3. Exploze tanku Tryskavý požár Požár...6

Rozměr: px
Začít zobrazení ze stránky:

Download "3. Exploze tanku...4. 4. Tryskavý požár...4. 5. Požár...6"

Transkript

1 Obsah Části 3 3 / i Část 3 Technická příloha OBSAH ČÁSTI 3 1. Požár kaluže Úvod Odhad doby trvání požáru Metoda pro odhad dosahů projevů Odhad průměru kaluže Volba prahu snesitelné intenzity tepelného toku Volba diagramu pro odečtení hodnoty podle dané látky Určení vzdálenosti, ve které je dosaženo radiačního prahu Požár tanku Exploze tanku Tryskavý požár Požár BLEVE Úvod Metoda pro odhad dosahů projevů Odhad tlakových projevů Odhad vzdálenosti účinků letících trosek Odhad tepelných účinků BLEVE Exploze a letící trosky Vzkypění VCE Úvod Metoda pro odhad dosahů projevů Exploze pevných látek a prachová exploze Třídy nebezpečnosti pro některé látky...13

2 Obsah Části 3 3 / ii 12. Použití metodologie na fiktivním příkladu Popis průmyslové oblasti Objekt A Objekt B Objekt C Identifikace dominoefektů použití metody Použití metody Analýza výsledkových tabulek Odkazy k Části

3 3 / 1 Tato Technická příloha má za úkol pomoci s použitím metodologie pro studium dominoefektů. Je v ní uvedeno několik metod pro stanovení dosahů projevů spojených s nejdůležitějšími uvažovanými haváriemi (požár kaluže, požár tanku, exploze tanku, tryskavý požár, BLEVE, ). Rovněž je v ní seznam nebezpečných látek s jejich kódy nebezpečnosti (klasifikace podle Guide des Pompiers de Genève [1]). Nakonec je předveden fiktivní ilustrativní příklad na použití metodologie pro studium synergických a kumulativních jevů. 1. Požár kaluže 1.1 Úvod Požár kaluže se musí brát v úvahu, pokud jsou splněny následující podmínky: Uniklá látka je hořlavá a patří do třídy hořlavosti 1, 2, 3 nebo 4 (viz seznam nebezpečných látek v kapitole 11 nebo Guide des Pompiers de Genève [1]). Látky patřící do třídy 1 se berou v úvahu pouze tehdy, pokud jsou užívány při teplotě vyšší než je jejich bod vzplanutí. Množství látky musí být takové, že by požár trval alespoň 10 až 15 minut. 1.2 Odhad doby trvání požáru Metoda odhadu doby trvání požáru je založena na znalosti rychlosti odhořívání m (kg/m 2 s) uvažované látky. Následující tabulka uvádí hodnoty pro některé zkapalněné plyny, uhlovodíky a alkoholy [2], [3]. Látka Zkapalněné plyny Rychlost odhořívání m (kg/m 2 s) LNG 0,078 LPG 0,099 Uhlovodíky butan 0,078 hexan 0,074 heptan 0,101 benzen 0,085 benzín 0,055 Alkoholy metanol 0,017 etanol 0,015 Dále je popsána metoda pro výpočet doby trvání požáru:

4 3 / 2 1. Odhadni povrch kaluže S podle celkové uniklé hmotnosti m r (viz kapitolu 1.3.1). Pro tlakem zkapalněné plyny je hustota brána při bodu varu, pro ostatní látky při teplotě okolí. 2. Vypočítej odhořenou hmotnost za daný časový interval dt: m c = m. S. dt. 3. Vypočítej zbývající hmotnost: m r = m T m c. 4. Odhadni nový povrch kaluže (podle zbývající hmotnosti). 5. Jdi na následující časový krok. Pokud je povrch kaluže větší než daný limit (např. 5 m 2 ), kroky 2 až 5 se opakují. Odhadovaná doba trvání požáru je součtem časových kroků. Pokud je doba trvání kratší než 10 až 15 minut, položka nebude považována jako nebezpečná z hlediska požáru kaluže. Nicméně tato položka by mohla být vybrána na základě dalšího kritéria (např. možnost vzniku VCE). 1.3 Metoda pro odhad dosahů projevů Odhad dosahů projevů v důsledku požáru kaluže se provádí podle čtyř kroků: 1. Odhad průměru požáru kaluže; 2. Výběr snesitelného radiačního prahu podle typu sekundární položky a podle přítomných bezpečnostních systémů na této položce ; 3. Volba diagramu pro odečtení hodnoty podle dané látky; 4. Určení vzdálenosti, ve které je dosaženo radiačního prahu Odhad průměru kaluže Průměr požáru kaluže může být odhadnut následovně: je roven průměru tanku, pokud uvažujeme požár tanku; pokud existuje záchytná jímka, ekvivalentní průměr se počítá podle vzorce: D = 4 Povrch záchytné jímky Obvod záchytné jímky pokud záchytná jímka neexistuje, kaluž se považuje za kruhovou a její průměr se odhaduje následovně: o Pokud se kaluž rozlévá, má tendenci rychle dosáhnout minimální výšky v závislosti na druhu a kvalitě podložky. Následující tabulka uvádí tloušťku kaluže pro některé typy podložek [4]. Pro nedostatek přesných dat o povaze podložky se považuje beton za podložku s největším stupněm rozlití kaluže (h min = 1 cm). Povaha podložky h min (cm) Beton 1 Průměrná půda 3

5 3 / 3 Povaha podložky h min (cm) Suchá písčitá půda 20 Humózní písčitá půda 15 Štěrkovitá půda 5 o Průměr kaluže se pak může vypočítat z maximálního objemu látky uniklého při havárii: Průměr = 2 objem π h min o Maximální objem látky uniklé při havárii se může odhadnout následovně: v případě tanku to je objem uniklý během půl hodiny z největšího potrubí po jeho gilotinovém roztětí; v případě potrubí je maximální objem buď objem potrubí mezi dvěma ventily (pokud funguje samouzavírací bezpečnostní systém), nebo objem látky uniklý při jmenovitém průtoku během půl hodiny. Poznámka: V případě tlakem zkapalněného plynu se maximální množství schopné vytvořit kaluž rovná množství uniklému při havárii minus množství mžikově odpařené při ústí úniku z tanku nebo potrubí (např. pro propan se mžikově odpaří kolem 35%) Volba prahu snesitelné intenzity tepelného toku Podle literatury [5] uvádí následující tabulka horní hodnoty snesitelné intenzity tepelného toku podle typu sekundární položky vystavené požáru kaluže a podle bezpečnostních systémů přítomných na této položce. Sekundární položka Horní hodnota intenzity tepelného toku pro nechráněnou položku ( Horní hodnota intenzity tepelného toku pro chráněnou položku * ( Tlakové skladování 8 44 Atmosférické skladování Skladování s podchlazením Výrobní 8 32 Zařízení pro stáčení / 8 - čerpání * Položka chráněná vodní tříští, izolací, tepelnou protiradiační zástěnou nebo podobnými systémy.

