fukce p,, p jsou spojité a itervalu I = (a, b), a < b, I je libovolé Mějme homogeí rovici -tého řádu L[ y]: y p ( ) y p ( ) y p ( ) y (3) ( ) ( ) Pak fukce y,, y, které řeší homogeí rovici Ly [ k ], k =,,, a itervalu I a vyhovují počátečím podmíkám y( ) y( ) y ( ) y( ) y ( ) y ( ) y ( ) y( ) ( ) ( ) ( ) ( ) y ( ) y ( ) y ( ) y ( ) ( ) ( ) ( ) ( ) y ( ) y ( ) y ( ) y ( ) =, (3) tvoří bázi prostoru ker(l) Podle Věty 3 (o eisteci a jedozačosti) takové fukce y,, y musí eistovat (a) y,, y, jsou lieárě ezávislé Utvořme ulovou lieárí kombiaci cy (3) 4

5 : Josef Hekrdla lieárí difereciálí rovice úvod do teorie Nulová fukce je diferecovatelá, všechy její derivace jsou ulové fukce Protože ( y C ) () I pro k =,,, z rovice (3) derivováím získáme soustavu rovic: k cy cy,, ( ) ( ), ( ) ( ) cy, která je splěa a itervalu I V maticové formě má soustava tvar: y y y y c y y y y c (33) ( ) ( ) ( ) ( ) y y y y c ( ) ( ) ( ) ( ) y y y y c Vyjádříme-li soustavu (33) v bodě, podle (3) je matice soustavy (33) jedotková, tj platí y( ) y( ) y ( ) y( ) c y( ) y ( ) y ( ) y ( ) c ( ) ( ) ( ) ( ) y ( ) y ( ) y ( ) y ( ) c ( ) ( ) ( ) ( ) y ( ) y ( ) y ( ) y ( ) c c c Fukce y,, y jsou tedy lieárě ezávislé c c c c c c (b) Každé řešeí homogeí rovice je lieárí kombiací fukcí y,, y Nechť y je libovolé řešeí rovice (3), tj L[ y] = Defiujme vektor ( b, b,, b ) : ( y( ), y( ),, y ( )) ( ) Pak ovšem fukce y je zároveň řešeím počátečí úlohy Defiujme dále fukci z: Ly [ ], ( k ) y ( ) bk, k,,, (34) 5

6 : Josef Hekrdla lieárí difereciálí rovice úvod do teorie z b y b y b y : Fukce z je rověž řešeím počátečí úlohy (34): Lz [ ] L[ b y b y by] b L[ y ] b L[ y ] b L[ y ] b b b, ( ) ( ) ( ) ( ) z k ( ) b y k ( ) b k y ( ) b k y ( ) bk, k,,, Podle věty o eisteci a jedozačosti emohou eistovat dvě růzá řešeí téže počátečí úlohy, proto utě y = z, tedy platí y b y b y by Pozámka 35 Řešit lieárí homogeí difereciálí rovici L[ y] = zameá ajít ějakou bázi prostoru ker(l), tj je-li rovice řádu, pak je třeba ajít lieárě ezávislých řešeí této rovice Možiě fukcí, které tvoří bázi prostoru ker(l), se říká fudametálí systém Defiice 3 (Wroského matice, wroskiá) Jestliže fukce y,, y jsou diferecovatelé a itervalu I až do řádu včetě, pak a itervalu I je defiováa tzv Wroského matice Je to matice soustavy (33), tj je to fukce defiovaá a I, která k daému I přiřadí dále uvedeou matici: y( ) y( ) y ( ) y( ) y ( ) y ( ) y ( ) y ( ) [ y,, y]( ) : ( ) ( ) ( ) ( ) y ( ) y ( ) y ( ) y ( ) ( ) ( ) ( ) ( ) y ( ) y ( ) y ( ) y ( ) Wroskiá je determiat Wroského matice, defiujme: W[ y,, y ]( ) : det( [ y,, y ]( )) Je-li možia fukcí y,, y záma z kotetu, píšeme stručě W( ) : det( [ y,, y ]( )) Wroskiá je užitečý ástroj aalýzy lieárí ezávislosti poslouposti fukcí, jak ukazuje ásledující věta Věta 33 (test LN, LZ) Nechť fukce y,, y, jsou diferecovatelé a itervalu I až do řádu včetě Pat platí: (a) Jestliže I(W[ y,, y]( ) ) pak y,, y jsou lieárě ezávislé a I 6

