P1, P2 - SPOJENÍ POLOVODIČOVÉHO SENZORU S PC

Rozměr: px
Začít zobrazení ze stránky:

Download "P1, P2 - SPOJENÍ POLOVODIČOVÉHO SENZORU S PC"

Transkript

1 P1, P2 - SPOJENÍ POLOVODIČOVÉHO SENZORU S PC Úvod Od samého počátku své existence sleduje měřicí technika dva základní směry vývoje. První směr hledá nové měřicí principy, druhý se snaží dosáhnout stále dokonalejší zpracování získané informace. Relativně snadná dostupnost výkonné, přitom finančně únosné počítačové techniky se v současné době uvádí jako hlavní příčina podstatných změn v mnoha oborech lidské činnosti a tedy i v měřicí technice. Speciální nebo vhodně doplněný počítač se stává mocným nástrojem pro automatické experimentování či řízení technologických procesů s možností snadné variability činnosti. Komunikace počítače s reálným objektem může mít nejrůznější podobu. Nejčastěji však bývá realizován styk přes standardní sériové rozhraní typu RS (RS 232, RS 422, RS 485), standardní rozhraní GPIB (IMS-2) nebo multifunkční adaptér vkládaný v podobě zásuvné karty na V/V (Vstupně/Výstupní) sběrnici počítače. Poslední ze tří jmenovaných způsobů komunikace je procvičován v rámci této laboratorní práce. Multifunkční adaptér (měřicí karta) Multifunkční adaptér ve spojení s PC patří mezi virtuální měřicí přístroje s určitou vlastní inteligencí, která je daná podpůrným programem. Řada výrobců nabízí karty určené k zabudování do počítače v různých kvalitativních třídách. Téměř všechny karty však mají přibližně stejnou skladbu. Většinou umožňují měřit 16 různých analogových (spojitých) napěťových signálů (pomocí tzv. A/D kanálů) v pevném nebo nastavitelném rozsahu, osm nebo šestnáct vstupních digitálních signálů (často také alternativně označovaných jako číslicové, diskrétní, logické nebo dvouhodnotové signály) a obvykle i počet impulsů. Karty bývají vybaveny jedním nebo dvěma analogovými výstupy (D/A kanály) a opět osmi nebo šestnácti digitálními výstupy, určenými pro ovládání experimentu nebo procesu. Blíže viz příloha 1. Měřicí program EfLab Karty mohou s počítačem komunikovat s podporou speciálních programů psaných v obvyklých jazycích (BASIC, PASCAL, C), avšak mnohem pohodlnější je využít univerzální měřicí a řídicí programy a to od plně profesionálních, až po jednoduché účelové produkty. Za programový produkt střední kategorie lze považovat i program EFLAB tuzemské firmy IPP Measure. Přestože využívá ještě funkce operačního systému DOS, vyznačuje se extrémní jednoduchostí a je tedy vhodný i pro základní seznámení osob bez znalosti programování se způsobem návrhu měřicích aplikací. Z toho důvodu čísla zadávaná v programu EfLab stejně jako v operačním systému DOS používají jako desetinný oddělovací znak tečku a čeština zde používaná je bez diakritických znamének. EFLAB je program dialogového typu, který je určený pro automatizaci měření a řízení procesů, s možností tvorby téměř libovolných, podmínečně větvených scénářů. Podporuje možnost kalibrace (v programu je používán starší pojem cejchování ) celého měřicího řetězce. Za předpokladu znalosti alespoň čtyř dvojic vzájemně si příslušejícího naměřeného napětí a odpovídající hodnoty měřené veličiny, program vypočte jejich vzájemný vztah vyjádřený jako polynom třetího stupně. Šestnáct tzv. výpočetních kanálů umožňuje během měření průběžný výpočet potřebných matematických vztahů používajících základní aritmetické ope- 1

2 rátory a funkce, číselné nebo symbolické konstanty a měřené (nebo počítačem generované) pomocné parametry. Zabudované funkce běžně užívaných regulátorů (s proporcionální, derivační a integrační složkou) jsou určeny pro řízení procesu podle okamžitých naměřených hodnot a požadovaného chování. Připojená statistika umožňuje automatické hodnocení měření pro všechny žádané proměnné. Logická funkce typu IF (kterou program nabízí) je mocným prostředkem pro vyhodnocení rozhodovacích podmínek. Průběh měření (a řízení) je možné vypsat ve formě protokolu s doplněným textem a při grafickém zpracování je možné vygenerovat XY grafy, přitom jednou z veličin může být i čas. Tímto způsobem získané dokumenty mají však pouze pracovní charakter a pro získání dokumentů na v současné době očekávané úrovni je nezbytný export dat např. do tabulkového kalkulátoru EXCEL a textového editoru WORD. Program EfLab je využitelný ve dvou základních režimech. Ve statickém režimu není možné měřit data a provádět výpočty rychleji než přibližně padesátkrát za sekundu. Přitom nejrychlejší možné ukládání naměřených a vypočtených hodnot do paměti počítače je jedenkrát za sekundu. Statický režim, pokud tomu nebrání použitý multifunkční adaptér, umožňuje: 1. Obsluhovat až 16 vstupních kanálů A/D (analogově-digitálního) převodníku. Je tedy možné měřit až šestnáct různých nezávislých veličin prezentovaných analogovým signálem v tomto případě vždy napětím. 2. Obsluhovat až 4 vstupní kanály čítačů/časovačů. Pomocí těchto kanálů program může měřit frekvenci opakování a případně dobu trvání určitého jevu nebo počítat impulsy. 3. Nadefinovat až 16 výpočtových kanálů. Program je tak schopen okamžitě (v reálném čase) matematicky zpracovávat naměřené hodnoty podle zadaných vztahů. 4. Nastavit pro kanály A/D převodníku a čítačů limitní hodnoty. Překročení je programem signalizováno ve dvou krocích. Přiblížení k limitní hodnotě program označí jako kritický stav, překročení této hodnoty je pak klasifikováno jako stav havarijní. 5. Využít až 6 výstupních kanálů D/A (digitálně-analogového) převodníku. Nejčastější využití je ve spojení se zabudovanými algoritmy regulátorů PID pro řízení procesu. 6. Ovládat až 16 vstupních a výstupních digitálních linek. 7. Volbu automatického nebo ručního pokynu k provedení odměru a uložení výsledku. 8. Určit podmíněný (např. určitou hodnotou měřené veličiny) nebo nepodmíněný START a STOP měření. Jednotlivé kanály jsou ve statickém režimu ovládány tzv. multiplexně, tedy postupně jeden po druhém a nikoli všechny v jednom časovém okamžiku. V dynamickém režimu je měření řízeno multifunkčním adaptérem. Dosažitelná rychlost odměrů je závislá na použitém adaptéru a programem je omezena na vzorků za sekundu. Program je pak možné využít jako: 1. Osciloskop použitelný pro měření periodicky se opakujících signálů. 2. Transient memory (paměť přechodových dějů) režim je vhodný pro jednorázové rychlé a neopakující se děje. V obou režimech (statickém i dynamickém) je možné: 1. Kalibrovat jednotlivé kanály A/D převodníku tak, aby měření bylo v souladu se skutečnou hodnotou měřené veličiny. 2. Vytvořit protokol měření obsahující libovolný komentář a výpis výsledků měření. Protokol je možné zobrazit na monitoru počítače a vytisknout nebo uložit do textového souboru. 2

