3. Lineární diferenciální rovnice úvod do teorie

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "3. Lineární diferenciální rovnice úvod do teorie"

Transkript

1 : Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se dá zapsat ve tvaru: y p ( ) y p ( ) y p ( ) y q( ) (3) ( ) ( ) Fukce p,, p se azývají koeficiety lieárí difereciálí rovice Jestliže jsou fukce p,, p kostatí, hovoříme o lieárí difereciálí rovici s kostatími koeficiety Fukce q() se azývá pravá straa lieárí difereciálí rovice Jestliže q je ulová fukce, rovice (3) se azývá homogeí, ebo rovice bez pravé stray Pozámka 3 Vždy budeme předpokládat, že fukce p,, p a q jsou spojité a ějakém itervalu I = (a, b), a < b Příklad 3 (a) Rovice (3) je lieárí, y y y si( ) l( 3) (3) p( ), p ( ), si( ) q ( ) l( 3) (b) Řešeí rovice budeme uvažovat a itervalech, a kterých jsou všechy fukce p, p, q spojité, tj a itervalech (-3, -),(-, -), (-, ), (, + Pozámka 3 Rovice (3) se azývá lieárí, protože zobrazeí L, L[ y]: y p ( ) y p ( ) y p ( ) y, (33) ( ) ( ) je lieárí zobrazeí, tj L[ y y] L[ y] L[ y], (34) L[ y] L[ y] Podroběji, echť fukce p,, p jsou spojité a itervalu I = (a, b), a < b Ozačíme-li ( k symbolem C ) ( I ) k-krát spojitě diferecovatelé fukce a eprázdém itervalu I, pak ( k C ) ( I ) je lieárí prostor a L je lieárí zobrazeí:

2 : Josef Hekrdla lieárí difereciálí rovice úvod do teorie ( k ) () L : C ( I ) C ( I ) Relace f f je lieárí zobrazeí Kompozice lieárích zobrazeí je lieárí zobrazeí, ( ) ( ) ( ) tj pro libovolé k je ( f g) k f k g k, lieárích zobrazeí je lieárí zobrazeí, tj ( k) ( k) ( g) ( g ) Lieálí kombiace je lieárí zobrazeí L[ y]: pk( ) y k ( k ) Lieárí difereciálí rovici (3) můžeme pomocí zobrazeí L zapsat stručě L[ y] q (35) Struktura možiy všech řešeí rovice (35) (tj obecého řešeí) je stejá jako struktura řešeí lieárí soustavy rovic, která je záma z úvodu do algebry Vlastosti řešeí soustavy rovic byly totiž odvozey pouze z liearity podobého zobrazeí a z toho, že defiičí obor i obor hodot tohoto zobrazeí jsou lieárí prostory, tj z podmíek (34) Pojmy a výsledky můžeme proto z lieárí algebry bezezbytku přejmout Partikulárí řešeí, je kterékoliv vybraé řešeí rovice (35) Budeme-li potřebovat jej odlišit od ostatích typů řešeí, apř od obecého (tj od formule, která popisuje možiu všech řešeí rovice), budeme jej ozačovat ŷ, platí tedy: L[ yˆ ] q Řešeí homogeí rovice, je řešeím přidružeé homogeí rovice Budeme-li potřebovat jej odlišit od řešeí partikulárího ebo obecého, budeme jej ozačovat y, platí tedy: Ly [ ] (36) Z algebry je zámo, že možia všech řešeí lieárí homogeí rovice tvoří lieárí podprostor zvaý jádro zobrazeí L, ozačme jej ker(l) Pro dimezi tohoto jádra později odvodíme velmi zajímavý vztah: dim ker(l) = řád dif rovice (35) Obecé řešeí rovice, tj možia všech řešeí rovice (35), je opět dáa zámým výsledkem z lieárí algebry Je-li ŷ libovolě vybraé partikulárí řešeí, pak platí: { y L[ y] q} { yˆ y L[ y ] }, ebo stručě L[ y] q y yˆ ker( L), (37) kde jsme ozačili yˆ ker( L) { yˆ y L[ y ] }