7 : Josef Hekrdla lieárí difereciálí rovice úvod do teorie (b) Jestliže I(W[ y,, y]( ) ) a fukce y,, y jsou a itervalu I řešeím ějaké homogeí lieárí dif rovice -tého řádu (se spojitými koeficiety a I ), pak y,, y jsou LZ a itervalu I (a) Nechť I( ( ) ( ) ) (35) Stejě jako v důkazu Věty 3, z rovice (35) odvodíme soustavu rovic pro ezámé koeficiety c,,c Dostaeme pro každé I : c [ y,, y]( ) (36) c Podle předpokladu eistuje I, pro které je wroskiá eulový, tj W[ y,, y]( ), matice [ y,, y]( ) je pak regulárí a jediým řešeím rovice (36) je řešeí triviálí, tj fukce y,, y jsou lieárě ezávislé a I (b) Podle předpokladu eistuje bod I pro který je wroskiá ulový, tj W[ y,, y]( ), tj matice [ y,, y]( ) je pak sigulárí a tudíž eistuje etriviálí řešeí c,, c soustavy, * c [ y,, y]( ), (37) * c tj ( c,, c) Nyí ukážu, že cy cy a I, tj c,, c jsou koeficiety hledaé etriviálí ulové lieárí kombiace fukcí y,, y Ozačme z (38) : Podle předpokladu jsou fukce y,, y řešeím ějaké lieárí homogeí difereciálí rovice -tého řádu se spojitými koeficiety a I, echť tedy platí L[y k ] =, k =,, a tudíž i z je řešeím takové rovice, tj L[z] = Každé řešeí rovice L[z] = je i řešeím počátečí úlohy L[ z], z ( ) z ( ), k,, ( k) ( k) ( k ) Hodoty derivací z ( ) vyplývají z rovic (37), (38) Platí: 7

8 : Josef Hekrdla lieárí difereciálí rovice úvod do teorie ( k ) z ( ) ( ) ( ) * ( k) * ( k) c * ( k) ( k) y ( ) y ( ) * c pro k =,,, tj z( ) y( ) y( ) c c [ y,, y]( ) (39) ( ) ( ) ( ) z ( ) y ( ) y ( ) c c Vektor počátečích hodot je tedy podle (39) ulový Stejé počátečí podmíky splňuje ovšem také ulová fukce Podle věty o jedozačosti to zameá, že z je ulová fukce a I, tj a I, což se mělo dokázat Příklad 3 Fukce e a e jsou LN a libovolém eprázdém itervalu právě když (a) Nechť Pak pro libovolé je e e e e W[ e, e ]( ) e e e e ( ) V každém eprázdém itervalu I tedy eistuje bod, ve kterém W[ e, e ]( ), tj podle Věty 33 jsou fukce LN a každém eprázdém itervalu I (b) Nechť Položme c = c = Potom ce ce e e Našli jsme ulovou etriviálí lieárí kombiaci, tj fukce jsou LZ a libovolém eprázdém itervalu V tomto případě LZ elze vyvodit z faktu, že W[ e, e ], eboť zatím evíme, zda eistuje difereciálí rovice řádu, jejímž řešeím je fukce e Příklad 33 Ukažte, že fukce e a e jsou LN a libovolém eprázdém itervalu I pro libovolé e e W[ e, e ]( ) e e e e e e Příklad 34 Jsou dáy fukce y ( ), y ( ) Pak platí: (a) Fukce y, y jsou LN a každém itervalu, který obsahuje jak kladá tak záporá čísla (b) Na itervalu, který eobsahuje čísla obou zaméek, jsou fukce y, y LZ (c) W[ y, y] a každém eprázdém itervalu 8

9 : Josef Hekrdla lieárí difereciálí rovice úvod do teorie (a) Nechť I je iterval,, I,, echť c c I Pak platí c c, (3) c c Koeficiety c, c řeší soustavu (3) Matice soustavy (3) je regulárí, det ( ) eistuje tedy pouze triviálí řešeí, fukce y, y, jsou tedy LN (b) V případě, že iterval I eobsahuje čísla obou zaméek, pak eistuje kostata taková, že y = y, tj fukce jsou LZ, (c) Protože ( ), je W[ y, y]( ) Důsledek 3 Fukce y, y z Příkladu 34 emohou být řešeím ějaké lieárí difereciálí rovice řádu (se spojitými koeficiety) a itervalu I, který obsahuje čísla obou zaméek Příklad 35 Jsou dáy fukce y ( ), y( ) Staovte li dif rovici Řádu, jejíž fudametálí systém je tvoře fukcemi y, y Úloha má smysl, fukce y, y jsou LN a libovolém eprázdém itervalu Jestliže fukce y, y tvoří fudametálí systém ějaké lieárí homogeí difereciálí rovice, pak obecé řešeí y této rovice bude lieárí kombiace y = c y + c y Trojice fukcí y, y, y je tedy LZ, jejich wroskiá tedy musí být ulový, y W[ y,, ]( ) y y 3 Hledaou difereciálí rovici dostaeme rozvojem determiatu podle sloupce, tj, y y 3 y po úpravě y y y 9