3 Uložené soubory lze pomocí konverzního programu EFCONV transportovat do tabulkových procesorů (např. EXCEL). 3. Generovat protokol POST MORTEM, který v případě, že program zjistil havarijní stav některého kanálu, obsahuje posledních dvacet naměřených hodnot. 4. Využívat jednoduchý kalkulátor. 5. Prezentovat výsledky měření ve formě grafického protokolu. Tento protokol může obsahovat až čtyři různé grafy, které lze v daných mezích upravit. Výsledné grafy lze zobrazit na monitoru nebo vytisknout. Grafy lze také uložit do souborů ve formátu HPGL a transportovat do některých vyšších programových produktů, např. typu CAD. 6. Nadefinovat zvolené posloupnosti podmínečně větveného měření v rámci předem připraveného scénáře. Podrobnější informace lze získat z manuálu programu EFLAB nebo v demonstračním programu EFDEMO, případně přímo v programu EFLAB voláním nápovědy pomocí rychlého klíče F1. Polovodiče - základní pojmy Od kovů se polovodiče liší především tím, že mají větší měrný elektrický odpor ρ, řádově v intervalu 10-4 Ω m až 10 8 Ω m (kovy řádově 10-8 Ω m až 10-6 Ω m). Samotný měrný odpor však k zařazení látky mezi polovodiče nestačí. Důležité je, že elektrické vlastnosti polovodičů závisí mnohem více než elektrické vlastnosti kovů na teplotě, dopadajícím záření, popř. na obsahu různých příměsí. Proto jsou senzory fyzikálních i chemických veličin často založeny právě na polovodičích. S rostoucí teplotou se odpor polovodičů rychle zmenšuje, zatímco odpor kovů se s teplotou zvyšuje (viz obr. 1). Obr. 1 Závislost měrného elektrického odporu kovu a polovodiče na teplotě Mezi polovodiče patří některé chemické prvky, např. křemík Si, germanium Ge, selen Se a některé chemické sloučeniny, např. arsenid galia GaAs, fosfid india InP, sulfid olovnatý PbS aj. Nejrozšířenějším materiálem pro výrobu polovodičových součástek je v současné době velmi čistý monokrystalický křemík. Vlastní polovodiče Atom křemíku má v elektronovém obalu 14 elektronů, z nichž 10 je pevně vázáno k jádru atomu a čtyři zbývající vytvářejí elektronové vazebné dvojice se čtyřmi sousedními atomy v krystalové mřížce. Tento druh vazby mezi atomy označujeme jako kovalentní vazbu. Na obr. 2 je zjednodušený rovinný model krystalové mřížky křemíku. Aby se elektron z kovalentní vazby uvolnil, je třeba mu dodat poměrně malou energii 1,1 ev (čili přibližně 1, J). Při velmi nízkých teplotách jsou všechny valenční elektrony zapojeny do vazeb mezi atomy a křemík má vlastnosti izolantu. Při běžných teplotách však stačí dodat např. zahříváním jen 3

4 málo energie a elektrony se z vazby mohou uvolnit za vzniku tzv. volných elektronů. Porušením vazby vzniknou současně dva druhy volných částic s nábojem, a to vždy v párech. Vznik (generace páru elektron-díra) těchto párů je znázorněn na obr. 3. Obr. 2 Model struktury křemíku Obr. 3 Vznik páru elektron díra Pojmem díra charakterizujeme jev, kdy uvolněný valenční elektron chybí ve vazbě mezi atomy. Materiál byl zpočátku v elektricky neutrálním stavu, a proto na místě po uvolněném elektronu bude kladný náboj. Díra tedy nepředstavuje skutečnou částici s kladným nábojem (jakou je třeba proton), ale prázdné místo, na které může přejít jiný elektron. Pohyb díry si představujeme tedy tak, že některý z valenčních elektronů sousedních vazeb (v daném okamžiku ještě neporušených) přeskočí na místo porušené vazby. Tím se obnoví původně porušená vazba, díra zanikne, ale objeví se na jiném místě. Díry pak mohou v krystalu putovat podobně jako elektrony. Díra může také definitivně zaniknout, když prázdné místo vyplní volný elektron (rekombinace páru elektron-díra). V čistém křemíku je hustota děr rovna hustotě volných elektronů. Při běžné teplotě je rovna 6, m -3. S rostoucí teplotou hustota děr a volných elektronů (tj. volných nosičů náboje) roste, proto se odpor polovodiče při zahřívání zmenšuje. Není-li polovodič zapojen ke zdroji napětí, je pohyb volných nosičů náboje neuspořádaný. Po připojení ke zdroji napětí vznikne v polovodiči elektrické pole, které způsobí, že vedle neuspořádaného pohybu se volné nabité částice pohybují uspořádaně: volné elektrony proti směru a díry po směru intenzity elektrického pole. Vznikne tedy elektrický proud složený z proudu elektronového a proudu děrového. Nevlastní (příměsové) polovodiče Hustota párů elektron-díra u vlastních polovodičů je pro praktické využití nedostatečná. Zvýšení hustoty volných elektronů nebo děr se dosáhne přítomností příměsí (krystalová porucha typu příměs). Jako příměs se volí atomy s oxidačním číslem pět (P, As, Sb) nebo s oxidačním číslem tři (B, In, Ga). Vedle vlastní vodivosti vzniká vodivost příměsová. Podle druhu příměsi rozlišujeme polovodiče s vodivostí elektronovou (polovodiče typu N) a s vodivostí děrovou (polovodiče typu P). Polovodič typu N Elektronovou vodivost vytvářejí v křemíku atomy s pěti valenčními elektrony. např. atomy fosforu. Atom fosforu nahrazuje ve struktuře krystalu křemík a čtyři z jeho valenčních elektronů přispívají k nasycení vazeb se sousedními atomy Si (obr. 4). Pátý elektron zůstává slabě vázaný na atom fosforu, takže již při nízké teplotě se stává v krystalu volným. V křemíku s příměsí fosforu je tedy nadbytek volných elektronů. Proto tyto elektrony označujeme jako většinové (majoritní) nosiče náboje a díry jako nosiče menšinové (minoritní). 4

5 Z příměsového prvku se ve struktuře krystalu stávají kladné nepohyblivé ionty (ionizovaný příměsový atom), které se nazývají donory. Polovodič typu P Děrová vodivost vzniká v křemíku vlivem příměsi se třemi valenčními elektrony, např. bóru. Tím na plné obsazení vazeb se sousedními atomy Si chybí jeden elektron. Jedna ze čtyř vazeb není tedy plnohodnotná. Při dodání velmi malého množství energie zaplní prázdné místo ve vazbě (prázdné místo je zatím bez elektrického náboje) elektron z některé sousední vazby a na jeho původním místě vznikne volná díra. Díry jsou tedy v tomto případě majoritní nosiče náboje, zatímco elektrony jsou zde nosiči minoritními. Zaplněním neúplné vazby elektronem vzniká nepohyblivý záporný iont boru (ionizovaný příměsový atom) zvaný akceptor. Obr. 4 křemík s příměsí fosforu Obr. 5 Křemík s příměsí boru Princip polovodičového senzoru Plynové senzory slouží v mnoha oblastech lidské činnosti, jedná se především o detekci nebezpečných plynů (úniky výbušných nebo toxických plynů, průmyslové závody, doly), plynů škodlivých pro životní prostředí (oxidy dusíku a síry, ozón) a plynných produktů spalování (požární hlásiče, oxid uhelnatý při nedokonalém spalování). Plynové senzory nalézají též uplatnění v chemickém průmyslu (složení reakčních směsí), automobilovém průmyslu (lambda sonda pro měření parciálního tlaku kyslíku ve výfukových plynech) a silničních kontrolách řidičů (dechová zkouška). Polovodičový plynový senzor využívá změny vodivosti polovodiče v důsledku chemických vlivů - přítomnost redukční nebo oxidační složky v atmosféře. Citlivá část senzoru - polovodič - může mít tvar keramické perličky nebo je ve formě polovodivé vrstvy nanesené na elektricky nevodivém substrátu. Polovodič musí být chemicky stálý, tj. nesmí chemicky reagovat se žádnou složkou obsaženou v měřené atmosféře. Proto se pro konstrukci senzoru nepoužívá např. křemík, který se na vzduchu pokrývá vrstvou nevodivého oxidu. Nejčastěji tvoří citlivou část polovodivé oxidy: SnO 2, In 2 O 3, ZnO, Fe 2 O 3 aj., které již nemohou dále oxidovat a měnit tím své elektrické vlastnosti. Obvyklým materiálem je SnO 2 především pro svoji optimální hodnotu měrného elektrického odporu. SnO 2 obsahuje za normálních podmínek kyslíkové vakance (deficit kyslíkových atomů), je tedy nestechiometrický, takže správnější zápis je SnO 2-x. Kyslíkové vakance se chovají jako elektronové donory, oxid cíničitý je tudíž přirozeně polovodič typu N. Pro ovlivnění vodivosti polovodiče v senzoru musí docházet ke kontaktu polovodiče a plynné fáze. Interakce mezi pevnou a plynou látkou se děje obecně na základě dějů: adsorpce, absorpce a chemisorpce. Adsorpce představuje zachycování plynných molekul na povrchu pevné látky pomocí slabých interakcí (fyzikálních sil, např. van der Waalsovy síly), molekuly plynu jsou na povrchu vázány slabě, může tedy snadno dojít k jejich uvolnění - 5