6 3 / Volba diagramu pro odečtení hodnoty podle dané látky Diagramy jsou sestrojeny pro odhad vzdálenosti kolem požáru kaluže, ve které je dosaženo prahové intenzity tepelného toku, která je schopna způsobit sekundární havárie. Tyto diagramy jsou typické pro obecné kategorie látek jako: lehké uhlovodíky; oxidy a látky obsahující dusík (etylenoxid, propylenoxid, akrylonitril); alkoholy a aldehydy (metanol, směs formaldehyd-metanol, ); benzíny; topné oleje; V praxi se vybere diagram určité kategorie látek, které mají fyzikálněchemické vlastnosti nejblíže vlastnostem uvažované hořící látky Určení vzdálenosti, ve které je dosaženo radiačního prahu Na následujících dvou obrázcích jsou uvedeny diagramy pro odhad vzdálenosti dosažení radiačního prahu pro lehké uhlovodíky a benzíny. Další diagramy mohou být odvozeny obdobně. Je třeba poznamenat, že tyto diagramy umožňují v závislosti na ekvivalentním průměru kaluže snadné určení vzdálenosti od středu kaluže, ve které je dosaženo tepelně radiačního prahu. 2. Požár tanku Podmínky, za kterých uvažujeme požár tanku, jsou stejné jako pro požár kaluže. Rovněž určení dosahů projevů pro požár tanku je podobné těm, které byly užity pro požár kaluže. V tomto případě je průměr kaluže nahrazen průměrem tanku (pokud je to nezbytné, musí být brána v úvahu výška plamene nad zemí). 3. Exploze tanku U exploze tanku jsou uvažovány pouze účinky letících trosek. Určení vzdálenosti účinků letících trosek je uvedeno v kapitole Tryskavý požár Délka plamene u tryskavého požáru obvykle nepřesáhne 50 m [5]. Povrchová intenzita tepelného toku může dosáhnout až 250 kw/m 2 [5]. Nicméně se zdá, že intenzita tepelného toku se snižuje poměrně rychle s rostoucí vzdáleností od plamene [6]: hodnota intenzity tepelného toku 15 kw/m 2 je dosažena přibližně 50 m od plamene. Tak je pro maximální délku plamene 50 m hrubý odhad dosahu projevu asi 100 m.

7 3 / Požár kaluže Lehké uhlovodíky Dosah projevu od středu kaluže (m) kw/m2 32 kw/m2 44 kw/m Ekvivalentní průměr kaluže (m) 100 Požár kaluže Benzín 80 Dosah projevu od středu kaluže (m) kw/m2 32 kw/m2 44 kw/m Ekvivalentní průměr kaluže (m)

8 3 / 6 5. Požár Požár ve výrobě je ošetřen jako požár kaluže (podle uvažovaných látek a jejich množství). V úvahu se musí brát také další havárie, které mohou být vyvolány požárem (podle přítomných položek : tryskavý požár, exploze, VCE). U skladů pevných látek se mají vedle projevů tepelné radiace brát do úvahy účinky možné exploze. 6. BLEVE 6.1 Úvod Prvním projevem BLEVE je tlakový účinek. Jako prahová se bere hodnota přetlaku 0,016 MPa. Tato hodnota odpovídá spodní hranici pro vážná poškození konstrukcí. Kromě toho se při jevu BLEVE obecně vytvářejí letící trosky a, pokud je látka hořlavá, může se objevit i ohnivá koule. 6.2 Metoda pro odhad dosahů projevů Odhad tlakových projevů Odhad tlakových projevů BLEVE se může provádět odečtem z grafů udávajících přetlak p proti redukované vzdálenosti (viz obrázek níže). Na obrázku jsou znázorněny různé křivky podle rozdílných teplot přehřátí. Maximální přehřátí se rovná rozdílu mezi teplotou, při níž tlak páry skladované látky dosáhne tlaku prasknutí nádoby, a teplotou atmosférickém bodu varu této látky. Pokud je tlak prasknutí nádoby znám, může být přehřátí počítáno pomocí závislosti tlaku par dané látky na teplotě. Pokud tlak prasknutí nádoby znám není, může být použit testovací tlak nádoby. Rovněž se může počítat s tlakem pojišťovacího ventilu jako s hrubým odhadem tlaku prasknutí nádoby. Např. pro skladovací nádoby propanu nebo butanu můžeme v literatuře [7] nalézt: Propan Butan Tlak prasknutí [MPa] 1,8 1,0 Teplota, při které je tlak par látky roven tlaku prasknutí (T) [ C] Atmosférický bod varu (T b ) [ C] Přehřátí (T T b ) [ C] Pomocí dále uvedeného grafu můžeme pro známé přehřátí a daný přetlak p (0,016 MPa je spodní hranicí vážného poškození konstrukcí [8]) získat redukovanou vzdálenost ( W ) 0, 33 2 vl,0 r

9 3 / 7 kde W vl,0 je vypařená hmotnost [kg] a r je dosah tlakového projevu. Pokud je vypařené množství známo (v prvém přiblížení celé množství skladované v nádobě), je redukovaná vzdálenost použita pro výpočet dosahu tlakového účinku projevu BLEVE. BLEVE přetlak způsobený explozivním vypařováním kapaliny [9] Odhad vzdálenosti účinků letících trosek Odhad vzdálenosti účinků letících trosek je uveden v kapitole Odhad tepelných účinků BLEVE Ohnivá koule vytvořená při jevu BLEVE je určitě nejokázalejší projev, který může být pozorován v procesním průmyslu. Tento projev může mít smrtící následky a nemůže být opomíjen vzhledem k následkům na osobách, zejména v záchranářských týmech. Nicméně v rámci studia synergických a kumulativních jevů se tepelná radiace emitovaná ohnivou koulí neuvažuje. Trvání ohnivé koule není tak významné, aby způsobilo závažné škody na konstrukcích.

10 3 / 8 7. Exploze a letící trosky Následující tabulka uvádí vzdálenosti, do kterých odletělo 80% a 100% letících trosek během známých havárií. Hodnoty odpovídající 100% jsou uvedeny pro informaci. Tabulka se čte následovně: u známých nehod s letícími troskami vzniklých z reaktorů dopadlo 80% letících trosek ve vzdálenosti menší nebo rovné 350 m. Tlakové nádoby Horizontální válce Typ 80% 100% LPG 200 m 1200 m Etylenoxid 430 m 1500 m Vinylchlorid monomer 170 m 1000 m Amoniak 100 m 200 m Kulové zásobníky LPG 250 m 1000 m Etylenoxid Vinylchlorid monomer Amoniak 500 m 250 m 125 m Atmosférické tanky 100 m 300 m Výrobní reaktory 350 m 600 m kolony 850 m 1100 m vařáky 130 m 250 m U dat pro kulové zásobníky jsou malé rozdíly mezi různými látkami. Avšak dostupná data pro válcové zásobníky a pro rozdílné látky ukazují jasný vliv na uvedené vzdálenosti. Proto se pro kulové zásobníky navrhuje použít vzdálenosti vypočtené a srovnat je s těmi získanými pro válcové zásobníky. Pro látky, které nejsou uvedeny ve výše zmíněné tabulce, se berou dosahy projevů látky s fyzikálněchemickými vlastnostmi podobnými studované látce. 8. Vzkypění Faktor náchylnosti ke vzkypění (PBO: Propensity to Boilover) se počítá následovně: PBO 0, T = 1 boil vhc TBOILHC

11 3 / 9 kde: TBOIL HC : průměrná teplota varu skladované látky (K) T boil : přesah bodu varu přes 393 K (K) v HC : kinematická viskozita při 393 K Podle známých havárií je vysoké nebezpečí vzkypění pozorováno u látek s PBO vyšším nebo rovným 0,6 ([10], [11]). Proto se v studii synergických a kumulativních jevů berou v úvahu jen tanky obsahující látky s PBO 0,6. Následující tabulka uvádí hodnoty PBO pro běžné uhlovodíky. Uhlovodíky PBO Možnost vzkypění Těžká ropa 6,76 ANO Střední ropa 4,24 ANO Topný olej č. 2 3,48 ANO Topný olej č. 1 3,03 ANO Motorová nafta 1,20 ANO TRO 0,70 ANO Petrolej 0,53 NE Těžký benzín 0,29 NE TR4 0,35 NE Benzín -0,25 NE Hlavním projevem vzkypění je přetečení hořících uhlovodíků. Poloměr požáru kaluže těžkých uhlovodíků se tedy uvažuje 85 m (viz kapitolu 1). 9. VCE 9.1 Úvod Aby mohla vzniknout VCE, musí být splněny následující podmínky: přítomnost přeplněné zóny. Tato přeplněná zóna může ležet i v jiném objektu než v tom, kde vznikl únik. daná látka musí být hořlavá a musí patřit do 3. nebo 4. třídy výbušnosti (viz seznam nebezpečných látek v kapitole 11 nebo Guide des Pompiers de Genève [1]); minimální uniklé množství musí být větší nebo rovno danému prahovému množství: o Pokud může být uniklá látka přímo rozptýlena do atmosféry (plynná látka nebo aerosol) nebo pokud je tlak par (P nas ) látky za provozních podmínek větší než 0,1 MPa, minimální množství může být nízké: 0,1 tuny pro