3 : Josef Hekrdla lieárí difereciálí rovice úvod do teorie Pozámka 33 (pricip superpozice) Sloví spojeí pricip superpozice eí ozačeím obecě platého, apř fyzikálího zákoa či pricipu Je to pouze jié ozačeí vlastostí ějakého lieárího zobrazeí, ebo vlastostí z ěj odvozeých Pricip superpozice je často chápá v ásledujícím smyslu, který sado vyplývá z liearity zobrazeí L: Je-li y řešeím li dif rovice s pravou straou q, tj L[ y] q, je-li y řešeím li dif rovice s pravou straou q, tj L[ y] q, pak y y je řešeím rovice s pravou straou q q, tj L[ y y] q q Věta 3 (o eisteci a jedozačosti) Mějme lieárí difereciálí rovici -tého řádu y p ( ) y p ( ) y p ( ) y q( ), (38) ( ) ( ) kde fukce p,, p a q jsou spojité a itervalu I = (a, b), a < b Pak platí: Pro každý bod I a libovolý vektor ( b, b,, b ) eistuje jedié řešeí y C ( ) I rovice (38), které splňuje dále uvedeé počátečí podmíky: y( ) b, y( ) b, ( ) y ( ) b Piccardovy aproimace aplikovaé a soustavu dif rov řádu ekvivaletí s (38) S pomocí Věty 3 můžeme řešit otázku dimeze ker(l) Pozámka 34 Fukce y,, y jsou a eprázdém itervalu I lieárě ezávislé (zkratka LN), právě když platí: cy a I c c c (39) Podmíka cy a I je ekvivaletí s podmíkou I( ( ) ( ) ) Podmíka cy cy a I tedy reprezetuje ekoečě moho algebraických rovic, tj soustavu ekoečě moha lieárích rovic 3

4 : Josef Hekrdla lieárí difereciálí rovice úvod do teorie Vybereme-li libovolě,,, k I, pak musí platit: ( ) ( ), ( ) ( ), ( ) ( ), 3 3 c ( ) ( ) y k k Je zřejmé, že takto lze vygeerovat soustavu lieárích rovic o espočetě moha rovicích Pokud jsou fukce y,, y diferecovatelé, pak je možo sestavovat další soustavy rovic ( derivováím rovice (39), apř patří-li fukce do C ) ( I), pak a I platí: cy cy cy,,, ( ) ( ) Věta 3 (dim ker(l) = řád L) Nechť fukce p,, p jsou spojité a itervalu I = (a, b), a < b, I je libovolé Mějme homogeí rovici -tého řádu L[ y]: y p ( ) y p ( ) y p ( ) y (3) ( ) ( ) Pak fukce y,, y, které řeší homogeí rovici Ly [ k ], k =,,, a itervalu I a vyhovují počátečím podmíkám y( ) y( ) y ( ) y( ) y ( ) y ( ) y ( ) y( ) ( ) ( ) ( ) ( ) y ( ) y ( ) y ( ) y ( ) ( ) ( ) ( ) ( ) y ( ) y ( ) y ( ) y ( ) =, (3) tvoří bázi prostoru ker(l) Podle Věty 3 (o eisteci a jedozačosti) takové fukce y,, y musí eistovat (a) y,, y, jsou lieárě ezávislé Utvořme ulovou lieárí kombiaci cy (3) 4

5 : Josef Hekrdla lieárí difereciálí rovice úvod do teorie Nulová fukce je diferecovatelá, všechy její derivace jsou ulové fukce Protože ( y C ) () I pro k =,,, z rovice (3) derivováím získáme soustavu rovic: k cy cy,, ( ) ( ), ( ) ( ) cy, která je splěa a itervalu I V maticové formě má soustava tvar: y y y y c y y y y c (33) ( ) ( ) ( ) ( ) y y y y c ( ) ( ) ( ) ( ) y y y y c Vyjádříme-li soustavu (33) v bodě, podle (3) je matice soustavy (33) jedotková, tj platí y( ) y( ) y ( ) y( ) c y( ) y ( ) y ( ) y ( ) c ( ) ( ) ( ) ( ) y ( ) y ( ) y ( ) y ( ) c ( ) ( ) ( ) ( ) y ( ) y ( ) y ( ) y ( ) c c c Fukce y,, y jsou tedy lieárě ezávislé c c c c c c (b) Každé řešeí homogeí rovice je lieárí kombiací fukcí y,, y Nechť y je libovolé řešeí rovice (3), tj L[ y] = Defiujme vektor ( b, b,, b ) : ( y( ), y( ),, y ( )) ( ) Pak ovšem fukce y je zároveň řešeím počátečí úlohy Defiujme dále fukci z: Ly [ ], ( k ) y ( ) bk, k,,, (34) 5