6 desorpci. Absorpce znamená pronikání plynných molekul, případně jejich fragmentů - atomů, do objemu pevné fáze. Plynové polovodičové senzory využívají tzv. chemisorpce, při které dochází k vázání molekul plynu na povrchu pevné látky chemickými silami - tj. chemickou vazbou. Chemická vazba při chemisorpci je daleko pevnější než fyzikální interakce v případě adsorpce, její vznik je doprovázen přenosem elektronů. Předání elektronů mezi dvěma reagujícími látkami se nazývá oxidačně-redukční (nebo též redoxní) děj, při němž oxidační činidlo elektrony přijímá, tím se samo redukuje (tj. snižuje oxidační číslo). Na druhou stranu redukční činidlo elektrony odevzdává, oxidační číslo se u něj zvyšuje, tj. oxiduje se. Ve vzduchové atmosféře se na povrch polovodiče typu N chemisorbuje kyslík (oxidační plyn) za vzniku aniontů O 2 - nebo O Molekulární anionty vznikají tak, že odčerpají volné elektrony z polovodiče. Oxidační plyn tedy působí jako povrchový akceptor, vodivost N polovodiče snižuje pod povrchem na minimum. U polovodiče typu P by se vodivost vlivem oxidačního plynu naopak zvyšovala. V případě, že se ve vzduchové atmosféře objeví redukční plyn například methan (tvoří cca 98 % z objemu zemního plynu), dochází za určitých podmínek k jeho reakci s chemisorbovaným kyslíkem za vzniku plynných produktů - oxidu uhličitého a vody. Produkty reakce jsou elektroneutrální, přebytečný záporný náboj se vrací ve formě volných elektronů zpět do polovodiče. Vodivost polovodiče se zvýší. Nárůst vodivosti je tím vyšší, čím vyšší je koncentrace a reaktivita redukčního plynu. Změna vodivosti je vratná, při snížení koncentrace redukčního plynu na nulu se obnoví počáteční stav, tj. opětovně se naváže kyslík na povrch polovodiče a vodivost se vrátí na původní hodnotu. Měřením vodivosti resp. elektrického odporu polovodiče lze tedy určit koncentraci plynu oxidačně-redukční povahy. Pro správnou funkci obsahuje senzor kromě polovodiče ještě topný element. Vyhřívání usnadňuje překonávání aktivační energie chemických reakcí, které na povrchu polovodivé části senzoru probíhají. Pro snížení aktivační energie povrchových reakcí bývá polovodič pokryt vhodným katalyzátorem. Praktické provedení polovodičových chemických senzorů Světovým producentem polovodičových senzorů se stala japonská firma FIGARO Engineering Inc. Firma vyrábí celou řadu senzorů pod označením TGS (s doplňkovým číselným označením), určených pro detekci různých plynů, např. CO, NH 3, C 2 H 5 OH, H 2, řady uhlovodíků (CH 4, C 3 H 8, i-c 4 H 10 ), freonů atd. Přestože řada jiných výrobců nabízí senzory vykazující srovnatelné a případně i lepší parametry, firma FIGARO dosud své dominantní postavení na trhu neztratila díky hromadné výrobě a tradici. Jedno z běžných konstrukčních uspořádání je uvedeno na obr. 6. Senzor je tvořen nosnou trubičkou z elektricky nevodivého materiálu (keramiky), na jejímž vnějším povrchu je vytvořen systém dvou měřicích elektrod, pokrytý polovodivou citlivou vrstvou. Uvnitř trubičky je uložena topná šroubovice pro ohřev celého systému. Schéma takto koncipovaného senzoru je na obr. 7a. Jiný způsob možnosti provedení polovodičového senzoru u kterého je jedna měřicí elektroda a topná šroubovice sloučena do jediného elementu dokumentuje schéma na obr. 7b. Protože principem detekce sledovaného plynu je interakce plynné fáze s povrchem pevného polovodiče, je nezbytné z důvodu dostatečné citlivosti senzory konstruovat tak, aby povrch polovodiče byl vzhledem k objemu polovodiče dostatečně velký. Toho lze dosáhnout buď sintrováním (spečením) malých zrn polovodiče do podoby vysoce porézní keramické perličky nebo tlusté vrstvy a případně využitím tenkých vrstev nanášených na vhodný plošný substrát pomocí vakuového napařování nebo naprašování. Hlavní oblastí použití polovodičových chemických senzorů je realizace jednoduchých detektorů spalitelných plynů. Pro úspěšné nasazení je však nezbytné dostatečné pochopení základních vlastností takových senzorů. Souhrnně je možno uvést několik společných poznatků důležitých pro praktickou aplikaci. 6

7 1. K normální funkci je nezbytná přítomnost kyslíku. 2. Parciální tlak kyslíku by měl být konstantní. 3. Senzor vykazuje malou citlivost na sledovaný plyn až do teploty, kdy začne být oxidačně aktivní. 4. Senzor vyžaduje stabilizaci teploty nebo řízení teplotního režimu. 5. Senzory jsou obecně neselektivní. Zvýšenou citlivost k určitým plynům je možné ovlivňovat pracovní teplotou nebo přídavkem vybraných oxidačně aktivních katalyzátorů. 6. Polovodičové senzory umožňují detekci až o tři dekadické řády nižších koncentrací než jiné běžné senzory. kovová síťka žhavicí šroubovice 1.elektroda patice s krytkou nosná trubička s citlivou vrstvou 2.elektroda Obr. 6 Senzor TGS řady 800 trubičkový typ topení 1. elektroda polovodivá hmota topení +2. elektroda polovodivá hmota elekroizolant 2. elektroda 1. elektroda a) b) Obr. 7 Polovodičový senzor a) s odděleným topným a měřicím systémem b) se společným topným a měřicím systémem 7