12 3 / 10 vysoce reaktivní látky, 0,5 tuny pro látky střední reaktivity a 1 tuna pro látky nízké reaktivity. o Na druhou stranu jsou minimální uniklá množství významnější pro další látky, které vytvářejí výbušný mrak vypařováním z kaluže. Pro případ nepříznivých povětrnostních podmínek (stabilní atmosféra, stabilitní třída podle Pasquilla F, nízká rychlost větru 1,5 m/s) udává následující tabulka minimální hmotnosti uniklé látky potřebné pro to, abychom museli počítat s nebezpečím VCE. P nas (při prac. teplotě) 0,1 MPa nebo plynná látka Látka s vysokou reaktivitou Uniklé množství (tuny) Látka se střední reaktivitou Látka s nízkou reaktivitou 0,1 0,5 1 0,05 P nas < 0,1 MPa > 2 > 5 > 10 0,01 P nas < 0,05 MPa > 5 > 10 > 40 P nas < 0,01 MPa > Pro kaluže v záchytné jímce nebo pro jiné typy podložky udává další tabulka jiné limitní hodnoty. Tyto hodnoty se týkají minimálního povrchu kaluže, abychom museli počítat s nebezpečím VCE. Látka s vysokou reaktivitou Povrch kaluže (m 2 ) Látka se střední reaktivitou Látka s nízkou reaktivitou 0,05 P nas < 0,1 MPa > 200 > 500 > ,01 P nas < 0,05 MPa > 500 > 1000 > 4000 P nas < 0,01 MPa > Metoda pro odhad dosahů projevů Hlavním účinkem exploze oblaku par je nesporně náhlé a neočekávané zvýšení tlaku. Hodnota přetlaku 0,016 MPa je považována za prahovou. Tato hodnota odpovídá spodní hranici pro vážná poškození konstrukcí. V následujících třech bodech jsou shrnuty kroky nutné pro úspěšný odhad přetlaku způsobeného jevem VCE: 1. Určení přeplněných zón v objektu. Přeplněná zóna je definována jako zóna, kde je koncentrována řada položek takovým způsobem, že tvoří mnohonásobné překážky (nádoby, potrubí, čerpadla, tepelné výměníky, ), které způsobují urychlování čela plamene. A skutečně, přetlak způsobený explozí je tím větší, čím je větší počet překážek na jednotku délky a čím je větší blokovací poměr [12]. Další podrobnosti je možné se dozvědět v literatuře [13] a [14].

13 3 / 11 Abychom odhalili přeplněné zóny, zavádíme pojem hustota překážek. Hustota překážek může být určena kvalitativně stejně jako kvantitativně. Obecně jsou výrobní sekce přeplněné, jelikož se v nich nachází množství překážek (nádoby, potrubí, ). Protože hustota překážek je tak velká, je výrobní zóna ve většině případů považována za vysoce přeplněnou zónu. Na druhé straně u skladovacích zón, prostorů pro stáčení / čerpání, parkovacích ploch,, kde je mlhavá představa o přeplněnosti, je kvantitativní ocenění hustoty překážek vhodnější, ale také obtížnější. Zvláště je potřeba odhad počtu vrstev s překážkami a výpočet blokovacího poměru. Baker [15] navrhuje následující definice: o vysoký stupeň přeplnění odpovídá alespoň 3 vrstvám překážek s blokovacím poměrem vyšším než 40%; o střední stupeň přeplnění odpovídá 2 až 3 vrstvám překážek s blokovacím poměrem mezi 10 a 40%; o nízký stupeň přeplnění odpovídá 1 až 2 vrstvám překážek s blokovacím poměrem nižším než 10%. Doporučujeme, aby zóna byla považována za přeplněnou, pokud je stupeň přeplnění střední nebo vysoký. V opačném případě daná zóna nebude zařazena mezi zóny přeplněné. Je třeba poznamenat, že otevřená budova s dostatečným stupněm přeplnění může být také definována jako přeplněná zóna. A naopak uzavřené budovy nejsou považovány za přeplněné zóny. Volný prostor (bez jakýchkoliv překážek) větší než 10 metrů má být důvodem pro definování dvou různých přeplněných zón (10 metrů volného prostoru skutečně způsobí významné zpomalení čela plamene). Budeme uvažovat, že výbušný mrak se může iniciovat v kterékoliv přeplněně zóně nacházející se v rozmezí ± 200 metrů kolem položky, na níž došlo k úniku. Hodnota 200 metrů byla zvolena proto, že meze výbušnosti jsou obecně dosaženy v tomto pásmu a protože u známých havárií ([11], [16]) zřídkakdy přesahuje vzdálenost mezi zdrojem úniku a místem iniciace 200 metrů. 2. Odhad objemu výbušného mraku (vzduch + látka) v každé přeplněné zóně. Předpokládá se, že objem výbušného mraku je roven objemu přeplněné zóny, tzn. součinu povrchové plochy přeplněné zóny a průměrné výšky položek nacházejících se v dané zóně. Nicméně v případě těžkého plynu průměrná výška oblaku v rozmezí ± 200 metrů obvykle nepřesáhne 6 metrů. Objem výbušného mraku se považuje roven objemu přeplněné zóny bez odečítání objemu. Toto pravidlo jen mírně nadhodnocuje výsledek, protože při výpočtu přetlaku se používá třetí odmocnina z výbušného množství. 3. Jakmile známe objem přeplněné zóny a reaktivitu uniklé látky (nízká, střední, vysoká), můžeme s použitím níže uvedeného grafu určit vzdálenost, ve které je dosaženo přetlaku 0,016 MPa (spodní hranice pro vážná poškození konstrukcí [8]). Z tohoto grafu můžeme přímo odečítat vzdálenost, ve které je dosaženo přetlaku 0,016 MPa, pro známý objem přeplněné zóny. Při tomto způsobu výpočtu nemusíme znát výbušné množství, protože se směs vzduch-látka považuje za stechiometrickou.

14 3 / 12 VCE: exploze oblaku par 300 Vzdálenost, ve které je dosaženo přetlaku 0,016 MPa (m) Látka vysoké reaktivity Látka střední reaktivity Látka nízké reaktivity Celkový objem přeplněné zóny (m3) Následující tabulka upřesňuje reaktivitu některých často používaných výbušných látek. V případě směsi výbušných látek s rozdílnou reaktivitou se výsledná reaktivita řídí podle nejreaktivnější látky [17]. Látka Reaktivita Látka Reaktivita Látka Reaktivita Acetaldehyd průměrná Dietylamin průměrná Metylakrylát vysoká Acetylen vysoká Dimetylamin průměrná Metylbromid nízká Acetonitril průměrná Epichlorhydrin nízká Metylchlorid nízká Akrylonitril průměrná Etan průměrná Metylformiát vysoká Allylalkohol vysoká Eten průměrná Oxid uhelnatý nízká Allylchlorid nízká Etylmerkaptan vysoká Propan průměrná Amoniak nízká Etylchlorid nízká Propen průměrná Anilin průměrná Etylformiát vysoká Propylenoxid vysoká Benzen vysoká Etylendiamin průměrná Rozpouštěcí benzol vysoká 1,3-butadien průměrná Etylenoxid vysoká Sirouhlík vysoká n-butan průměrná Formaldehyd vysoká Sulfan vysoká 1-buten průměrná Metan nízká Vinylacetát vysoká Dichlorpropen nízká Metanol průměrná Vinylchlorid průměrná