5. Lineární diferenciální rovnice n-tého řádu

5. Lineární diferenciální rovnice n-tého řádu 5 3.3.8 8:44 Josef Herdla lieárí difereciálí rovice -tého řádu 5. Lieárí difereciálí rovice -tého řádu (rovice s ostatími oeficiety) ( ), a,, a (5.) ( ) ( ) y a y a y ay q L[ y] y a y a y a y, q je spojitá

Více

1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V

1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V Předáška 1: Vektorové prostory Vektorový prostor Pro abstraktí defiici vektorového prostoru jsou podstaté vlastosti dvou operací, sčítáí vektorů a ásobeí vektoru (reálým číslem) Tyto dvě operace musí být

Více

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE 1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;

Více

3. DIFERENCIÁLNÍ ROVNICE

3. DIFERENCIÁLNÍ ROVNICE 3 DIFERENCIÁLNÍ ROVNICE Difereciálí rovice (dále je DR) jsou veli důležitou částí ateatické aalýz, protože uožňují řešit celou řadu úloh z fzik a techické prae Občejé difereciálí rovice: rovice, v íž se

Více

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti Úvod Opakováí Poslouposti Příklady Matematika 1 Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 2012 / 13 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti

Více

2.4. INVERZNÍ MATICE

2.4. INVERZNÍ MATICE 24 INVERZNÍ MICE V této kapitole se dozvíte: defiici iverzí matice; základí vlastosti iverzí matice; dvě základí metody výpočtu iverzí matice; defiici celočíselé mociy matice Klíčová slova této kapitoly:

Více

5. Posloupnosti a řady

5. Posloupnosti a řady Matematická aalýza I předášky M. Málka cvičeí A. Hakové a R. Otáhalové Zimí semestr 2004/05 5. Poslouposti a řady 5.1 Limita a hromadé hodoty. Mějme posloupost x ) prvků Hausdorffova topologického prostoru

Více

Přednáška 7: Soustavy lineárních rovnic

Přednáška 7: Soustavy lineárních rovnic Předáška 7: Soustavy lieárích rovic 7.1. Příklad (geometrie v roviě) Rozhoděte o vzájemé poloze přímky p : x y 1 a přímky a) a : x y 3, b) b : 2x 2y 3, c) c :3x 3y 3. Jak víme ze středí školy, lze o vzájemé

Více

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad... Obsah 1 Mocié řady 1 1.1 Defiice a vlastosti mociých řad.................... 1 1. Rozvoj fukce do mocié řady...................... 5 1.3 Aplikace mociých řad........................... 10 1 Kapitola 1

Více

definované pro jednotlivé řády takto: ) řádu n nazýváme číslo A = det( A) a a a11 a12

definované pro jednotlivé řády takto: ) řádu n nazýváme číslo A = det( A) a a a11 a12 Předáška 3: Determiaty Pojem determiatu se prosadil původě v souvislosti s potřebou řešit soustavy lieárích rovic v 8 století (C Maclauri, G Cramer) Teprve později se pojem osamostatil, zjedodušilo se

Více

Matematika I, část II

Matematika I, část II 1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího

Více

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0 Nekoečé řady, geometrická řada, součet ekoečé řady Defiice Výraz a 0 a a a, kde {a i } i0 je libovolá posloupost reálých čísel, azveme ekoečou řadou Číslo se azývá -tý částečý součet Defiice Nekoečá řada

Více

1 Uzavřená Gaussova rovina a její topologie

1 Uzavřená Gaussova rovina a její topologie 1 Uzavřeá Gaussova rovia a její topologie Podobě jako reálá čísla rozšiřujeme o dva body a, rozšiřujeme také možiu komplexích čísel. Nepřidáváme však dva body ýbrž je jede. Te budeme začit a budeme ho

Více

GEOMETRIE I. Pavel Burda

GEOMETRIE I. Pavel Burda GEOMETRIE I Pavel Burda Obsah Úvod... 4 1. Vektorové prostory... 5. Vektorové prostory se skalárím ásobeím... 9. Afií prostory... 19 4. Afií přímka ( A 1 )... 5 5. Afií rovia (A )... 6 6. Afií prostor

Více

1 Základní pojmy a vlastnosti

1 Základní pojmy a vlastnosti Základí pojmy a vlastosti DEFINICE (Trigoometrický polyom a řada). Fukce k = (a cos(x) + b si(x)) se azývá trigoometrický polyom. Řada = (a cos(x) + b si(x)) se azývá trigoometrická řada. TVRZENÍ (Ortogoalita).