6 : Josef Hekrdla lieárí difereciálí rovice úvod do teorie z b y b y b y : Fukce z je rověž řešeím počátečí úlohy (34): Lz [ ] L[ b y b y by] b L[ y ] b L[ y ] b L[ y ] b b b, ( ) ( ) ( ) ( ) z k ( ) b y k ( ) b k y ( ) b k y ( ) bk, k,,, Podle věty o eisteci a jedozačosti emohou eistovat dvě růzá řešeí téže počátečí úlohy, proto utě y = z, tedy platí y b y b y by Pozámka 35 Řešit lieárí homogeí difereciálí rovici L[ y] = zameá ajít ějakou bázi prostoru ker(l), tj je-li rovice řádu, pak je třeba ajít lieárě ezávislých řešeí této rovice Možiě fukcí, které tvoří bázi prostoru ker(l), se říká fudametálí systém Defiice 3 (Wroského matice, wroskiá) Jestliže fukce y,, y jsou diferecovatelé a itervalu I až do řádu včetě, pak a itervalu I je defiováa tzv Wroského matice Je to matice soustavy (33), tj je to fukce defiovaá a I, která k daému I přiřadí dále uvedeou matici: y( ) y( ) y ( ) y( ) y ( ) y ( ) y ( ) y ( ) [ y,, y]( ) : ( ) ( ) ( ) ( ) y ( ) y ( ) y ( ) y ( ) ( ) ( ) ( ) ( ) y ( ) y ( ) y ( ) y ( ) Wroskiá je determiat Wroského matice, defiujme: W[ y,, y ]( ) : det( [ y,, y ]( )) Je-li možia fukcí y,, y záma z kotetu, píšeme stručě W( ) : det( [ y,, y ]( )) Wroskiá je užitečý ástroj aalýzy lieárí ezávislosti poslouposti fukcí, jak ukazuje ásledující věta Věta 33 (test LN, LZ) Nechť fukce y,, y, jsou diferecovatelé a itervalu I až do řádu včetě Pat platí: (a) Jestliže I(W[ y,, y]( ) ) pak y,, y jsou lieárě ezávislé a I 6

7 : Josef Hekrdla lieárí difereciálí rovice úvod do teorie (b) Jestliže I(W[ y,, y]( ) ) a fukce y,, y jsou a itervalu I řešeím ějaké homogeí lieárí dif rovice -tého řádu (se spojitými koeficiety a I ), pak y,, y jsou LZ a itervalu I (a) Nechť I( ( ) ( ) ) (35) Stejě jako v důkazu Věty 3, z rovice (35) odvodíme soustavu rovic pro ezámé koeficiety c,,c Dostaeme pro každé I : c [ y,, y]( ) (36) c Podle předpokladu eistuje I, pro které je wroskiá eulový, tj W[ y,, y]( ), matice [ y,, y]( ) je pak regulárí a jediým řešeím rovice (36) je řešeí triviálí, tj fukce y,, y jsou lieárě ezávislé a I (b) Podle předpokladu eistuje bod I pro který je wroskiá ulový, tj W[ y,, y]( ), tj matice [ y,, y]( ) je pak sigulárí a tudíž eistuje etriviálí řešeí c,, c soustavy, * c [ y,, y]( ), (37) * c tj ( c,, c) Nyí ukážu, že cy cy a I, tj c,, c jsou koeficiety hledaé etriviálí ulové lieárí kombiace fukcí y,, y Ozačme z (38) : Podle předpokladu jsou fukce y,, y řešeím ějaké lieárí homogeí difereciálí rovice -tého řádu se spojitými koeficiety a I, echť tedy platí L[y k ] =, k =,, a tudíž i z je řešeím takové rovice, tj L[z] = Každé řešeí rovice L[z] = je i řešeím počátečí úlohy L[ z], z ( ) z ( ), k,, ( k) ( k) ( k ) Hodoty derivací z ( ) vyplývají z rovic (37), (38) Platí: 7