15 3 / Exploze pevných látek a prachová exploze Následkem exploze pevných látek nebo prachové exploze vzniká přetlaková-podtlaková vlna. Jako prahová hodnota přetlaku se opět bere 0,016 MPa. Tato hodnota odpovídá spodní hranici pro vážná poškození konstrukcí. V případě exploze pevných látek skladovaných na hromadě je odhad dosahu účinku vzniklého přetlaku obtížné kvantifikovat. Nicméně za předpokladu, že jsou známy výbušné množství a účinnost exploze, můžeme uvažovat o použití metody TNT. V případě exploze prachu skladovaného v uzavřených tancích s diskovými otvory na odlehčení výbuchu může být přetlak P r v závislosti na vzdálenosti r odhadnut podle následující rovnice [18]: P r = P max V r P red 1,5 0,1 0,18 max = 0, 2 P,max A V kde: A je povrch otvoru na odlehčení výbuchu [m 2 ]; P max je maximální přetlak [bar] dosažený ve vzdálenosti R s = 2*V 1/3 ; P r je přetlak ve vzdálenosti r [bar]; Před,max je maximální redukovaný přetlak exploze [bar], maximální přetlak exploze nádoby vybavené otvory na odlehčení výbuchu (viz následující obrázek); r je vzdálenost od otvoru odlehčení [m]; V je objem nádoby [m 3 ]. Tato rovnice platí pro tzv. kubické nádoby, u kterých je poměr výška / průměr menší než 2, a pro homogenní prachovzduchové směsi. 11. Třídy nebezpečnosti pro některé látky Ženevští hasiči publikovali podrobnou dokumentaci pro každou nebezpečnou látku: Guide Orange des Pompiers de Genève. Látky jsou v tomto návodu klasifikovány podle závažnosti nebezpečí, které se týká: zdraví (toxicita); hořlavosti; chemické tepelné nestability; reakce s vodou; explozivní směsi se vzduchem.

16 3 / 14 VCE: exploze oblaku par P max Výbuchový přetlak P aktivace odlehèovacího systému uzavřeno P red,max P stat odlehèeno Č as t [s] Rozsah tříd je od 0 do 4 a označuje závažnost nebezpečí: 0 : látka není nebezpečná nebo jen velmi nepatrně; 1 : látka je lehce nebezpečná; 2 : látka je nebezpečná; 3 : látka je velmi nebezpečná; 4 : látka je extrémně nebezpečná. Seznam hlavních nebezpečných látek a jejich tříd nebezpečnosti uvádí následující tabulka (reaktivita s vodou nebyla zařazena). Název látky UN kód Toxicita Hořlavost Nestabilita Výbušnost 1,2-dichloretan butanol penten Acetaldehyd Aceton Acetylen Akrylonitril Allylalkohol Allylchlorid Aminoetan

17 3 / 15 Název látky UN kód Toxicita Hořlavost Nestabilita Výbušnost Amoniak Amylalkohol Benzen Benzín Brom Bromovodík Butadien Butan Buten Cyklohexan Cyklopentan Decan Dietyleter Dietylketon Dichlormetan Dimetylamin Dimetylamin (roztok) Dimetyleter Dusičnan amonný (pevný) Etan Etannitril Etanol Etylbenzen Etylen , Etylenoxid Etylchlorid Etylmetylketon Fluorovodík Formaldehyd (roztok) Fosgen Furan Heptan Hexan Hexen Chlor Chlorobenzen Chlorovodík Izoamylalkohol Izobutan Izobuten Izobutylmetylketon Izopren Izopropanol Izopropylamin Kap, uhlovodíky s T vzp, > 55 C

18 3 / 16 Název látky UN kód Toxicita Hořlavost Nestabilita Výbušnost Kapalný etan (podchlazený) Kapalný etylen (podchlazený) Kyselina bromovodíková Kyselina dusičná Kyselina fluorovodíková Kyselina fosforečná Kyselina chlorovodíková Kyselina octová Kyselina sírová Metan kapalný (podchlazený) Metane Metanol Metylacetát Metylamin Metylbromid Metylchlorid Nonan N-propyleter Octan Oxid dusičitý Oxid siřičitý , Oxid uhličitý Pentan Peroxid vodíku Petrolej Propan Propanol Propylen Propylenoxid Sirouhlík Styren Sulfan Toluen Topný olej Undekan Vinylbromid Vinylchlorid Vodík Vodík kapalný (podchlazený) Xylen

19 3 / Použití metodologie na fiktivním příkladu Účelem tohoto příkladu je ilustrovat metodu studia synergických a kumulativních jevů (Část 1) Popis průmyslové oblasti Uvažovaná oblast je zcela vymyšlená. Záměrně se jedná o komplexní průmyslovou oblast, kde se nachází těsně vedle sebe několik objektů, ve kterých se pracuje s nebezpečnými látkami. Tato geografická situace vede k úvahám o synergických a kumulativních jevech mezi rozdílnými objekty. Polohová situace je zobrazena na obrázku nazvaném Popis průmyslové oblasti, zatímco výčet zón ukazuje obrázek Výčet Objekt A Objekt A je částí rafinérie. Nachází se v něm: výrobní sekce (destilace topného oleje); dvě atmosférické skladovací sekce (topný olej, destiláty); skladovací sekce na LPG; železniční stáčecí / čerpací sekce (LPG); administrativní budova; laboratoř; velín Objekt B Tento druhý objekt vyrábí toxickou látku (např. pesticid). Je umístěn severozápadně od objektu A. Objekt B zahrnuje následující sekce: skladovací sekci na chlor; výrobní sekci; sekci pro skladování vyrobených produktů (pesticidy); hlavní budovu Objekt C V objektu C se provádí plnění válcových nádrží plynem. Je umístěn severně od objektu A a severovýchodně od objektu B. Jsou v něm následující sekce: sekce skladování stlačených zkapalněných uhlovodíků (propan a butan);

20 3 / 18 sekce plnění uhlovodíků do lahví; sekce skladování válcových zásobníků s plynem Identifikace synergických a kumulativních jevů použití metody Použití metody Byla použita metoda pro identifikaci možných synergických a kumulativních jevů na fiktivní průmyslovou oblast popsanou výše v souladu se zásadami uvedenými v Části 2 a podle popisu metodologie v Části 1. Jednotlivé kroky metodologie zde nebudou podrobně probírány, protože to bylo provedeno na jiném místě. Sekce a nebezpečné položky uvádějí tabulky DOMINO98-L1 a DOMINO98-L2. Tabulka DOMINO98-L3 obsahuje výsledky studie synergických a kumulativních jevů. Některá další vysvětlení: a) Obecné vysvětlivky 1. V případě, že zóna obsahuje několik položek, berou se pro výpočet dosahů primárních nehod jen nehody vztahující se k největší položce. Jsou to např. tyto případy: v objektu A je to zóna E1A (jak pro požár kaluže tak pro BLEVE je zde počítáno s množstvím látky obsaženým v jednom železničním cisternovém vozu); v objektu C je to zóna E1C (při primární nehodě se počítá s množstvím 800 tun propanu obsaženým v jednom kulovém zásobníku). 2. Je přijat předpoklad, že na potrubí mohou nastat havárie kdekoli po celé jeho délce. b) Objekt A 1. Pro položky E3A a E4A nejsou dosud k dispozici diagramy pro požár kaluže topného oleje; je použit diagram pro požár kaluže benzínu (konzervativní předpoklad). 2. Zóny E3A a E4A mohou způsobit vzkypění, protože hodnota PBO topného oleje je 6,76. Naopak PBO benzínu (zóna E5A) je odhadnuta na 0,25 [19], proto se vzkypění v případě zóny E5A neuvažuje. 3. Pro zónu E5A se počítá s požárem tanku, a to jen u jednoho tanku. Dosah projevu je tak počítán zvláštním způsobem: musíme předpokládat, že epicentrum požáru tanku se nachází na okraji zóny, abychom nepodcenili následky. Vzdálenost dosahu je pak součtem: vzdálenosti mezi středem zóny a okrajem této zóny; a vzdáleností účinku radiace vzhledem k okraji hořícího tanku.