8 Perličkový senzor VŠCHT Pro zvýšení bezpečnosti provozů s možností výskytu nebezpečných koncentrací výbušných plynů a par byl na Ústavu fyziky a měřicí techniky vyvinut polovodičový senzor, který byl využit pro realizaci zabezpečovacích systémů. Senzor je tvořen spirálou (šroubovicí) a měřicí elektrodou zabudovanou do porézního keramického polovodiče ve smyslu obr. 7b. Spirála je vinuta z platinového drátu a zastává dvě základní funkce. Za prvé spirála slouží jako topný element, jehož úkolem je vyhřát polovodič na pracovní teplotu. Za druhé je tato spirála spolu s další měřicí elektrodou součástí měřicího systému, určeného pro vyhodnocení změn vodivosti keramického polovodiče, sintrovaného ze zrn kovových oxidů (SnO 2, In 2 O 3 ) a Pt katalyzátoru. Schéma senzoru v základním elektrickém zapojení je na obr. 8. U N U M R N R M U A A C topný element a 2. elektroda B I D UD U C polovodivá keramika 1. elektroda Obr. 8 Polovodičový chemický senzor VŠCHT v základním zapojení V uvedeném zapojení se po připojení napájecího napětí U M a U N projeví změny elektrické vodivosti polovodivé keramiky jako změny proudu I protékajícího keramikou. Při vhodné volbě velikosti sériového odporu R M vzniká při průtoku proudu na odporu měřitelný napěťový úbytek. Pak lze napětí U C použít jako měronosný signál koncentrace. V případě kovové měřicí elektrody dostatečného průřezu není mezi body C a D měřitelný napěťový úbytek a napětí U C a U D pak lze považovat za totožné. S výhodou je v takovém případě možné ve spojení s multifunkčním adaptérem využít U C pro detekci skutečného napětí a U D případně pro detekci údaje o objemové koncentraci sledovaného plynu (např. v procentech) a to na základě získaného kalibračního vztahu. Zařazením vhodně zvoleného odporu R N do série s topnou platinovou spirálou je možné z úbytku napětí na tomto odporu odvodit hodnotu topného proudu protékajícího spirálou. Následně lze z naměřené hodnoty napětí U A s využitím Ohmova zákona určit odpor platinové spirály a ze závislosti odporu na teplotě (viz odporové platinové teploměry) je pak možné určit teplotu senzoru. Získaný údaj o teplotě je možné vy- 8

9 užít k řízení teploty senzoru nebo k různým výpočtům. Senzor je umístěn v kovové fritě, která omezuje vliv proudění a funguje jako protiexplozní vložka. Toto je pak umístěno v kyvetě se dvěma olivkami Svorkovnice Multifunkční adaptér A3 A1 A0 A4 GND B0 BIT0 B1 BIT1 B2 BIT2 U N U M U C U D U S GHD IN1 OUT 1IN2 OUT 2IN3 OUT 3 5 V + Zdroj BS-525 BK 125 A2 R N R M U A Dvojhodnotové výstupy (diody emitující světlo - LED) Nastavení úrovně signálu NEPOUŽÍVAT! A C OUT1 OUT2 OUT3 IN1 IN2 IN3 Dvojhodnotové vstupy 3x přepínač B D Senzor odpojitelné kabely trvalé propojení přes svorkovnici na multifunkční adaptér Schéma připojení panelu pro úlohu P "Spojení polovodičového senzoru s PC 9

Návod pro laboratorní úlohu: Komerční senzory plynů a jejich testování

Návod pro laboratorní úlohu: Komerční senzory plynů a jejich testování Návod pro laboratorní úlohu: Komerční senzory plynů a jejich testování Úkol měření: 1) Proměřte závislost citlivosti senzoru TGS na koncentraci vodíku 2) Porovnejte vaši citlivostní charakteristiku s charakteristikou

Více

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH Jan Hruška TV-FYZ Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách. Co je to vlastně elektrický proud? Na to

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Elektřina a magnetismus - elektrický náboj tělesa, elektrická síla, elektrické pole, kapacita vodiče - elektrický proud v látkách, zákony

Více

Polovodiče. Co je polovodič? Polovodiče jsou látky, jejichž rezistivita leží při obvyklých teplotách v intervalu 10 Ω m až 8

Polovodiče. Co je polovodič? Polovodiče jsou látky, jejichž rezistivita leží při obvyklých teplotách v intervalu 10 Ω m až 8 Polovodiče Co je polovodič? 4 Polovodiče jsou látky, jejichž rezistivita leží při obvyklých teplotách v intervalu 10 Ω m až 8 10 Ω m. Je tedy mnohem větší než u kovů, u kterých dosahuje intervalu 6 10

Více

Polovodičové prvky. V současných počítačových systémech jsou logické obvody realizovány polovodičovými prvky.

Polovodičové prvky. V současných počítačových systémech jsou logické obvody realizovány polovodičovými prvky. Polovodičové prvky V současných počítačových systémech jsou logické obvody realizovány polovodičovými prvky. Základem polovodičových prvků je obvykle čtyřmocný (obsahuje 4 valenční elektrony) krystal křemíku

Více

Virtuální instrumentace I. Měřicí technika jako součást automatizační techniky. Virtuální instrumentace. LabVIEW. měření je zdrojem informací:

Virtuální instrumentace I. Měřicí technika jako součást automatizační techniky. Virtuální instrumentace. LabVIEW. měření je zdrojem informací: Měřicí technika jako součást automatizační techniky měření je zdrojem informací: o stavu technologického zařízení a o průběhu výrobního procesu, tj. měření pro primární zpracování informací o bezpečnostních

Více

Úloha 5 Řízení teplovzdušného modelu TVM pomocí PC a mikropočítačové jednotky CTRL

Úloha 5 Řízení teplovzdušného modelu TVM pomocí PC a mikropočítačové jednotky CTRL VŠB-TUO 2005/2006 FAKULTA STROJNÍ PROSTŘEDKY AUTOMATICKÉHO ŘÍZENÍ Úloha 5 Řízení teplovzdušného modelu TVM pomocí PC a mikropočítačové jednotky CTRL SN 72 JOSEF DOVRTĚL HA MINH Zadání:. Seznamte se s teplovzdušným

Více

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 23. 1. 2009 Číslo: Kontroloval: Datum: 4 Pořadové číslo žáka: 24

Více

Chemická vazba Něco málo opakování Něco málo opakování Co je to atom? Něco málo opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího

Více

Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace)

Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace) Referát z atomové a jaderné fyziky Detekce ionizujícího záření (principy, technická realizace) Měřicí a výpočetní technika Šimek Pavel 5.7. 2002 Při všech aplikacích ionizujícího záření je informace o

Více

Technická specifikace LOGGERY D/R/S

Technická specifikace LOGGERY D/R/S Technická specifikace LOGGERY D/R/S Revision DD 280113-CZ D3633 (T+RH+DOTYKOVÁ SONDA) Str. 2 D3121 (T+RH+EXT. SONDA) Str. 4 D3120 (T+RH) Str. 6 S3121 (T+RH+EXT. SONDA) Str. 8 R3121 (T+RH+EXT. SONDA) Str.

Více

VY_32_INOVACE_06_III./2._Vodivost polovodičů

VY_32_INOVACE_06_III./2._Vodivost polovodičů VY_32_INOVACE_06_III./2._Vodivost polovodičů Vodivost polovodičů pojem polovodiče čistý polovodič, vlastní vodivost příměsová vodivost polovodičová dioda tranzistor Polovodiče Polovodiče jsou látky, jejichž

Více

VODIVOSTNÍ SENZOR PLYNŮ

VODIVOSTNÍ SENZOR PLYNŮ VODIVOSTNÍ SENZOR PLYNŮ 1 Vodivostní senzory V současnosti jsou k dispozici vodivostní (polovodičové) senzory pro detekci více než 150 různých plynů, včetně takových, které mohou být jinak detekovány pouze

Více

Návod pro laboratorní úlohu: Detekce plynů a par pomocí připravených vodivostních senzorů

Návod pro laboratorní úlohu: Detekce plynů a par pomocí připravených vodivostních senzorů Návod pro laboratorní úlohu: Detekce plynů a par pomocí připravených vodivostních senzorů Úkol měření: 1. Seznamte se s laboratorním plynovým senzorem, jeho uspořádáním, způsobem jeho přípravy a využitím.