8 : Josef Hekrdla lieárí difereciálí rovice úvod do teorie ( k ) z ( ) ( ) ( ) * ( k) * ( k) c * ( k) ( k) y ( ) y ( ) * c pro k =,,, tj z( ) y( ) y( ) c c [ y,, y]( ) (39) ( ) ( ) ( ) z ( ) y ( ) y ( ) c c Vektor počátečích hodot je tedy podle (39) ulový Stejé počátečí podmíky splňuje ovšem také ulová fukce Podle věty o jedozačosti to zameá, že z je ulová fukce a I, tj a I, což se mělo dokázat Příklad 3 Fukce e a e jsou LN a libovolém eprázdém itervalu právě když (a) Nechť Pak pro libovolé je e e e e W[ e, e ]( ) e e e e ( ) V každém eprázdém itervalu I tedy eistuje bod, ve kterém W[ e, e ]( ), tj podle Věty 33 jsou fukce LN a každém eprázdém itervalu I (b) Nechť Položme c = c = Potom ce ce e e Našli jsme ulovou etriviálí lieárí kombiaci, tj fukce jsou LZ a libovolém eprázdém itervalu V tomto případě LZ elze vyvodit z faktu, že W[ e, e ], eboť zatím evíme, zda eistuje difereciálí rovice řádu, jejímž řešeím je fukce e Příklad 33 Ukažte, že fukce e a e jsou LN a libovolém eprázdém itervalu I pro libovolé e e W[ e, e ]( ) e e e e e e Příklad 34 Jsou dáy fukce y ( ), y ( ) Pak platí: (a) Fukce y, y jsou LN a každém itervalu, který obsahuje jak kladá tak záporá čísla (b) Na itervalu, který eobsahuje čísla obou zaméek, jsou fukce y, y LZ (c) W[ y, y] a každém eprázdém itervalu 8

9 : Josef Hekrdla lieárí difereciálí rovice úvod do teorie (a) Nechť I je iterval,, I,, echť c c I Pak platí c c, (3) c c Koeficiety c, c řeší soustavu (3) Matice soustavy (3) je regulárí, det ( ) eistuje tedy pouze triviálí řešeí, fukce y, y, jsou tedy LN (b) V případě, že iterval I eobsahuje čísla obou zaméek, pak eistuje kostata taková, že y = y, tj fukce jsou LZ, (c) Protože ( ), je W[ y, y]( ) Důsledek 3 Fukce y, y z Příkladu 34 emohou být řešeím ějaké lieárí difereciálí rovice řádu (se spojitými koeficiety) a itervalu I, který obsahuje čísla obou zaméek Příklad 35 Jsou dáy fukce y ( ), y( ) Staovte li dif rovici Řádu, jejíž fudametálí systém je tvoře fukcemi y, y Úloha má smysl, fukce y, y jsou LN a libovolém eprázdém itervalu Jestliže fukce y, y tvoří fudametálí systém ějaké lieárí homogeí difereciálí rovice, pak obecé řešeí y této rovice bude lieárí kombiace y = c y + c y Trojice fukcí y, y, y je tedy LZ, jejich wroskiá tedy musí být ulový, y W[ y,, ]( ) y y 3 Hledaou difereciálí rovici dostaeme rozvojem determiatu podle sloupce, tj, y y 3 y po úpravě y y y 9

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

Číselné řady. 1 m 1. 1 n a. m=2. n=1

Číselné řady. 1 m 1. 1 n a. m=2. n=1 Číselé řady Úvod U řad budeme řešit dva typy úloh: alezeí součtu a kovergeci. Nalezeí součtu (v případě, že řada koverguje) je obecě mohem těžší, elemetárě lze sečíst pouze ěkolik málo typů řad. Součet

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

PříkladykecvičenízMMA ZS2013/14

PříkladykecvičenízMMA ZS2013/14 PříkladykecvičeízMMA ZS203/4 (středa, M3, 9:50 :20) Pozámka( ):Pokudebudeuvedeojiakbudemevždypracovatsprostoryadtělesem T= R.Ve všech ostatích případech(tj. při T = C), bude těleso explicitě specifikováo.

Více

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich.

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich. Fukce. Základí pojmy V kpt.. jsme mluvili o zobrazeí mezi možiami AB., Připomeňme, že se jedá o libovolý předpis, který každému prvku a A přiřadí ejvýše jede prvek b B. Jsou-li A, B číselé možiy, azýváme

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

ZÁKLADY DISKRÉTNÍ MATEMATIKY

ZÁKLADY DISKRÉTNÍ MATEMATIKY ZÁKLADY DISKRÉTNÍ MATEMATIKY Michael Kubesa Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů - 12.1 - Přehled Ifomace po odhad ákladů Míy po áklady dotazu Opeace výběu Řazeí Opeace spojeí Vyhodocováí výazů Tasfomace elačích výazů Výbě pláu po vyhodoceí Kapitola 12: Zpacováí dotazů Základí koky

Více

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu.