21 3 / 19 c) Objekt B Pro zónu E1B je třída nebezpečí exploze skladované látky (chlor) rovna 3 (silně oxidující). Avšak látka není hořlavá a nemůže z ní vzniknout výbušný mrak (VCE). Proto se havarijní scénář exploze v studii synergických a kumulativních jevů neuvažuje. d) Objekt C V zóně E3C nemůže vzniknout první událost vedoucí k synergickému a kumulativnímu jevu, ale může se stát primární zónou během série synergických a kumulativních jevů. Proto jako primární uvažujeme explozi, která způsobí rozlet letících trosek. Požár uvažován nebyl, protože zóna obsahuje mnoho malých lahví se stlačeným zkapalněným plynem. Z tohoto důvodu existuje jen malé nebezpečí vzniku kaluže. e) Stanovení přeplněných zón Přeplněné zóny jsou zóny, ve kterých jsou koncentrovány položky takovým způsobem, že představují mnohonásobné překážky. Na obrázku Výčet jsou tyto přeplněné zóny vyšrafovány. Zóny E3A-E4A nejsou považovány za přeplněné zóny, protože obsahují jen 2 velké tanky. Uzavřené budovy rovněž nejsou považovány za přeplněné zóny Analýza výsledkových tabulek Tabulka DOMINO98-L3 shrnuje výsledky třetího kroku. Tato analýza nám odhalila několik zón, které pravděpodobně mohou způsobit synergické a kumulativní jevy: E2A, E3A, E4A, E6A, T3A, T4A, E1B, E1C, T1C a T2C. Mezi nimi můžeme zdůraznit: přítomnost zón s vysokým potenciálem k vzniku synergických a kumulativních jevů (např. zóna E1C); zóny způsobující jednu nebo více primárních nehod, které svým dosahem projevu mohou současně ovlivnit položky dvou sousedících objektů (E3A, E4A, E1C, ); zóny způsobující VCE s epicentrem v sousedním objektu (zóna E2A epicentrum Z2C). Tyto havárie vedoucí k synergickému a kumulativnímu jevu mohou být předmětem podrobnější studie - krok 4.

22 3 / 20 Silnice Butan Budova plnění lahví 20 m Železnice Popis průmyslové oblasti Propan Objekt C Kanceláře Železniční cisterny na LPG Nákladní auta Skladování v malých obalech LPG Výroba Výroba Objekt A Kanceláře Chlor Objekt B Silnice Toxické látky Hlavní kanceláře Laboratoře Topné oleje Velín Benzín

23 3 / 21 Silnice Z1C E2C Budova E4C T2C plnění lahví T1C Železnice Výčet E1C Objekt C Kanceláře E2A T4A E1A E3C Z2C Nákladní auta Z1A T3A E3B Z3B T2A Z3A T2B T1B Objekt B Kanceláře E3A E4A Objekt A T1A Silnice Z2B E2B Z1B E1B Hlavní kanceláře Laboratoře Velín E5A Z2A

24 3 / 22 Průmyslová oblast: Objekt: Datum: Osoba provádějící studii: DOMINO98-L1: SEZNAM SEKCÍ Typy sekcí: Skladování Stáčení / čerpání Výroba: energetická, klasická, různorodá Budovy Identifikace Typ sekce Popis OBJEKT A E1A Stáčení / čerpání čerpací do železniční cisterny (LPG) E2A Skladování 4 kulové zásobníky na LPG v jedné záchytné jímce E3A, E4A Skladování 2 atmosférické skladovací tanky na topný olej ve 2 oddělených záchytných jímkách E5A Skladování 9 atmosférických skladovacích tanků na benzín v 1 záchytné jímce E6A Klasická výroba jednotka na destilaci topného oleje B1A Budova administrativní budova, laboratoře, velín OBJEKT B E1B Skladování 3 horizontální válcové nádrže na chlor v 1 záchytné jímce E2B Skladování vyrobené produkty (pesticidy) E3B Klasická výroba jednotka na výrobu chloru B1B Budova hlavní kanceláře OBJEKT C E1C-E2C Skladování 4 kulové zásobníky na propan a 6 válcových zásobníků ve 2 oddělených záchytných jímkách E3C Skladování malé lahve na propan a butan P1C Stáčení / čerpání čerpací do automobilových cisteren E4C Klasická výroba plnicí jednotka (uzavřená budova) B1C Budova kanceláře

25 DOMINO98-L2: SEZNAM ZAŘÍZENÍ 1. Zařízení pro skladování pevných látek 5. Zařízení pro stáčení / čerpání 2. Zařízení pro tlakové skladování 6. Výrobní ( energetické, klasické, různorodé 3. Zařízení pro skladování atmosférické nebo s podchlazením 7. Zařízení potrubních sítí 4. Zařízení pro malotonážní skladování 3 / 23 Tlak [MPa] Teplota [ C] Výbušnost Nestabilita Hořlavost Toxicita Sekce Identifikace Popis Látka Třídy nebezpečí Podmínky Množství [t] OBJEKT A Výběr ANO/NE E1A W žel. cisteren na LPG Propan okolí 6*20 ANO SČ E1A E2A SP kulové zásobníky na LPG Propan okolí 4*500 ANO TS E2A (87% propanu) E3A RVFL01 1 tank na topný olej Topný okolí ANO AS E3A olej E4A RVFL02 1 tank na topný olej Topný okolí ANO AS E4A olej E5A RVES tanků na benzín Benzín okolí 9*950 ANO AS E5A E6A - destilační kolona (topný olej Propan okolí - ANO V E6A propan) B1A - - Žádná NE - - OBJEKT B E1B RCCH horizontální válcové tanky na Chlor okolí 3*55 ANO TS E1B chlor E2B RCPF skladovací tanky na vyrobené Pesticid okolí 4*22 ANO AS E2B produkty (pesticidy) E3B - jednotka na výrobu chloru Pesticid ANO V E3B B1B - - Žádná NE OBJEKT C E1C SP01, SP02 2 kulové zásobníky propanu Propan okolí 2*800 ANO TS E1C E1C SP03, SP04 2 kulové zásobníky propanu Propan okolí 2*500 ANO TS E1C E2C RC válcových zásobníků butanu Butan okolí 6*100 ANO TS E2C E4C - plnicí jednotka Propan okolí - NE - - butan E3C lahví propanu a butanu Propanbutan okolí 1000*18 kg Typ Č. zóny ANO MTS E3C