Více

Definice obecné mocniny

Definice obecné mocniny Defiice obecé mociy Zavedeí obecé mociy omocí ity číselé oslouosti lze rovést ěkolika zůsoby Níže uvedeý zůsob využívá k defiici eoeciálí fukce itu V dalším budeme otřebovat ásledující dvě erovosti: Lemma

Více

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice Matematika I Název studijího programu RNDr. Jaroslav Krieg 2014 České Budějovice 1 Teto učebí materiál vzikl v rámci projektu "Itegrace a podpora studetů se specifickými vzdělávacími potřebami a Vysoké

Více

Analýza a zpracování signálů. 4. Diskrétní systémy,výpočet impulsní odezvy, konvoluce, korelace

Analýza a zpracování signálů. 4. Diskrétní systémy,výpočet impulsní odezvy, konvoluce, korelace Aalýza a zpracováí sigálů 4. Diskrétí systémy,výpočet impulsí odezvy, kovoluce, korelace Diskrétí systémy Diskrétí sytém - zpracovává časově diskrétí vstupí sigál ] a produkuje časově diskrétí výstupí

Více

NMAF061, ZS Zápočtová písemná práce skupina A 16. listopad dx

NMAF061, ZS Zápočtová písemná práce skupina A 16. listopad dx NMAF06, ZS 07 08 Zápočtová písemá práce skupia A 6. listopad 07 Jedotlivé kroky při výpočtech stručě, ale co ejpřesěji odůvoděte. Pokud používáte ějaké tvrzeí, ezapomeňte ověřit splěí předpokladů. Jméo

Více

Matematika 1. Ivana Pultarová Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D Posloupnosti

Matematika 1. Ivana Pultarová Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D Posloupnosti Úvod Opakováí Poslouposti Příklady Matematika 1 Ivaa Pultarová Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti

Více

P. Girg. 23. listopadu 2012

P. Girg. 23. listopadu 2012 Řešeé úlohy z MS - díl prví P. Girg 2. listopadu 202 Výpočet ity poslouposti reálých čísel Věta. O algebře it kovergetích posloupostí.) Necht {a } a {b } jsou kovergetí poslouposti reálých čísel a echt

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a) Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a

Více

Spojitost a limita funkcí jedné reálné proměnné

Spojitost a limita funkcí jedné reálné proměnné Spojitost a limita fukcí jedé reálé proměé Pozámka Vyšetřeí spojitosti fukce je možo podle defiice převést a výpočet limity V dalším se proto soustředíme je problém výpočtu limit Pozámka Limitu fukce v

Více

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky

Více

Petr Šedivý Šedivá matematika

Petr Šedivý  Šedivá matematika LIMITA POSLOUPNOSTI Úvod: Kapitola, kde poprvé arazíme a ekoečo. Argumety posloupostí rostou ade všechy meze a zkoumáme, jak vypadají hodoty poslouposti. V kapitole se sezámíte se základími typy it a početími

Více

Masarykova univerzita Přírodovědecká fakulta

Masarykova univerzita Přírodovědecká fakulta Masarykova uiverzita Přírodovědecká fakulta Zuzaa Došlá, Vítězslav Novák NEKONEČNÉ ŘADY Bro 00 c Zuzaa Došlá, Vítězslav Novák, Masarykova uiverzita, Bro, 998, 00 ISBN 80-0-949- 3 Kapitola 3 Řady absolutě

Více

Matematická analýza I

Matematická analýza I 1 Matematická aalýza ity posloupostí, součty ekoečých řad, ity fukce, derivace Matematická aalýza I látka z I. semestru iformatiky MFF UK Zpracovali: Odřej Keddie Profat, Ja Zaatar Štětia a další 2 Matematická

Více

1. Číselné obory, dělitelnost, výrazy

1. Číselné obory, dělitelnost, výrazy 1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá

Více

11. přednáška 16. prosince Úvod do komplexní analýzy.