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu. KVALIMETRIE Miloslav Sucháek 16. Statistické metody v metrologii a aalytické chemii Řešeé příklady a CD-ROM v Excelu Eurachem ZAOSTŘENO NA ANALYTICKOU CHEMII V EVROPĚ Kvalimetrie 16 je zatím posledí z

Více

Carl Friedrich Gauss

Carl Friedrich Gauss Carl Friedrich Gauss F. KOUTNÝ, Zlí (. 4. 777.. 855) Každé vyprávěí o ěkom, kdo žil dávo, je utě je kompilací prameů a odkazů, které v ejlepším případě pocházejí od jeho pamětíků. Rámec tohoto textu tvoří

Více

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu . ýpočty s využití vztahů ezi stavovýi veličiai ideálího plyu Ze zkušeosti víe, že obje plyu - a rozdíl od objeu pevé látky ebo kapaliy - je vyeze prostore, v ěž je ply uzavře. Přítoost plyu v ádobě se

Více

1.1 Definice a základní pojmy

1.1 Definice a základní pojmy Kaptola. Teore děltelost C. F. Gauss: Matematka je královou všech věd a teore čísel je králova matematky. Základím číselým oborem se kterým budeme v této kaptole pracovat jsou celá čísla a pouze v ěkterých

Více

Determinanty Opakování: Permutace na n prvcích je zobrazení p:{1,..., n} {1,..., n}, které je prosté a na.

Determinanty Opakování: Permutace na n prvcích je zobrazení p:{1,..., n} {1,..., n}, které je prosté a na. Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Lieárí algebra II láta z II semestru iformatiy MFF UK dle předáše Jiřího

Více

Matematicko-fyzikální fakulta Univerzita Karlova. Diplomová práce. Renata Sikorová

Matematicko-fyzikální fakulta Univerzita Karlova. Diplomová práce. Renata Sikorová Matematicko-fyzikálí fakulta Uiverzita Karlova Diplomová práce e Reata Sikorová Obor: Učitelství matematika - fyzika Katedra didaktiky matematiky Vedoucí práce: RNDr. Jiří Kottas, CSc. i Prohlašuji, že

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

7. P o p i s n á s t a t i s t i k a

7. P o p i s n á s t a t i s t i k a 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Petr Otipka Vladislav Šmajstrla

Petr Otipka Vladislav Šmajstrla VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA PRAVDĚPODOBNOST A STATISTIKA Petr Otipka Vladislav Šmajstrla Vytv ořeo v rámci projektu Operačího programu Rozv oje lidských zdrojů CZ.04..03/3..5./006

Více

Základní pojmy kombinatoriky

Základní pojmy kombinatoriky Základí pojy kobiatoriky Začee příklade Příklad Máe rozesadit lidí kole kulatého stolu tak, aby dva z ich, osoby A a B, eseděly vedle sebe Kolika způsoby to lze učiit? Pro získáí odpovědi budee potřebovat

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná Výročí zpráva fodů společosti Pioeer ivestičí společost, a.s. - eauditovaá Obsah 1. Účetí závěrka: Pioeer Sporokoto, Pioeer obligačí fod, Pioeer růstový fod, Pioeer dyamický fod, Pioeer akciový fod, BALANCOVANÝ

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

Neparametrické metody

Neparametrické metody I. ÚVOD Neparametrické metody EuroMISE Cetrum v Neparametrické testy jsou založey a pořadových skórech, které reprezetují původí data v Data emusí utě splňovat určité předpoklady vyžadovaé u parametrických

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

8 Průzkumová analýza dat

8 Průzkumová analýza dat 8 Průzkumová aalýza dat Cílem průzkumové aalýzy dat (také zámé pod zkratkou EDA - z aglického ázvu exploratory data aalysis) je alezeí zvláštostí statistického chováí dat a ověřeí jejich předpokladů pro

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více

M a t i c e v e s t ř e d o š k o l s k é m a t e m a t i c e

M a t i c e v e s t ř e d o š k o l s k é m a t e m a t i c e M t i c e v e s t ř e d o š k o l s k é m t e m t i c e P t r i k K v e c k ý M e d e l o v o g y m á z i u m v O p v ě S t u d i j í m t e r i á l - M t i c e v e s t ř e d o š k o l s k é m t e m t i