Více

Charakteristiky optoelektronických součástek

Charakteristiky optoelektronických součástek FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Spolupracoval Jan Floryček Jméno a příjmení Jakub Dvořák Ročník 1 Měřeno dne Předn.sk.-Obor BIA 27.2.2007 Stud.skup. 13 Odevzdáno dne Příprava Opravy Učitel

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.3 Polovodiče a jejich využití Kapitola

Více

Přípravek pro demonstraci řízení pohonu MAXON prostřednictvím

Přípravek pro demonstraci řízení pohonu MAXON prostřednictvím Přípravek pro demonstraci řízení pohonu MAXON prostřednictvím karty Humusoft MF624. (Jan Babjak) Popis přípravku Pro potřeby výuky na katedře robototechniky byl vyvinut přípravek umožňující řízení pohonu

Více

Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice 2 Číslo úlohy : 1

Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice 2 Číslo úlohy : 1 Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice Číslo úlohy : 1 Název úlohy : Vypracoval : ročník : 3 skupina : F-Zt Vnější podmínky měření : měřeno dne : 3.. 004 teplota : C tlak

Více

9. ČIDLA A PŘEVODNÍKY

9. ČIDLA A PŘEVODNÍKY Úvod do metrologie - 49-9. ČIDLA A PŘEVODNÍKY (V.LYSENKO) Čidlo (senzor, detektor, receptor) je em jedné fyzikální veličiny na jinou fyzikální veličinu. Snímač (senzor + obvod pro zpracování ) je to člen

Více

Bezpečnostní inženýrství. - Detektory požárů a senzory plynů -

Bezpečnostní inženýrství. - Detektory požárů a senzory plynů - Bezpečnostní inženýrství - Detektory požárů a senzory plynů - Úvod 2 Včasná detekce požáru nebo úniku nebezpečných látek = důležitá součást bezpečnostního systému Základní požadavky včasná detekce omezení

Více

Číslicový zobrazovač CZ 5.7

Číslicový zobrazovač CZ 5.7 Určení - Číslicový zobrazovač CZ 5.7 pro zobrazování libovolné veličiny, kterou lze převést na elektrický signál, přednostně 4 až 20 ma. Zobrazovaná veličina může být až čtyřmístná, s libovolnou polohou

Více

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Číslo projektu Číslo materiálu Název školy CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_15_OC_1.01 Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor Tématický celek Ing. Zdenka

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3665 Šablona: III/2 č. materiálu: VY_32_INOVACE_127 Jméno autora: Mgr. Eva Mohylová Třída/ročník:

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřený předmětem jsou v tomto případě polovodičové diody, jejich údaje jsou uvedeny v tabulce:

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřený předmětem jsou v tomto případě polovodičové diody, jejich údaje jsou uvedeny v tabulce: REDL 3.EB 8 1/14 1.ZADÁNÍ a) Změřte voltampérovou charakteristiku polovodičových diod pomocí voltmetru a ampérmetru v propustném i závěrném směru. b) Sestrojte grafy =f(). c) Graficko početní metodou určete

Více

Měřicí řetězec. měřicí zesilovač. převod na napětí a přizpůsobení rozsahu převodníku

Měřicí řetězec. měřicí zesilovač. převod na napětí a přizpůsobení rozsahu převodníku Měřicí řetězec fyzikální veličina snímač měřicí zesilovač A/D převodník počítač převod fyz. veličiny na elektrickou (odpor, proud, napětí, kmitočet...) převod na napětí a přizpůsobení rozsahu převodníku

Více

Návod pro laboratorní úlohu: Závislost citlivosti plynových vodivostních senzorů na teplotě

Návod pro laboratorní úlohu: Závislost citlivosti plynových vodivostních senzorů na teplotě Návod pro laboratorní úlohu: Závislost citlivosti plynových vodivostních senzorů na teplotě Náplní laboratorní úlohy je proměření základních parametrů plynových vodivostních senzorů: i) el. odpor a ii)

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

TP 304337/b P - POPIS ARCHIVACE TYP 457 - Měřič INMAT 57 a INMAT 57D

TP 304337/b P - POPIS ARCHIVACE TYP 457 - Měřič INMAT 57 a INMAT 57D Měřič tepla a chladu, vyhodnocovací jednotka průtoku plynu INMAT 57S a INMAT 57D POPIS ARCHIVACE typ 457 OBSAH Možnosti archivace v měřiči INMAT 57 a INMAT 57D... 1 Bilance... 1 Uživatelská archivace...

Více

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (40) Zveřejněno 31 07 79 N

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (40) Zveřejněno 31 07 79 N ČESKOSLOVENSKÁ SOCIALISTICKÁ R E P U B L I K A (19) POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ 196670 (11) (Bl) (51) Int. Cl. 3 H 01 J 43/06 (22) Přihlášeno 30 12 76 (21) (PV 8826-76) (40) Zveřejněno 31 07

Více

4.3.2 Vlastní a příměsové polovodiče

4.3.2 Vlastní a příměsové polovodiče 4.3.2 Vlastní a příměsové polovodič Přdpoklady: 4204, 4207, 4301 Pdagogická poznámka: Pokud budt postupovat normální rychlostí, skončít u ngativní vodivosti. Nní to žádný problém, pozitivní vodivost si

Více

FET Field Effect Transistor unipolární tranzistory - aktivní součástky unipolární využívají k činnosti vždy jen jeden druh majoritních nosičů

FET Field Effect Transistor unipolární tranzistory - aktivní součástky unipolární využívají k činnosti vždy jen jeden druh majoritních nosičů FET Field Effect Transistor unipolární tranzistory - aktivní součástky unipolární využívají k činnosti vždy jen jeden druh majoritních nosičů (elektrony nebo díry) pracují s kanálem jednoho typu vodivosti

Více

APOSYS 10. Kompaktní mikroprocesorový regulátor APOSYS 10. MAHRLO s.r.o. Ľudmily Podjavorinskej 535/11 916 01 Stará Turá

APOSYS 10. Kompaktní mikroprocesorový regulátor APOSYS 10. MAHRLO s.r.o. Ľudmily Podjavorinskej 535/11 916 01 Stará Turá APOSYS 10 Kompaktní mikroprocesorový regulátor APOSYS 10 Popis dvojitý čtyřmístný displej LED univerzální vstup s galvanickým oddělením regulační výstupy reléové regulace: on/off, proporcionální, PID,

Více

Měření teploty, tlaku a vlhkosti vzduchu s přenosem dat přes internet a zobrazování na WEB stránce

Měření teploty, tlaku a vlhkosti vzduchu s přenosem dat přes internet a zobrazování na WEB stránce ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Katedra mikroelektroniky Měření teploty, tlaku a vlhkosti vzduchu s přenosem dat přes internet a zobrazování na WEB stránce Zadání Stávající

Více

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK Základními vlastnosti pevných látek jsou KRYSTALICKÉ A AMORFNÍ LÁTKY Jak vzniká pevná látka z kapaliny Krystalické látky se vyznačují uspořádáním Dělíme je na 2 základní

Více

- Stabilizátory se Zenerovou diodou - Integrované stabilizátory

- Stabilizátory se Zenerovou diodou - Integrované stabilizátory 1.2 Stabilizátory 1.2.1 Úkol: 1. Změřte VA charakteristiku Zenerovy diody 2. Změřte zatěžovací charakteristiku stabilizátoru se Zenerovou diodou 3. Změřte převodní charakteristiku stabilizátoru se Zenerovou