26 P1C NE - B1C - - Žádná NE - DOMINO98-L3: SYNERGICKÉ A KUMULATIVNÍ JEVY OBJEKT A Č. Mapa Popis Typ Prim./ sek. Primární nehoda Primární projev Epicentrum Dosah projevu [m] Dosaženo zón OBJEKTU B Dosaženo zón OBJEKTU C 3 / 24 Dosaženo zón uvnitř objektu 1 E1A čerpání LPG do 5 žel. cisteren 2 E1A čerpání LPG do 5 žel. cisteren 3 E1A čerpání LPG do 5 žel. cisteren 4 E1A čerpání LPG do 5 žel. cisteren 5 E1A čerpání LPG do 5 žel. cisteren 6 E1A čerpání LPG do 5 žel. cisteren 7 E2A 4 kulové zásobníky na LPG (propan) 8 E2A 4 kulové zásobníky na LPG (propan) 9 E2A 4 kulové zásobníky na LPG (propan) 10 E2A 4 kulové zásobníky na LPG (propan) 11 E2A 4 kulové zásobníky na LPG (propan) 12 E2A 4 kulové zásobníky na LPG (propan) 13 E2A 4 kulové zásobníky na LPG (propan) SČ Primární VCE Přetlak 16 kpa v přeplněné zóně Z1A SČ Primární VCE Přetlak 16 kpa v přeplněné zóně Z3A SČ Primární BLEVE Letící trosky SČ Primární BLEVE Přetlak 16 kpa SČ Primární Trysk. požár Radiace (8-15 SČ Primární Požár kaluže Radiace (8 TS Primární VCE Přetlak 16 kpa v přeplněné zóně Z1A TS Primární VCE Přetlak 16 kpa v přeplněné zóně Z3A TS Primární VCE Přetlak 16 kpa v přeplněné zóně Z2C TS Primární BLEVE Letící trosky TS Primární BLEVE Přetlak 16 kpa TS Primární Trysk. požár Radiace (8-15 TS Primární Požár kaluže Radiace (8 56 E2A, T3A, T4A 65 E6A, T1A, T2A, T3A 200 E2A, E6A, T1A, T2A, T3A, T4A 72 T4A 100 T4A 95 T4A 56 E2A, T3A, T4A 65 E6A, T1A, T2A, T3A 69 E3C E3A, T2A 250 E3C, T1C, T2C E1A, E3A, E4A, E5A, E6A, T1A, T2A, T3A, T4A 209 E3C E1A, E3A, E4A, E6A, T1A, T2A, T3A, T4A 100 T3A, T4A 73 T3A, T4A

27 14 E3A 1 vertikální válcový zásobník na topný olej 15 E3A 1 vertikální válcový zásobník na topný olej 16 E3A 1 vertikální válcový zásobník na topný olej 17 E3A 1 vertikální válcový zásobník na topný olej 18 E4A 2 vertikální válcové zásobníky na topný olej 19 E4A 2 vertikální válcové zásobníky na topný olej 20 E4A 2 vertikální válcové zásobníky na topný olej 21 E4A 2 vertikální válcové zásobníky na topný olej 22 E5A 9 vertikálních válcových zásobníků na benzín 23 E5A 9 vertikálních válcových zásobníků na benzín 24 E5A 9 vertikálních válcových zásobníků na benzín 25 E5A 9 vertikálních válcových zásobníků na benzín 26 E5A 9 vertikálních válcových zásobníků na benzín 27 E6A 1 kolona na destilaci topného oleje na LPG (propan) 28 E6A 1 kolona na destilaci topného oleje na LPG (propan) 29 E6A 1 kolona na destilaci topného oleje na LPG (propan) AS Primární Požár kaluže Radiace (8 AS Primární Požár tanku Radiace (8 AS Primární Vzkypění Radiace (8 AS Primární Exploze Letící trosky AS Primární Požár kaluže Radiace (8 AS Primární Požár tanku Radiace (8 AS Primární Vzkypění Radiace (8 AS Primární Exploze Letící trosky AS Primární VCE Přetlak 16 kpa v přeplněné zóně Z2A AS Primární VCE Přetlak 16 kpa v přeplněné zóně Z3A AS Primární Požár kaluže Radiace (8 AS Primární Požár tanku Radiace (8 AS Primární Exploze Letící trosky V Primární VCE Přetlak 16 kpa v přeplněné zóně Z1A V Primární VCE Přetlak 16 kpa v přeplněné zóně Z2A V Primární VCE Přetlak 16 kpa v přeplněné zóně Z3A 58 E3C E4A, T2A 42 E4A, T2A 270 E1B, E2B, E3B, T1B, T2B E1C, E2C, E3C, T1C, T2C 3 / 25 E1A, E2A, E4A, E5A, E6A, T1A, T2A, T3A, T4A 100 E3C E4A, T2A 58 E3A, T2A 42 E3A 270 E1B, E2B, E3B, T1B, T2B E1C, E3C, T1C, T2C E1A, E2A, E3A, E5A, E6A, T1A, T2A, T3A, T4A 100 E3C E3A, T2A 82 E5A, T1A 65 E6A, T1A, T2A, T3A 98 T1A 59 T1A 100 T1A 56 E2A, T3A, T4A 82 E5A, T1A 65 E6A, T1A, T2A, T3A

28 3 / E6A 1 kolona na destilaci topného oleje na LPG (propan) 31 E6A 1 kolona na destilaci topného oleje na LPG (propan) V Primární Požár kaluže Radiace (8 V Primární Exploze Letící trosky 32 T1Aa Benzín 15 kg/s zóně Z1A 33 T1Aa Benzín 15 kg/s zóně Z2A 34 T1Aa Benzín 15 kg/s zóně Z3A 35 T1Aa Benzín 15 kg/s PS Primární Požár kaluže Radiace (8 36 T2Aa Benzín 30 kg/s PS Primární Požár kaluže Radiace (8 37 T3Aa LPG 15 kg/s (výroba skladování) 38 T3Aa LPG 15 kg/s (výroba skladování) 39 T3Aa LPG 15 kg/s (výroba skladování) 40 T3Aa LPG 15 kg/s (výroba skladování) 41 T3Aa LPG 15 kg/s (výroba skladování) 42 T3Ab LPG 15 kg/s (výroba skladování) 43 T3Ab LPG 15 kg/s (výroba skladování) 44 T3Ab LPG 15 kg/s (výroba skladování) 45 T3Ab LPG 15 kg/s (výroba skladování) zóně Z1A zóně Z2A zóně Z3A zóně Z2C PS Primární Požár kaluže Radiace (8 zóně Z1A zóně Z2A zóně Z3A zóně Z2C 46 T3Ab LPG 15 kg/s (výroba PS Primární Požár kaluže Radiace ( T1A, T2A, T3A 850 E1B, E2B, E3B, T1B, T2B E1C, E2C, E3C, T1C, T2C E1A, E2A, E3A, E4A, E5A, T1A, T2A, T3A, T4A 56 E2A, T3A, T4A 82 E5A, T1A 65 E6A,T1A, T2A, T3A 83 E5A, E6A, T2A, T3A 102 E3C E3A, E4A, E6A, T1A, T3A 56 E2A, T3A, T4A 82 E5A, T1A 65 E6A,T1A, T2A, T3A 69 E3C E3A, T2A 101 E2A, E6A, T1A, T2A, T3A, T4A 56 E2A, T3A, T4A 82 E5A, T1A 65 E6A,T1A, T2A, T3A 69 E3C E3A, T2A 101 E2A, E6A, T1A, T2A, T3A,

29 47 T4Aa LPG 15 kg/s (skladování železniční cisterna) 48 T4Aa LPG 15 kg/s (skladování železniční cisterna) 49 T4Aa LPG 15 kg/s (skladování železniční cisterna) 50 T4Aa LPG 15 kg/s (skladování železniční cisterna) skladování) T4A zóně Z1A zóně Z3A zóně Z2C PS Primární Požár kaluže Radiace (8 56 E2A, T3A, T4A 3 / E6A,T1A, T2A, T3A 69 E3C E3A, T2A 101 E1A, E2A, E6A, T3A

30 3 / 28 DOMINO98-L3: SYNERGICKÉ A KUMULATIVNÍ JEVY OBJEKT B Č. Mapa Popis Typ 1 E1B 3 horizontální válcovité nádoby na chlor 2 E2B 4 skladovací tanky na výrobky (pesticidy) 3 E3B Výrobní jednotka (pesticidy) TS AS 4 T1Ba Doprava mezi E3B-E1B PS 5 T2Ba Doprava mezi E3B-E2B PS V Prim./ sek. Primární nehoda Primární projev Epicentrum Dosah projevu [m] Dosaženo zón OBJEKTU A Dosaženo zón OBJEKTU C Dosaženo zón uvnitř objektu