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ, p. o. MATEMATIKA Ig. Rudolf PŠENICA 6 OBSAH:. SHRNUTÍ A PROHLOUBENÍ UČIVA... 5.. Zákldí možiové pojmy... 5.. Číselé možiy... 6.. Itervly... 6.. Absolutí

Více

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky ELEKTRICKÉ POHONY. pro kombinované a distanční studium

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky ELEKTRICKÉ POHONY. pro kombinované a distanční studium Vysoká škola báňská - Techická uiverzita Ostrava Fakulta elektrotechiky a iformatiky ELEKTRICKÉ POHONY pro kombiovaé a distačí studium Ivo Neborák Václav Sládeček Ostrava 004 1 Doc. Ig. Ivo Neborák, CSc.,

Více

pravděpodobnostn podobnostní jazykový model

pravděpodobnostn podobnostní jazykový model Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky

Více

MODELY HROMADNÉ OBSLUHY Models of queueing systems

MODELY HROMADNÉ OBSLUHY Models of queueing systems MODELY HROMADNÉ OBSLUHY Models of queueig systems Prof. RNDr. Ig. Miloš Šeda, Ph.D. Vysoé učeí techicé v Brě, Faulta strojího ižeýrství, Ústav automatizace a iformatiy e-mail: seda@fme.vutbr.cz Abstrat

Více

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH ECHNICKÝ AUDI VODÁRENSKÝCH DISRIBUČNÍCH SYSÉMŮ Ig. Ladislav uhovčák, CSc. 1), Ig. omáš Kučera 1), Ig. Miroslav Svoboda 1), Ig. Miroslav Šebesta 2) 1) 2) Vysoké učeí techické v Brě, Fakulta stavebí, Ústav

Více

Využití Markovových řetězců pro predikování pohybu cen akcií

Využití Markovových řetězců pro predikování pohybu cen akcií Využití Markovových řetězců pro predikováí pohybu ce akcií Mila Svoboda Tredy v podikáí, 4(2) 63-70 The Author(s) 2014 ISSN 1805-0603 Publisher: UWB i Pilse http://www.fek.zcu.cz/tvp/ Úvod K vybudováí

Více

ZÁKLADNÍ SUMAČNÍ TECHNIKY

ZÁKLADNÍ SUMAČNÍ TECHNIKY Zápdočeská uiverzit v Plzi Fkult pedgogická Bklářská práce ZÁKLADNÍ SUMAČNÍ TECHNIKY Diel Tyr Plzeň Prohlšuji, že jsem tuto práci vyprcovl smosttě s použitím uvedeé litertury zdrojů iformcí. V Plzi,..

Více

Zobrazení čísel v počítači

Zobrazení čísel v počítači Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období

Více

Numerické metody řešení diferenciálních rovnic

Numerické metody řešení diferenciálních rovnic Numerické metod řešeí diereciálíc rovic Numerical metods or solvig dieretial equatios Bc. Zdeěk Blata Diplomová práce 009 ABSTRAKT Tato práce se zabývá umerickými metodami řešeí občejýc diereciálíc rovic.

Více

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie Veteriárí a farmaceutická uiverzita Bro Základy statistiky pro studující veteriárí medicíy a farmacie Doc. RNDr. Iveta Bedáňová, Ph.D. Prof. MVDr. Vladimír Večerek, CSc. Bro, 007 Obsah Úvod.... 5 1 Základí

Více

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1 Středí hodoty. Artmetcký průměr prostý Aleš Drobík straa 0. STŘEDNÍ HODNOTY Př statstckém zjšťováí často zpracováváme statstcké soubory s velkým možstvím statstckých jedotek. Např. soubor pracovíků orgazace,

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava-

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava- Okruhy z učiv středoškolské mtemtiky pro příprvu ke studiu VŠB TU Ostrv- I Zákldí poztky z logistiky teorie moži: výrok prvdivostí hodot výroku, egce, disjukce, kojukce, implikce, ekvivlece, složeé výroky,

Více

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26 Zákld mtemtik Číselé oor ČÍSELNÉ OBORY 0 Některé pojm z mtemtické logik 0 Výroková logik 0 Moži vzth mezi imi Možiové operce Grfické zázorěí moži Číselé oor Čísl ázv jejich chrkteristik Chrkteristik číselých