11. přednáška 16. prosince Úvod do komplexní analýzy. 11. předáška 16. prosice 009 Úvod do komplexí aalýzy. Tři závěrečé předášky předmětu Matematická aalýza III (NMAI056) jsou věováy úvodu do komplexí aalýzy. Což je adeseá formulace eboť časový rozsah ám

Více

Komplexní čísla. Definice komplexních čísel

Komplexní čísla. Definice komplexních čísel Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují

Více

ŘADY Jiří Bouchala a Petr Vodstrčil

ŘADY Jiří Bouchala a Petr Vodstrčil ŘADY Jiří Bouchala a Petr Vodstrčil Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 2. století (reg. č. CZ..07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská Techická

Více

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých 9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie

Více

5 Křivkové a plošné integrály

5 Křivkové a plošné integrály - 7 - Křivkové a plošé itegrály 5 Křivkové a plošé itegrály 51 Křivky Pozámka V této kapitole se budeme zabývat obecými křivkami v Vždy však můžeme položit = 2 či = a přejít tak k speciálím případům roviy

Více

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13). 37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým

Více

c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je transcendentí. xp 1 (p 1)! (x 1)p (x 2) p... (x d) p e x t f(t) d t = F (0)e x F (x),

c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je transcendentí. xp 1 (p 1)! (x 1)p (x 2) p... (x d) p e x t f(t) d t = F (0)e x F (x), a) Vyslovte a dokažte Liouvillovu větu o šaté aroximovatelosti algebraického čísla řádu d b) Defiujte Liouvillovo číslo c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je trascedetí 2 a) Defiujte

Více

8.2.1 Aritmetická posloupnost

8.2.1 Aritmetická posloupnost 8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

Abstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat

Abstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat Komplexí čísla Hoza Krejčí Abstrakt. Co jsou to komplexí čísla? K čemu se používají? Dá se s imi dělat ěco cool? Na tyto a další otázky se a předášce/v příspěvku pokusíme odpovědět. Proč vzikla komplexí

Více

8. Analýza rozptylu.

8. Analýza rozptylu. 8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,

Více

Analytická geometrie

Analytická geometrie Alytická geometrie Vektory Prmetrické vyjádřeí přímky roviy Obecá rovice droviy Vektorový prostor Nechť jsou dáy ásledující mtemtické objekty: ) ) ) 4) Číselé těleso T. Neprázdá moži V. Zobrzeí Zobrzeí

Více

NMAF061, ZS Zápočtová písemná práce VZOR 5. ledna e bx2 x 2 e x2. F (b) =

NMAF061, ZS Zápočtová písemná práce VZOR 5. ledna e bx2 x 2 e x2. F (b) = NAF61, ZS 17 18 Zápočtová písemá práce VZOR 5. leda 18 Jedotlivé kroky při výpočtech stručě, ale co ejpřesěji odůvoděte. Pokud používáte ějaké tvrzeí, ezapomeňte ověřit splěí předpokladů. Jméo a příjmeí:

Více

Zkoušková písemná práce č. 1 z předmětu 01MAB3

Zkoušková písemná práce č. 1 z předmětu 01MAB3 Katedra matematiky Fakulty jaderé a fyzikálě ižeýrské ČVUT v Praze Příjmeí a jméo 1 2 3 4 5 BONUS CELKEM (13 bodů) Zkoušková písemá práce č. 1 z předmětu 01MAB3 14. leda 2016, 9:00 11:00 Pro kvadratickou

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

1 Diferenciální počet funkcí jedné reálné proměnné

1 Diferenciální počet funkcí jedné reálné proměnné Spojitost a limity - 7 - Difereciálí počet fukcí jedé reálé proměé Spojitost a limity Defiice -okolím bodu a azýváme iterval ( a a ) Redukovaým -okolím bodu a azýváme sjedoceí itervalů a a a a Spojitost

Více

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM Difereciálí počet fukcí jedé reálé proměé - - DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ ÚVODNÍ POZNÁMKY I derivace podobě jako limity můžeme počítat ěkolikerým způsobem a to kokrétě pomocí: defiice vět o algebře

Více

Přednáška 7, 14. listopadu 2014

Přednáška 7, 14. listopadu 2014 Předáška 7, 4. listopadu 204 Uvedeme bez důkazu klasické zobecěí Leibizova kritéria (v ěmž b = ( ) + ). Tvrzeí (Dirichletovo a Abelovo kritérium). Nechť (a ), (b ) R, přičemž a a 2 a 3 0. Pak platí, že.