Více

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu:

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: 1 Pracovní úkol 1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: (a) platinovýodporovýteploměr(určetekonstanty R 0, A, B). (b) termočlánek měď-konstantan(určete konstanty a, b,

Více

Ústav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů

Ústav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů Ústav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů Návod na laboratorní úlohu Měření plynem indukovaných změn voltampérových charakteristik chemických vodivostních senzorů 1. Úvod

Více

MĚŘENÍ A REGULACE TEPLOTY V LABORATORNÍ PRAXI

MĚŘENÍ A REGULACE TEPLOTY V LABORATORNÍ PRAXI MĚŘENÍ A REGULACE TEPLOTY V LABORATORNÍ PRAXI Jaromír Škuta a Lubomír Smutný b a) VŠB-Technická Univerzita Ostrava, 17. listopadu 15, 708 33 Ostrava - Poruba, ČR, jaromir.skuta@vsb.cz b) VŠB-Technická

Více

A:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení)

A:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení) A:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení) Vypracoval : Martin Dlouhý Osobní číslo : A8B268P A:Měření odporových teploměrů v ultratermostatu

Více

Použití. Výhody. Popis. Certifikace. Převodník vodivosti ZEPACOND 800

Použití. Výhody. Popis. Certifikace. Převodník vodivosti ZEPACOND 800 str. 1/8 Použití převodník je určen k měření měrné elektrické vodivosti roztoků pomocí elektrodových i bezelektrodových (indukčních) roztoků a prostřednictvím měření vodivosti k případnému určení koncentrace

Více

Laboratorní práce č. 3: Určení voltampérové charakteristiky polovodičové diody

Laboratorní práce č. 3: Určení voltampérové charakteristiky polovodičové diody Přírodní vědy moderně a interaktivně FYZIKA 2. ročník šestiletého studia Laboratorní práce č. 3: Určení voltampérové charakteristiky polovodičové diody G Gymnázium Hranice Přírodní vědy moderně a interaktivně

Více

Ročník VIII. Chemie. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed.

Ročník VIII. Chemie. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed. Úvod IX. -ukázka chem.skla přírodní věda, poznat chemické sklo a pomůcky, zásady bezpečné práce-práce s dostupnými a běžně používanými látkami, hodnocení jejich rizikovosti, posoudí bezpečnost vybraných

Více

Kompaktní mikroprocesorový regulátor MRS 04

Kompaktní mikroprocesorový regulátor MRS 04 Kompaktní mikroprocesorový regulátor MRS 04 Dvojitý čtyřmístný displej LED Čtyři vstupy Čtyři výstupy Regulace: on/off, proporcionální, PID, PID třístavová Přístupové heslo Alarmové funkce Přiřazení vstupu

Více

Elektronika pro informační technologie (IEL)

Elektronika pro informační technologie (IEL) Elektronika pro informační technologie (IEL) Druhé laboratorní cvičení Vysoké učení technické v Brně, Fakulta informačních technologií v Brně Božetěchova 2, 612 66 Brno Cvičící: Petr Veigend (iveigend@fit.vutbr.cz)

Více

Profilová část maturitní zkoušky 2013/2014

Profilová část maturitní zkoušky 2013/2014 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2013/2014 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA

Více

BASPELIN MRP Popis obsluhy indikační a řídicí jednotky MRP T2

BASPELIN MRP Popis obsluhy indikační a řídicí jednotky MRP T2 Baspelin, s.r.o. Hálkova 10 614 00 BRNO tel. + fax: 545 212 382 tel.: 545212614 e-mail: info@baspelin.cz http://www.baspelin.cz BASPELIN MRP Popis obsluhy indikační a řídicí jednotky MRP T2 květen 2004

Více

Praktické měřící rozsahy 50-4000, 50-8000, 50-16000 50-32000, 50-64000 ot/min Přesnost měření 0.02%

Praktické měřící rozsahy 50-4000, 50-8000, 50-16000 50-32000, 50-64000 ot/min Přesnost měření 0.02% Číslicový otáčkoměr TD 5.2A varianta pro napojení na řídící systém SIMATIC zakázka Vítkovice - neplatí kapitola o programování, tento typ nelze programovat ani z klávesnice ani po seriové lince z PC. Určení

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup ELEKTONIKA I N V E S T I C E D O O Z V O J E V Z D Ě L Á V Á N Í 1. Usměrňování a vyhlazování střídavého a. jednocestné usměrnění Do obvodu střídavého proudu sériově připojíme diodu. Prochází jí proud

Více

Sekvenční logické obvody

Sekvenční logické obvody Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

Ústav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů

Ústav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů Ústav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů Návod na laboratorní úlohu Detekce nízkých koncentrací plynů pomocí chemických vodivostních senzorů Úvod Chemické vodivostní senzory

Více

EU peníze středním školám digitální učební materiál

EU peníze středním školám digitální učební materiál EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky

Více

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Práce a energie, tepelné jevy, elektrický proud, zvukové jevy Tercie 1+1 hodina týdně Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika

Více

SNÍMAČE PRO MĚŘENÍ TEPLOTY

SNÍMAČE PRO MĚŘENÍ TEPLOTY SNÍMAČE PRO MĚŘENÍ TEPLOTY 10.1. Kontaktní snímače teploty 10.2. Bezkontaktní snímače teploty 10.1. KONTAKTNÍ SNÍMAČE TEPLOTY Experimentální metody přednáška 10 snímač je připevněn na měřený objekt 10.1.1.

Více

Měřící a senzorová technika

Měřící a senzorová technika VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ Měřící a senzorová technika Semestrální projekt Vypracovali: Petr Osadník Akademický rok: 2006/2007 Semestr: zimní Původní zadání úlohy

Více

Měřicí přístroje a měřicí metody

Měřicí přístroje a měřicí metody Měřicí přístroje a měřicí metody Základní elektrické veličiny určují kvalitativně i kvantitativně stav elektrických obvodů a objektů. Neelektrické fyzikální veličiny lze převést na elektrické veličiny

Více

Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal.

Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal. Chemická vazba Volné atomy v přírodě jen zcela výjimečně (vzácné plyny). Atomy prvků mají snahu se navzájem slučovat a vytvářet molekuly prvků nebo sloučenin. Atomy jsou v molekulách k sobě poutány chemickou

Více

Základní druhy tranzistorů řízených elektrickým polem: Technologie výroby: A) 1. : A) 2. : B) 1. :

Základní druhy tranzistorů řízených elektrickým polem: Technologie výroby: A) 1. : A) 2. : B) 1. : ZADÁNÍ: Změřte výstupní a převodní charakteristiky unipolárního tranzistoru KF 520. Z naměřených charakteristik určete v pracovním bodě strmost S, vnitřní odpor R i a zesilovací činitel µ. Určete katalogové

Více

VODIVOST x REZISTIVITA

VODIVOST x REZISTIVITA VODIVOST x REZISTIVITA Ohmův v zákon: z U = I.R = ρ.l.i / S napětí je přímo úměrné proudu, který vodičem prochází drát délky l a průřezu S, mezi jehož konci je napětí U ρ převrácená hodnota měrné ele.

Více

Chemie - 3. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. očekávané výstupy RVP. témata / učivo. očekávané výstupy ŠVP.