Více

Algoritmus RSA. Vilém Vychodil. 4. března 2002. Abstrakt

Algoritmus RSA. Vilém Vychodil. 4. března 2002. Abstrakt Algoritmus RSA Vilém Vychodil 4. břza 2002 Abstrakt Násldující podpůrý txt stručě shruj základí problmatiky při šifrováí algoritmm RSA. Sm spadá j samotý pricip algoritmu, al i základí mtody grováí vlkých

Více

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má

Více

-1- Finanční matematika. Složené úrokování

-1- Finanční matematika. Složené úrokování -- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí

Více

STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH BOHUMIL MINAŘÍK

STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH BOHUMIL MINAŘÍK STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH BOHUMIL MINAŘÍK 04 prof. Ig. Bohuml Mařík, CSc. STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH.

Více

KOMBINATORIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMBINATORIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMBINATORIKA Gymázium Jiřího Wolera v Prostějově Výuové materiály z matematiy pro vyšší gymázia Autoři projetu Studet a prahu. století - využití ICT ve vyučováí matematiy a gymáziu INVESTICE DO ROZVOJE

Více

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty)

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty) (variata s odděleým hodoceím ivestičích ákladů vyaložeých a jedotlivé privatizovaé objekty) Vypracoval: YBN CONSULT - Zalecký ústav s.r.o. Ig. Bedřich Malý Ig. Yvetta Fialová, CSc. Václavské áměstí 1 110

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006 8 ELEKTRCKÉ STROJE TOČVÉ říklad 8 Základí veličiy Určeo pro poluchače akalářkých tudijích programů FS Aychroí motory g Vítězlav Stýkala, hd, úor 006 Řešeé příklady 3 fázový aychroí motor kotvou akrátko

Více

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků 1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,

Více

Makroekonomie cvičení 1

Makroekonomie cvičení 1 Makroekoomie cvičeí 1 D = poptávka. S = Nabídka. Q = Možství. P = Cea. Q* = Rovovážé možství (Q E ). P* = Rovovážá caa (P E ). L = Práce. K = Kapitál. C = Spotřeba domácosti. LR = Dlouhé období. SR = Krátké

Více

AMC/IEM J - HMOTNOST A VYVÁŽENÍ

AMC/IEM J - HMOTNOST A VYVÁŽENÍ ČÁST JAR-OPS 3 AMC/IEM J - HMOTNOST A VYVÁŽENÍ ACJ OPS 3.605 Hodoty hmotostí Viz JAR-OPS 3.605 V souladu s ICAO Ae 5 a s meziárodí soustavou jedotek SI, skutečé a omezující hmotosti vrtulíků, užitečé zatížeí

Více

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR Středí hodoty Artmetcý průměr vážeý ze tříděí Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR Výzam a užtí vážeého artmetcého průměru uážeme a ásledujících příladech Přílad 0 Ve frmě Gama Blatá máme soubor

Více

Posloupnosti na střední škole Bakalářská práce

Posloupnosti na střední škole Bakalářská práce MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fkult Ktedr mtemtiky Poslouposti středí škole Bklářská práce Bro 00 Kteři Rábová Prohlášeí Prohlšuji, že tto bklářská práce je mým původím utorským dílem, které

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA RVDĚODONOST STTISTIK Gymázium Jiřího Wolkera v rostějově Výukové materiály z matematiky pro vyšší gymázia utoři projektu Studet a prahu. století - využití ICT ve vyučováí matematiky a gymáziu Teto projekt

Více

SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek

SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO Statstka I dstačí studjí opora Mla Křápek Soukromá vysoká škola ekoomcká Zojmo Dube 3 Statstka I Vydala Soukromá vysoká škola ekoomcká Zojmo. vydáí Zojmo, 3 ISBN

Více

Jan Zahradník, Pedagogická fakulta Jihočeské univerzity v Českých Budějovicích

Jan Zahradník, Pedagogická fakulta Jihočeské univerzity v Českých Budějovicích Pohled do historie fiačí matematiky Ja Zahradík, Pedagogická fakulta Jihočeské uiverzity v Českých Budějovicích Úvod Častým tématem diskusí současých ekoomů je ízká úroveň fiačí gramotosti ašich občaů.