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

S polynomy jste se seznámili již v Matematice 1. Připomeňme definici polynomické

S polynomy jste se seznámili již v Matematice 1. Připomeňme definici polynomické 5 Itegrace racioálích fukcí 5 Itegrace racioálích fukcí Průvodce studiem V předcházejících kapitolách jsme se aučili počítat eurčité itegrály úpravou a základí itegrály, metodou per partes a substitučí

Více

a logaritmickou funkci a goniometrické funkce. 6.1 Násobení řad. Podívejme se neprve na násobení mnohočlenů x = x x n a y = y y n.

a logaritmickou funkci a goniometrické funkce. 6.1 Násobení řad. Podívejme se neprve na násobení mnohočlenů x = x x n a y = y y n. Matematická aalýza II předášky M. Málka cvičeí A. Hakové a R. Otáhalové Semestr letí 2005 6. Nekoečé řady fukcí V šesté kapitole pokračujeme ve studiu ekoečých řad. Nejprve odvozujeme základí tvrzeí o

Více

Znegujte následující výroky a rozhodněte, jestli platí výrok, nebo jeho negace:

Znegujte následující výroky a rozhodněte, jestli platí výrok, nebo jeho negace: . cvičeí Příklady a matematickou idukci Dokažte:.! . Návody:. + +. + i i i i + + 4. + + + + + + + + Operace s možiami.

Více

7. Analytická geometrie

7. Analytická geometrie 7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp

Více

8.2.1 Aritmetická posloupnost I

8.2.1 Aritmetická posloupnost I 8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu

Více

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n,

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n, DSM2 Cv 7 Kostry grafů Defiice kostry grafu: Nechť G = V, E je souvislý graf. Kostrou grafu G azýváme každý jeho podgraf, který má stejou možiu vrcholů a je zároveň stromem. 1. Nakreslete všechy kostry

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

procesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze

procesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze limití Náhodé limití Katedra pravděpodobosti a matematické statistiky Uiverzita Karlova v Praze email: praskova@karli.mff.cui.cz 9.4.-22.4. 200 limití Outlie limití limití efiice: Řekeme, že stacioárí

Více

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU Matematické modelováí (KMA/MM Téma: Model pohybu mraveců Zdeěk Hazal (A8N18P, zhazal@sezam.cz 8/9 Obor: FAV-AVIN-FIS 1. ÚVOD Model byl převzat z kihy Spojité modely v biologii

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

3. ELEMENTÁRNÍ FUNKCE A POSLOUPNOSTI. 3.1 Základní elementární funkce. Nejprve uvedeme základní elementární funkce: KONSTANTNÍ FUNKCE

3. ELEMENTÁRNÍ FUNKCE A POSLOUPNOSTI. 3.1 Základní elementární funkce. Nejprve uvedeme základní elementární funkce: KONSTANTNÍ FUNKCE ELEMENTÁRNÍ FUNKCE A POSLOUPNOSTI Základí elemetárí fukce Nejprve uvedeme základí elemetárí fukce: KONSTANTNÍ FUNKCE Nechť a je reálé číslo Potom kostatí fukcí rozumíme fukce f defiovaou předpisem ( f

Více

7 Obyčejné diferenciální rovnice

7 Obyčejné diferenciální rovnice - 9 - Občejé difereciálí rovice 7 Občejé difereciálí rovice 7 Základí ojm Difereciálí rovice Defiice Občejou difereciálí rovicí -tého řádu rozumíme rovici F(,,,, ( ) ) ebo, je-li takzvaě rozřešea vzhledem

Více

Lineární programování

Lineární programování Lieárí programováí Adjugovaý problém lieárího programováí V případě řešeí problému lieárího programováí LP ma{ c T : A b 0} získáváme výchozí přípustou jedotkovou bázi u doplňkových proměých a za předpokladu

Více

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n 8.3. Limity ěkterých posloupostí Předpoklady: 83 Opakováí z miulé hodiy: 8 Hodoty poslouposti + se pro blížící se k ekoeču blíží k a to tak že mezi = posloupostí a číslem eexistuje žádá mezera říkáme že

Více

I. TAYLORŮV POLYNOM ( 1

I. TAYLORŮV POLYNOM ( 1 I. TAYLORŮV POLYNOM Připomeňme si defiice elemetárích fukcí: a si( = 2+ = ( (2+! b cos( = 2 = ( (2! c e = =!. Dokažte, že Taylorův polyom k-tého řádu v bodě pro fukce f je rove polyomu P : (tyto výsledky

Více

1 Základy Z-transformace. pro aplikace v oblasti

1 Základy Z-transformace. pro aplikace v oblasti Základy Z-trasformace pro aplikace v oblasti číslicového zpracováí sigálů Petr Pollák 9. říja 29 Základy Z-trasformace Teto stručý text slouží k připomeutí základích vlastostí Z-trasformace s jejími aplikacemi