Chemie - 3. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. očekávané výstupy RVP. témata / učivo. očekávané výstupy ŠVP. očekávané výstupy RVP témata / učivo Chemie - 3. ročník Žák: očekávané výstupy ŠVP přesahy, vazby, mezipředmětové vztahy průřezová témata 1.1., 1.2., 1.3., 1.4., 2.1. 1. Látky přírodní nebo syntetické

Více

Vizualizace v provozech povrchových úprav

Vizualizace v provozech povrchových úprav Vizualizace v provozech povrchových úprav Zdeněk Čabelický, AITEC s.r.o., Ledeč nad Sázavou Aplikace systémů ASŘ v provozech povrchových úprav v současné době nabývá na významu. V podstatě každá větší

Více

Účinky elektrického proudu. vzorová úloha (SŠ)

Účinky elektrického proudu. vzorová úloha (SŠ) Účinky elektrického proudu vzorová úloha (SŠ) Jméno Třída.. Datum.. 1. Teoretický úvod Elektrický proud jako jev je tvořen uspořádaným pohybem volných částic s elektrickým nábojem. Elektrický proud jako

Více

VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl

VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl Číslo projektu CZ.1.07/1.5.00/34.0581 Číslo materiálu VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

Úvod do moderní fyziky. lekce 9 fyzika pevných látek (vedení elektřiny v pevných látkách)

Úvod do moderní fyziky. lekce 9 fyzika pevných látek (vedení elektřiny v pevných látkách) Úvod do moderní fyziky lekce 9 fyzika pevných látek (vedení elektřiny v pevných látkách) krystalické pevné látky pevné látky, jejichž atomy jsou uspořádány do pravidelné 3D struktury zvané mřížka, každý

Více

Praktický kurz Monitorování hladiny metalothioneinu po působení iontů těžkých kovů Vyhodnocení měření

Praktický kurz Monitorování hladiny metalothioneinu po působení iontů těžkých kovů Vyhodnocení měření Laboratoř Metalomiky a Nanotechnologií Praktický kurz Monitorování hladiny metalothioneinu po působení iontů těžkých kovů Vyhodnocení měření Vyučující: Ing. et Ing. David Hynek, Ph.D., Prof. Ing. René

Více

Základy logického řízení

Základy logického řízení Základy logického řízení 11/2007 Ing. Jan Vaňuš, doc.ing.václav Vrána,CSc. Úvod Řízení = cílené působení řídicího systému na řízený objekt je členěno na automatické a ruční. Automatickéřízení je děleno

Více

Určení čtyřpólových parametrů tranzistorů z charakteristik a ze změn napětí a proudů

Určení čtyřpólových parametrů tranzistorů z charakteristik a ze změn napětí a proudů Určení čtyřpólových parametrů tranzistorů z charakteristik a ze změn napětí a proudů Tranzistor je elektronická aktivní součástka se třemi elektrodami.podstatou jeho funkce je transformace odporu mezi

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

ZOBRAZOVACÍ JEDNOTKA

ZOBRAZOVACÍ JEDNOTKA ZOBRAZOVACÍ JEDNOTKA TYP 2107 Technická dokumentace Výrobce: Ing.Radomír Matulík,Nad Hřištěm 206, 765 02 Otrokovice, http://www.aterm.cz 1 1. Obecný popis Zobrazovací jednotka typ 2107 je určena pro zobrazení

Více

Elektřina a magnetizmus závěrečný test

Elektřina a magnetizmus závěrečný test DUM Základy přírodních věd DUM III/2-T3-20 Téma: závěrečný test Střední škola Rok: 2012 2013 Varianta: TEST - A Zpracoval: Mgr. Pavel Hrubý a Mgr. Josef Kormaník TEST Elektřina a magnetizmus závěrečný

Více

Vazby v pevných látkách

Vazby v pevných látkách Vazby v pevných látkách Hlavní body 1. Tvorba pevných látek 2. Van der Waalsova vazba elektrostatická interakce indukovaných dipólů 3. Iontová vazba elektrostatická interakce iontů 4. Kovalentní vazba

Více

Příloha č. 3 TECHNICKÉ PARAMETRY PRO DODÁVKU TECHNOLOGIE: UNIVERZÁLNÍ MĚŘICÍ ÚSTŘEDNA

Příloha č. 3 TECHNICKÉ PARAMETRY PRO DODÁVKU TECHNOLOGIE: UNIVERZÁLNÍ MĚŘICÍ ÚSTŘEDNA Příloha č. 3 TECHNICKÉ PARAMETRY PRO DODÁVKU TECHNOLOGIE: UNIVERZÁLNÍ MĚŘICÍ ÚSTŘEDNA 1. Technická specifikace Možnost napájení ze sítě nebo akumulátoru s UPS funkcí - alespoň 2 hodiny provozu z akumulátorů

Více

MĚŘENÍ TEPLOTY TERMOČLÁNKY

MĚŘENÍ TEPLOTY TERMOČLÁNKY MĚŘENÍ TEPLOTY TERMOČLÁNKY Úkoly měření: 1. Změřte napětí termočlánku a) přímo pomocí ručního multimetru a stolního multimetru U3401A. Při výpočtu teploty uvažte skutečnou teplotu srovnávacího spoje termočlánku,

Více

5. MĚŘENÍ TEPLOTY TERMOČLÁNKY

5. MĚŘENÍ TEPLOTY TERMOČLÁNKY . MĚŘENÍ TEPLOTY TEMOČLÁNKY Úkol měření Ověření funkce dvoudrátového převodníku XT pro měření teploty termoelektrickými články (termočlánky) a kompenzace studeného konce polovodičovým přechodem PN.. Ověřte

Více

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

Molekulová spektroskopie 1. Chemická vazba, UV/VIS Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická

Více

Manuál k obsluze simulátoru KKK ELO 2011 pro studenty, popis laboratorní úlohy

Manuál k obsluze simulátoru KKK ELO 2011 pro studenty, popis laboratorní úlohy Manuál k obsluze simulátoru KKK ELO 2011 pro studenty, popis laboratorní úlohy 1. Koncepce simulátoru a řídicího systému Uspřádání testovacího zařízení je navrženo tak, aby bylo možné nezávisle ovládat

Více

Architektura počítačů

Architektura počítačů Architektura počítačů Studijní materiál pro předmět Architektury počítačů Ing. Petr Olivka katedra informatiky FEI VŠB-TU Ostrava email: petr.olivka@vsb.cz Ostrava, 2010 1 1 Architektura počítačů Pojem

Více

2. MĚŘENÍ TEPLOTY TERMOČLÁNKY

2. MĚŘENÍ TEPLOTY TERMOČLÁNKY 2. MĚŘENÍ TEPLOTY TERMOČLÁNKY Otázky k úloze (domácí příprava): Jaká je teplota kompenzačního spoje ( studeného konce ), na kterou koriguje kompenzační krabice? Dá se to zjistit jednoduchým měřením? Čemu

Více

AD4RS. měřící převodník. 4x vstup pro měření unifikovaného signálu 0 10 V, 0 20 ma, 4 20 ma. komunikace linkami RS232 nebo RS485

AD4RS. měřící převodník. 4x vstup pro měření unifikovaného signálu 0 10 V, 0 20 ma, 4 20 ma. komunikace linkami RS232 nebo RS485 měřící převodník 4x vstup pro měření unifikovaného signálu 0 10 V, 0 20 ma, 4 20 ma komunikace linkami RS232 nebo RS485. Katalogový list Vytvořen: 4.5.2007 Poslední aktualizace: 15.6 2009 09:58 Počet stran:

Více

3.5. Vedení proudu v polovodičích

3.5. Vedení proudu v polovodičích 3.5. Vedení proudu v polovodičích 1. Umět klasifikovat látky podle vodivosti. 2. Seznámit se s fyzikálními vlastnostmi polovodičů, jejíž poznání vedlo k bouřlivému pokroku v elektronickém průmyslu. 3.5.1.