31 3 / 29 DOMINO98-L3: SYNERGICKÉ A KUMULATIVNÍ JEVY OBJEKT C Č. Mapa Popis Typ Prim./ sek. Primární nehoda Primární projev Epicentrum Dosah projevu [m] Dosaženo zón OBJEKTU A Dosaženo zón OBJEKTU B Dosaženo zón uvnitř objektu 1 E1C 2+2 kulové zásobníky na propan 2 E1C 2+2 kulové zásobníky na propan 3 E1C 2+2 kulové zásobníky na propan 4 E1C 2+2 kulové zásobníky na propan 5 E1C 2+2 kulové zásobníky na propan 6 E1C 2+2 kulové zásobníky na propan 7 E1C 2+2 kulové zásobníky na propan 8 E2C 6 horizontálních válcovitých zásobníků na butan 9 E2C 6 horizontálních válcovitých zásobníků na butan 10 E2C 6 horizontálních válcovitých zásobníků na butan 11 E2C 6 horizontálních válcovitých zásobníků na butan 12 E2C 6 horizontálních válcovitých zásobníků na butan 13 E2C 6 horizontálních válcovitých zásobníků na butan 14 E2C 6 horizontálních válcovitých ů TS Primární VCE Přetlak 16 kpa v přeplněné zóně Z3B TS Primární VCE Přetlak 16 kpa v přeplněné zóně Z1C TS Primární VCE Přetlak 16 kpa v přeplněné zóně Z2C TS Primární BLEVE Letící trosky TS Primární BLEVE Přetlak 16 kpa TS Primární Trysk. požár Radiace (8-15 TS Primární Požár kaluže Radiace (8 TS Primární VCE Přetlak 16 kpa v přeplněné zóně Z3B TS Primární VCE Přetlak 16 kpa v přeplněné zóně Z1C TS Primární VCE Přetlak 16 kpa v přeplněné zóně Z2C TS Primární BLEVE Letící trosky TS Primární BLEVE Přetlak 16 kpa TS Primární Trysk. požár Radiace (8-15 TS Primární Požár kaluže Radiace ( E3B, T1B, T2B 88 E1C, E2C, T1C, T2C 69 E3A, T2A E3C 250 E3A, E4A, T2A E1B, E3B, T1B, T2B 244 E3A, T2A E1B, E3B, T1B, T2B E2C, E3C, T1C, T2C E2C, E3C, T1C, T2C 100 E2C, T1C, T2C 82 E2C, T1C, T2C 65 E3B, T1B, T2B 88 E1C, E2C, T1C, T2C 69 E3A, T2A E3C 200 E3B, T1B, T2B E1C, E3C, T1C, T2C 110 E1C, T1C, T2C 100 E1C, T1C, T2C 81 E1C, T1C, T2C

32 zásobníků na butan 15 E3C 1000 malých lahví s propan-butanem 16 T1Ca Plnicí budova kulový zásobník s propanem 17 T1Ca Plnicí budova kulový zásobník s propanem 18 T1Ca Plnicí budova kulový zásobník s propanem 19 T1Ca Plnicí budova kulový zásobník s propanem 20 T1Ca Plnicí budova kulový zásobník s propanem 21 T2Ca Plnicí budova horizontální válcový zásobník na butan 22 T2Ca Plnicí budova horizontální válcový zásobník na butan 23 T2Ca Plnicí budova horizontální válcový zásobník na butan 24 T2Ca Plnicí budova horizontální válcový zásobník na butan 25 T2Ca Plnicí budova horizontální válcový zásobník na butan 26 T2Cb Plnicí budova horizontální válcový zásobník na butan 27 T2Cb Plnicí budova horizontální válcový zásobník na butan 28 T2Cb Plnicí budova horizontální válcový zásobník na butan 29 T2Cb Plnicí budova horizontální válcový zásobník na butan 30 T2Cb Plnicí budova horizontální válcový zásobník na butan MTS Primární Exploze Letící trosky zóně Z3B zóně Z1C zóně Z2C PS Primární Tryskavý požár Radiace (8-15 PS Primární Požár kaluže Radiace (8 zóně Z3B zóně Z1C zóně Z2C PS Primární Tryskavý požár Radiace (8-15 PS Primární Požár kaluže Radiace (8 zóně Z3B zóně Z1C zóně Z2C PS Primární Tryskavý požár Radiace (8-15 PS Primární Požár kaluže Radiace (8 3 / E3A, E4A, T2A 65 E3B, T1B, T2B 88 E1C, E2C, T1C, T2C 69 E3A, T2A E3C 100 E1C, E2C, T2C 109 E1C, E2C, T2C 65 E3B, T1B, T2B 88 E1C, E2C, T1C, T2C 69 E3A, T2A E3C 100 E1C, E2C, T1C, T2C 109 E1C, E2C, T1C, T2C 65 E3B, T1B, T2B 88 E1C, E2C, T1C, T2C 69 E3A, T2A E3C 100 E1C, E2C, T1C, T2C 109 E1C, E2C, T1C, T2C

33 3 / Odkazy k Části 3 [1] Répertoire des produits dangereux Tome I. Guide orange des sapeurs pompiers genèvois / Ville de Genève, Service d`incendie et de Secours, 2 ème édition [2] Mudan K. S.: Thermal Radiation Hazards from Hadrocarbon Pool Fires, Program. Energy Combustion Sekci., Vol. 10, pp 59 80, [3] Babrauska: Estimating large pool fire burning rate, Fire technology 19, [4] Levert J. M., Delvosalle C., Benjelloun F.: SEVEX Les industries á risque majeur energie Région Wallonne (Rapport de Synthése, Vol. 1) Ministrère de la Région Wallonne Faculté Polytechnique de Mons Janvier [5] Lees, F. P.: Loss prevention in the process industries Butterworth Heinemann, 1996 (2. vydání) [6] Carter D. A.: Aspects of risk assessment for hazardous pipelines containing flammables substances J. Loss Prev. Process Ind. 4, 68, 1991 (citováno v [5]). [7] Pietersen C. M.: Analysis of the LPG Incident in San Juan Ixhuatepec, Mexico City, 19 Nov [8] Lannoy A.: Analyse des explosions air-hydrocarbures en milieu libre., Bulletin de la direction des études et recherche EdF (Electricité de France), Octobre 1984, p. 24. [9] Hoftijzer G.: Methods for the Calculation of the Physical Effects of the Escape of Dangerous Material (Liquids and Gases), Part II Chapter 6: Heat Radiation. Report of the comittee for the Prevention of Disasters, First Edition 1979 ( The Yellow book : TNO). [10] Mavrothalassitis G.: Les accidents d origine thermique: causes et conséquences Chaire AIB- Vincote 1996 Maitrise des risques industriels majeurs Prévention des effets thermiques et méchaniques Faculté Polytechnique de Mons (Belgique) 7 Mars [11] Levert J. M., Delvosalle C., Anstett P. A., Benjelloun F., Pons P., Verriest C.: Méthodologie d analyse des effets domino en milieu industriel Rapport final Ministrère de l Emploi et du Travail Administration de la Sécurité du Travail Inspection technique (Contrat de gré à gré CRC/WPS/07/95) Faculté Polytechnique de Mons Juillet 1996 [12] Mouilleau Y.: Influence du confinement et de la présence d obstacles sur le déroulement d une explosion de gaz - Chaire AIB-Vincotte Maitrise des risques industriels

34 3 / 32 majeurs Prévention des effets thermiques et mécaniques - Faculté Polytechnique de Mons (Belgique) 21 Mars 1996 [13] Cates A. T.: Fuel gas explosion guidelines Paper presented at Conf. on Fire and Explosion Hazards, Moreton-in-Marsh, April 1991 Publ. by The Institute of Energy, [14] Hallam M.: Vapour Cloud Explosions and Consequential Loss Damage Estimates An Insurance Brokers Approach in Practice European Seminar on Domino Effects, Leuven (Belgium) September th, [15] Baker: Vapour Cloud Explosions Analysis, Paper presented at the 28 th Annual Loss Prevention Symposium, 1994 Atlanta. [16] Wiekema B. J.: Vapour Cloud Explosions an analysis based on accidents Journals of Hazardous Materials, 8, pp , [17] Baker Q. A., Tang M. J., Ephraim A. S., Silva G. J.: Vapour Cloud Explosions Analysis, Process Safety Progress, Vol. 15, No. 2, pp , Summer 1996 [18] Siwek R.: Explosion venting technology Journal of Loss Prevention in the Process Industries, vol. 9, No 1, pp , Elsevier, 1996 [19] Michaelis P., Mavrothalassitis G., Hodin A.: Boilover Prpension de certains hydrocarbures a développer ce phénoméne. Quantification déterministe des effets et conséquences TOTAL / INERIS / EDF / ENV-MHS Avril 1995.