Více

7.2.4 Násobení vektoru číslem

7.2.4 Násobení vektoru číslem 7..4 Násobeí vektor číslem Předpoklady: 703 Tetokrát začeme hed defiicí. Násobek lového vektor číslem k je lový vektor. Násobek elového vektor = B Ačíslem k je vektor C A, přičemž C je bod, pro který platí:

Více

Analytická geometrie

Analytická geometrie 7..06 Alytická geometrie Vektory Prmetrické vyjádřeí přímky roviy Obecá rovice droviy Vektorový prostor Nechť jsou dáy ásledující mtemtické objekty: ) ) ) 4) Číselé těleso T. Neprázdá moži V. Zobrzeí Zobrzeí

Více

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n 8.3. Limity ěkterých posloupostí Předpoklady: 83 Pedagogická pozámka: Tuto a tři ásledující hodiy je možé probrat za dvě vyučovací hodiy. V této hodiě je možé vyechat dokazováí limit v příkladu 3. Opakováí

Více

NUMERICKÉ METODY PRO ŘEŠENÍ EVOLUČNÍCH PARCIÁLNÍCH DIFERENCIÁLNÍCH ROVNIC

NUMERICKÉ METODY PRO ŘEŠENÍ EVOLUČNÍCH PARCIÁLNÍCH DIFERENCIÁLNÍCH ROVNIC NUMERICKÉ METODY PRO ŘEŠENÍ EVOLUČNÍCH PARCIÁLNÍCH DIFERENCIÁLNÍCH ROVNIC Marek Brader Jiří Egermaier Haa Kopicová Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 21. století (reg. č.

Více

14. B o d o v é o d h a d y p a r a m e t r ů

14. B o d o v é o d h a d y p a r a m e t r ů 4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž

Více

je číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost

je číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost Číselé řady Defiice (Posloupost částečých součtů číselé řady). Nechť (a ) =1 je číselá posloupost. Pro všecha položme s = ak. Posloupost ( s ) azýváme posloupost částečých součtů řady. Defiice (Součet

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

NMAF063 Matematika pro fyziky III Zkoušková písemná práce 25. ledna x 1 n

NMAF063 Matematika pro fyziky III Zkoušková písemná práce 25. ledna x 1 n Jméo: Příklad 3 Celkem bodů Bodů 8 0 30 Získáo [8 Uvažujte posloupost distribucí f } D R defiovaou jako f [δ kde δ a začí Diracovu distribuci v bodě a Najděte itu δ 0 + δ + této poslouposti aeb spočtěte

Více

Cvičení 1.1. Dokažte Bernoulliovu nerovnost (1 + x) n 1 + nx, n N, x 2. Platí tato nerovnost obecně pro všechna x R a n N?

Cvičení 1.1. Dokažte Bernoulliovu nerovnost (1 + x) n 1 + nx, n N, x 2. Platí tato nerovnost obecně pro všechna x R a n N? 1 Prví prosemiář Cvičeí 1.1. Dokažte Beroulliovu erovost (1 + x) 1 + x, N, x. Platí tato erovost obecě pro všecha x R a N? Řešeí: (a) Pokud předpokládáme x 1, pak lze řešit klasickou idukcí. Pro = 1 tvrzeí

Více

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

1 Základní matematické pojmy Logika Množiny a jejich zobrazení... 7

1 Základní matematické pojmy Logika Množiny a jejich zobrazení... 7 Semiář z matematické aalýzy I Čížek Jiří-Kubr Mila 8 září 007 Obsah Základí matematické pojmy Logika Možiy a jejich zobrazeí 7 Reálá a komplexí čísla 6 Poslouposti 7 Základí vlastosti posloupostí 7 Limita

Více

2. Náhodná veličina. je konečná nebo spočetná množina;

2. Náhodná veličina. je konečná nebo spočetná množina; . Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité

Více

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika Přijímací řízeí akademický rok 0/0 c. studium Kompletí zěí testových otázek matematika Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá. Které číslo doplíte místo 8? 6 6 8 C. Které číslo

Více

DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce

DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem ukce, gra ukce De: Fukcí reálé proměé azýváme pravidlo, které každému reálému číslu D přiřazuje právě jedo reálé číslo y H Toto pravidlo začíme ejčastěji

Více

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

Přijímací řízení akademický rok 2012/2013 Kompletní znění testových otázek matematické myšlení

Přijímací řízení akademický rok 2012/2013 Kompletní znění testových otázek matematické myšlení Přijímací řízeí akademický rok 0/0 Kompletí zěí testových otázek matematické myšleí Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá odpověď. Které číslo doplíte místo otazíku? 6 8 8 6?.