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. Josef Tvrdík

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. Josef Tvrdík UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT (OPRAVENÁ VERZE 006) Josef Tvrdík OSTRAVSKÁ UNIVERZITA 00 Obsah: Úvod... 3 Programové prostředky pro statstcké výpočty... 4. Tabulkový

Více

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. upraveé vydáí Josef Tvrdík OSTRAVSKÁ UNIVERZITA 008 OBSAH: Úvod... 3 Parametrcké testy o shodě středích hodot... 4. Jedovýběrový t-test...

Více

Katedra softwarového inženýrství MFF UK Malostranské náměstí 25, 118 00 Praha 1 - Malá Strana

Katedra softwarového inženýrství MFF UK Malostranské náměstí 25, 118 00 Praha 1 - Malá Strana Katedra softwarového ižeýrství MFF UK Malostraské áměstí 25, 8 00 Praha - Malá Straa, v. 3.5 co jsou "techiky přeosu dat"? Katedra softwarového ižeýrství, Matematicko-fyzikálí fakulta, Uiverzita Karlova,

Více

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK)

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK) Systém itralaboratorí kotroly kvality v kliické laboratoři (SIKK) Doporučeí výboru České společosti kliické biochemie ČLS JEP Obsah: 1. Volba systému... 2 2. Prováděí kotroly... 3 3. Dokumetace výsledků

Více

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 11. Lineární zobrazení V celé přednášce pojednáváme o vektorových prostorech nad

Více

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY.

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. Ig.Karel Hoder, ÚAMT-VUT Bro. 1.Úvod Optimálí rozděleí ákladů a vytápěí bytového domu mezi uživatele bytů v domě stále podléhá

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.

Více

Poznámky k tématu Korelace a jednoduchá lineární regrese (Téma není ve skriptech)

Poznámky k tématu Korelace a jednoduchá lineární regrese (Téma není ve skriptech) Pozámk k tématu Koelace a jedoduchá leáí egee (Téma eí ve kptech) Mějme data, ),...,(, ), kteá jou áhodým výběem z ějaké populace. Data ted pokládáme za ezávlé ealzace dvojce áhodých velč ( X, Y ). Půmě

Více

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman ASYNCHRONNÍ STROJE Obsah. Pricip čiosti asychroího motoru. Náhradí schéma asychroího motoru. Výko a momet asychroího motoru 4. Spouštěí trojfázových asychroích motorů 5. Řízeí otáček asychroích motorů

Více

Atomová hmotnostní jednotka, relativní atomové a molekulové hmotnosti Atomová hmotnostní jednotka u se používá k relativnímu porovnání hmotností

Atomová hmotnostní jednotka, relativní atomové a molekulové hmotnosti Atomová hmotnostní jednotka u se používá k relativnímu porovnání hmotností . Základí cheické výpočty toová hotostí jedotka, relativí atoové a olekulové hotosti toová hotostí jedotka u se používá k relativíu porováí hotostí ikročástic, atoů a olekul a je defiováa jako hotosti

Více

POZN AMKA K V YPO CTU BAYESOVSKEHO RIZIKA Ales LINKA TU Liberec, KPDM Abstrakt. V teto praci porovame dva bayesovske odhady fukce spolehlivosti v expoecialm rozdele z pohledu bayesovskeho rizika vypo-

Více

3. POJIŠTĚNÍ OSOB (ŽIVOTNÍ POJIŠTĚNÍ)

3. POJIŠTĚNÍ OSOB (ŽIVOTNÍ POJIŠTĚNÍ) 3. POJIŠTĚÍ OSOB (ŽIVOTÍ POJIŠTĚÍ) 3.. EMOELOVÝ PŘÍSTUP 3... ekremeí řád vymíráí populace Úmrosí abulky a) Smr je áhodým jevem, kerý se pojišťuje pro účely ŽP sačí pracova s průměrými hodoami záko velkých

Více

Fázová charakteristika femtosekundových impulzov a jej vplyv na dvojfotónovú fluorescenciu

Fázová charakteristika femtosekundových impulzov a jej vplyv na dvojfotónovú fluorescenciu Attila GAÁL Fakulta matematiky fyziky a iformatiky UK Bratislava Igác BUGÁR Duša VELIČ Medziárodé laserové cetrum Bratislava Fratišek UHEREK Medziárodé laserové cetrum a Katedra mikroelektroiky FEI STU

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více