Více

VY_32_INOVACE_E 15 03

VY_32_INOVACE_E 15 03 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

Otázka č. 3 - BEST Aktivní polovodičové součástky BJT, JFET, MOSFET, MESFET struktury, vlastnosti, aplikace Vypracovala Kristýna

Otázka č. 3 - BEST Aktivní polovodičové součástky BJT, JFET, MOSFET, MESFET struktury, vlastnosti, aplikace Vypracovala Kristýna Otázka č. 3 - BEST Aktivní polovodičové součástky BJT, JFET, MOSFET, MESFET struktury, vlastnosti, aplikace Vypracovala Kristýna Tato otázka přepokládá znalost otázky č. - polovodiče. Doporučuji ujasnit

Více

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec ISŠT Mělník Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace CZ.1.07/1.5.00/34.0061 VY_32_ INOVACE_C.3.05 Integrovaná střední škola technická Mělník, K učilišti 2566,

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XI Název: Charakteristiky diody Pracoval: Pavel Brožek stud. skup. 12 dne 9.1.2009 Odevzdal

Více

d p o r o v t e p l o m ě r, t e r m o č l á n k

d p o r o v t e p l o m ě r, t e r m o č l á n k d p o r o v t e p l o m ě r, t e r m o č l á n k Ú k o l : a) Proveďte kalibraci odporového teploměru, termočlánku a termistoru b) Určete teplotní koeficienty odporového teploměru, konstanty charakterizující

Více

DUM VY_52_INOVACE_12CH27

DUM VY_52_INOVACE_12CH27 Základní škola Kaplice, Školní 226 DUM VY_52_INOVACE_12CH27 autor: Kristýna Anna Rolníková období vytvoření: říjen 2011 duben 2012 ročník, pro který je vytvořen: 9. vzdělávací oblast: vzdělávací obor:

Více

Otázka: Vodík. Předmět: Chemie. Přidal(a): Anonym. Základní charakteristika

Otázka: Vodík. Předmět: Chemie. Přidal(a): Anonym. Základní charakteristika Otázka: Vodík Předmět: Chemie Přidal(a): Anonym Základní charakteristika Mezinárodní název: hydrogenium První člen periodické soustavy prvků Tvoří základ veškeré živé hmoty Izotopy vodíku Lehký vodík (protium)

Více

Skupenské stavy látek. Mezimolekulární síly

Skupenské stavy látek. Mezimolekulární síly Skupenské stavy látek Mezimolekulární síly 1 Interakce iont-dipól Např. hydratační (solvatační) interakce mezi Na + (iont) a molekulou vody (dipól). Jde o nejsilnější mezimolekulární (nevazebnou) interakci.

Více

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry 18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry Digitální voltmetry Základním obvodem digitálních voltmetrů je A/D

Více

2.9 Vnitřní paměti. Střední průmyslová škola strojnická Vsetín. Ing. Martin Baričák. Název šablony Název DUMu. Předmět Druh učebního materiálu

2.9 Vnitřní paměti. Střední průmyslová škola strojnická Vsetín. Ing. Martin Baričák. Název šablony Název DUMu. Předmět Druh učebního materiálu Název školy Číslo projektu Autor Název šablony Název DUMu Tematická oblast Předmět Druh učebního materiálu Anotace Vybavení, pomůcky Ověřeno ve výuce dne, třída Střední průmyslová škola strojnická Vsetín

Více

PRINCIP MĚŘENÍ TEPLOTY spočívá v porovnání teploty daného tělesa s definovanou stupnicí.

PRINCIP MĚŘENÍ TEPLOTY spočívá v porovnání teploty daného tělesa s definovanou stupnicí. 1 SENZORY TEPLOTY TEPLOTA je jednou z nejdůležitějších veličin ovlivňujících téměř všechny stavy a procesy v přírodě Ke stanovení teploty se využívá závislosti určitých fyzikálních veličin na teplotě (A

Více

Učební texty Diagnostika II. snímače 7.

Učební texty Diagnostika II. snímače 7. Předmět: Ročník: Vytvořil: Datum: Praxe 4. ročník Fleišman Luděk 28.5.2013 Název zpracovaného celku: Učební texty Diagnostika II. snímače 7. Snímače plynů, měřiče koncentrace Koncentrace látky udává, s

Více

Pracovní list žáka (ZŠ)

Pracovní list žáka (ZŠ) Pracovní list žáka (ZŠ) Účinky elektrického proudu Jméno Třída.. Datum.. 1. Teoretický úvod Elektrický proud jako jev je tvořen uspořádaným pohybem volných částic s elektrickým nábojem. Elektrický proud

Více

Elektrické vlastnosti pevných látek

Elektrické vlastnosti pevných látek Elektrické vlastnosti pevných látek elektrická vodivost gradient vnějšího elektrického pole vyvolá přenos náboje volnými nositeli (elektrony, díry, ionty) měrná vodivost = e n n e p p [ -1 m -1 ] Kovy

Více

D/A převodník se dvěma napěťovými nebo proudovými výstupy. (0 10 V, 0 5 V, ±10 V, ±5 V, 4 20 ma, 0 20 ma, 0 24 ma)

D/A převodník se dvěma napěťovými nebo proudovými výstupy. (0 10 V, 0 5 V, ±10 V, ±5 V, 4 20 ma, 0 20 ma, 0 24 ma) D/A převodník D/A převodník se dvěma napěťovými nebo proudovými výstupy (0 10 V, 0 5 V, ±10 V, ±5 V, 4 20 ma, 0 20 ma, 0 24 ma) Komunikace linkami RS232 nebo RS485 28. ledna 2016 w w w. p a p o u c h.

Více

1. Kondenzátory s pevnou hodnotou kapacity Pevné kondenzátory se vyrábí jak pro vývodovou montáž, tak i miniatrurizované pro povrchovou montáž SMD.

1. Kondenzátory s pevnou hodnotou kapacity Pevné kondenzátory se vyrábí jak pro vývodovou montáž, tak i miniatrurizované pro povrchovou montáž SMD. Kondenzátory Kondenzátory jsou pasivní elektronické součástky vyrobené s hodnotou kapacity udané výrobcem. Na součástce se udává kapacita [F] a jmenovité napětí [V], které udává maximální napětí, které

Více

Teplota. fyzikální veličina značka t

Teplota. fyzikální veličina značka t Teplota fyzikální veličina značka t Je to vlastnost předmětů a okolí, kterou je člověk schopen vnímat a přiřadit jí pocity studeného, teplého či horkého. Jak se tato vlastnost jmenuje? Teplota Naše pocity

Více

HUMISTAR BŘEZEN 2009 PŘEVODNÍKY RELATIVNÍ VLHKOSTI A TEPLOTY. řady HWPA 12 pro nástěnnou montáž URČENÍ POPIS

HUMISTAR BŘEZEN 2009 PŘEVODNÍKY RELATIVNÍ VLHKOSTI A TEPLOTY. řady HWPA 12 pro nástěnnou montáž URČENÍ POPIS HUMISTAR BŘEZEN 2009 URČENÍ PŘEVODNÍKY RELATIVNÍ VLHKOSTI A TEPLOTY řady HWPA 12 pro nástěnnou montáž Převodníky vlhkosti a teploty řady HWPA 12 se používají ke kontinuálnímu měření vlhkosti a teploty

Více

11. Polovodičové diody

11. Polovodičové diody 11. Polovodičové diody Polovodičové diody jsou součástky, které využívají fyzikálních vlastností přechodu PN nebo přechodu kov - polovodič (MS). Nelinearita VA charakteristiky, zjednodušeně chápaná jako

Více

LabMeredian Plus základní kurz

LabMeredian Plus základní kurz LabMeredian Plus základní kurz Program LabMeredian Plus 2 je součástí projektu LabMeredian. Může však být provozován i zcela samostatně. LabMeredian Plus je určen pro napojení k různým typům laboratorních

Více