Více

Číselné řady. 1 m 1. 1 n a. m=2. n=1

Číselné řady. 1 m 1. 1 n a. m=2. n=1 Číselé řady Úvod U řad budeme řešit dva typy úloh: alezeí součtu a kovergeci. Nalezeí součtu (v případě, že řada koverguje) je obecě mohem těžší, elemetárě lze sečíst pouze ěkolik málo typů řad. Součet

Více

ZS 2018/19 Po 10:40 T5

ZS 2018/19 Po 10:40 T5 Cvičeí - Matematická aalýza ZS 08/9 Po 0:40 T5 Cvičeí 008 Řešte erovice v R: 8, log 3 ( 3+3 0 Částečý součet geometrické řady: pro každé q C, q, a N platí 3 Důsledek: +q +q + +q = q+ q si+si+ +si = si

Více

23. Mechanické vlnění

23. Mechanické vlnění 3. Mechaické vlěí Mechaické vlěí je děj, při kterém částice pružého prostředí kmitají kolem svých rovovážých poloh a teto kmitavý pohyb se přeáší (postupuje) od jedé částice k druhé vlěí může vzikout pouze

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

1 Nekonečné řady s nezápornými členy

1 Nekonečné řady s nezápornými členy Nekoečé řady s ezáporými čley Příklad.. Rozhoděte o kovergeci ásledující řady Řešeí. Pro každé N platí Řada tg. tg. diverguje, a proto podle srovávacího kritéria diverguje také řada tg. Příklad.. Určete

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

V. Normální rozdělení

V. Normální rozdělení V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,

Více

1. LINEÁRNÍ ALGEBRA. , x = opačný vektor

1. LINEÁRNÍ ALGEBRA. , x = opačný vektor . LINEÁRNÍ LGEBR Vektorový prostor.. Defiice Nechť V e moži které sou defiováy operce sčítáí + : t. zobrzeí V V V ásobeí i : t zobrzeí R V V. Možiu V zýváme vektorovým prostorem, sou-li splěy ásleduící

Více

. viz věty 1.7 a 1.2 (čísla m a M lze vybrat tak, aby nerovnost platila v R n i R m ). Máme m f x h f x l h f x h f x l h M f x h f x l h

. viz věty 1.7 a 1.2 (čísla m a M lze vybrat tak, aby nerovnost platila v R n i R m ). Máme m f x h f x l h f x h f x l h M f x h f x l h MATEMATICKÁ ANALÝZA III předášky M. Krupky Zií seestr 999/. Derivace prvío řádu V této základí kapitole pojedáváe o dierecovatelosti zobrazeí : U R R (podožia U je vždy otevřeá). Zavádíe ěkolik základíc

Více

5 PŘEDNÁŠKA 5: Jednorozměrný a třírozměrný harmonický oscilátor.

5 PŘEDNÁŠKA 5: Jednorozměrný a třírozměrný harmonický oscilátor. 5 PŘEDNÁŠKA 5: Jedorozměrý a třírozměrý harmoický oscilátor. Půjde o spektrum harmoického oscilátoru emá to ic společého se spektrem atomu ebo se spektrálími čarami atomu. Liší se to právě poteciálem!

Více

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D. MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...

Více

8. Odhady parametrů rozdělení pravděpodobnosti

8. Odhady parametrů rozdělení pravděpodobnosti Pozámky k předmětu Aplikovaá statistika, 8 téma 8 Odhady parametrů rozděleí pravděpodobosti Zaměříme se a odhad středí hodoty a rozptylu a to dvěma způsoby Předpokládejme, že máme áhodý výběr X 1,, X z

Více

VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ

VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ Vlastosti úloh celočíselého programováí VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ PRINCIP ZESILOVÁNÍ NEROVNOSTÍ A ZÁKLADNÍ METODY. METODA VĚTVENÍ A HRANIC. TYPY ÚLOH 1. Úloha lieárího programováí: max{c

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

20. Eukleidovský prostor

20. Eukleidovský prostor 20 Eukleidovský prostor V této kapitole budeme pokračovat ve studiu dalších vlastostí afiích prostorů avšak s tím rozdílem že místo obecého vektorového prostoru budeme uvažovat prostor uitárí Proto bude

Více

Iterační metody řešení soustav lineárních rovnic

Iterační metody řešení soustav lineárních rovnic Iteračí metody řešeí soustav lieárích rovic Matice je: diagoálě domiatí právě tehdy, když pozitivě defiití (symetrická matice) právě tehdy, když pro x platí x, Ax a ij Tyto vlastosti budou důležité pro

Více

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC 5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém

Více