Označování dle 11/2002 označování dle ADR, označování dle CLP

Označování dle 11/2002 označování dle ADR, označování dle CLP Označování dle 11/2002 označování dle ADR, označování dle CLP Nařízení 11/2002 Sb., Bezpečnostní značky a signály 4 odst. 1 nařízení 11/2002 Sb. Nádoby pro skladování nebezpečných chemických látek, přípravků

Více

E-ZAK. metody hodnocení nabídek. verze dokumentu: 1.1. 2011 QCM, s.r.o.

E-ZAK. metody hodnocení nabídek. verze dokumentu: 1.1. 2011 QCM, s.r.o. E-ZAK metody hodnocení nabídek verze dokumentu: 1.1 2011 QCM, s.r.o. Obsah Úvod... 3 Základní hodnotící kritérium... 3 Dílčí hodnotící kritéria... 3 Metody porovnání nabídek... 3 Indexace na nejlepší hodnotu...4

Více

Proces hoření. - snadno a rychle

Proces hoření. - snadno a rychle Proces hoření - snadno a rychle Hoření Jako hoření označujeme každou chemickou oxidačně-redukční reakci, při které látky rychle reagují s oxidačním prostředkem. Při této reakci vzniká teplo (jedná se tedy

Více

Energetický regulační

Energetický regulační Energetický regulační ENERGETICKÝ REGULAČNÍ ÚŘAD ROČNÍK 16 V JIHLAVĚ 25. 5. 2016 ČÁSTKA 4/2016 OBSAH: str. 1. Zpráva o dosažené úrovni nepřetržitosti přenosu nebo distribuce elektřiny za rok 2015 2 Zpráva

Více

b) strukturní- znázorňují vazby mezi atomy a jejich uspořádání - C C C C - c) racionální vyjadřují druh a počet atomů v molekule

b) strukturní- znázorňují vazby mezi atomy a jejich uspořádání - C C C C - c) racionální vyjadřují druh a počet atomů v molekule ORGANICKÁ CHEMIE Zabývá se zkoumáním organických sloučenin. Organické sloučeniny - sloučeniny, ve kterých jsou vázáné atomy uhlíku a většinou i vodíku. Některé z nich obsahují i vázaný O, N, S, P, méně

Více

2.4.11 Nerovnice s absolutní hodnotou

2.4.11 Nerovnice s absolutní hodnotou .. Nerovnice s absolutní hodnotou Předpoklady: 06, 09, 0 Pedagogická poznámka: Hlavním záměrem hodiny je, aby si studenti uvědomili, že se neučí nic nového. Pouze používají věci, které dávno znají, na

Více

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou .8.9 Parametrické rovnice a nerovnice s absolutní hodnotou Předpoklady: 0,, 806 Pedagogická poznámka: Opět si napíšeme na začátku hodiny na tabuli jednotlivé kroky postupu při řešení rovnic (nerovnic)

Více

COBRAPEX TRUBKA S KYSLÍKOVOU BARIÉROU

COBRAPEX TRUBKA S KYSLÍKOVOU BARIÉROU COBRAPEX TRUBKA S KYSLÍKOVOU BARIÉROU COBRAPEX TRUBKA S KYSLÍK. BARIÉROU 2.1. COBRATEX TRUBKA COBRAPEX trubka s EVOH (ethylen vinyl alkohol) kyslíkovou bariérou z vysokohustotního polyethylenu síťovaného

Více

Mřížky a vyústky NOVA-C-2-R2. Vyústka do kruhového potrubí. Obr. 1: Rozměry vyústky

Mřížky a vyústky NOVA-C-2-R2. Vyústka do kruhového potrubí. Obr. 1: Rozměry vyústky -1-1-H Vyústka do kruhového potrubí - Jednořadá 1 Dvouřadá 2 L x H Typ regulačního ústrojí 1) R1, RS1, RN1 R2, RS2, RN2 R, RS, RN Lamely horizontální 2) H vertikální V Provedení nerez A- A-16 Povrchová

Více

Tepelná výměna. výměna tepla může probíhat vedením (kondukce), sáláním (radiace) nebo prouděním (konvekce).

Tepelná výměna. výměna tepla může probíhat vedením (kondukce), sáláním (radiace) nebo prouděním (konvekce). Tepelná výměna tepelná výměna je termodynamický děj, při kterém dochází k samovolné výměně tepla mezi dvěma tělesy s různou teplotou. Tepelná výměna vždy probíhá tak, že teplejší těleso předává svou vnitřní

Více

VOLBA TYPU REGULÁTORU PRO BĚŽNÉ REGULAČNÍ SMYČKY

VOLBA TYPU REGULÁTORU PRO BĚŽNÉ REGULAČNÍ SMYČKY VOLBA TYPU REGULÁTORU PRO BĚŽNÉ REGULAČNÍ SMYČKY Jaroslav Hlava TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

Oddělení teplárenství sekce regulace VYHODNOCENÍ CEN TEPELNÉ ENERGIE

Oddělení teplárenství sekce regulace VYHODNOCENÍ CEN TEPELNÉ ENERGIE Oddělení teplárenství sekce regulace VYHODNOCENÍ CEN TEPELNÉ ENERGIE Obsah: 1. Úvod 2. Přehled průměrných cen 3. Porovnání cen s úrovněmi cen 4. Vývoj průměrné ceny v období 21 26 5. Rozbor cen za rok

Více

STROPNÍ DÍLCE PŘEDPJATÉ STROPNÍ PANELY SPIROLL

STROPNÍ DÍLCE PŘEDPJATÉ STROPNÍ PANELY SPIROLL 4.1.1 PŘEDPJATÉ STROPNÍ PANELY SPIROLL POUŽITÍ Předpjaté stropní panely SPIROLL slouží k vytvoření stropních a střešních konstrukcí pozemních staveb. Pro svou vysokou únosnost, odlehčení dutinami a dokonalému

Více

Žádost o přidělení značky kvality

Žádost o přidělení značky kvality Žádost o přidělení značky kvality podaná národní komisi značky kvality pro Českou republiku. 1. Žadatel Společnost: Kontaktní osoba: Ulice: Město/země: Tel.: Fax: E-mail: Člen Asociace pro využití tepelných

Více

NÁVOD K OBSLUZE A INSTALACI

NÁVOD K OBSLUZE A INSTALACI NÁVOD K OBSLUZE A INSTALACI Akumulační nádrže NADO 800/35v9 NADO 1000/35v9 Družstevní závody Dražice - strojírna s.r.o. Dražice 69, 294 71 Benátky nad Jizerou tel.: +420 / 326 370 990 fax: +420 / 326 370

Více

Haga clic para modificar el estilo de título del patrón

Haga clic para modificar el estilo de título del patrón de PAS SYSTÉM subtítulo VÝSTRAHY del patrón CHODCŮ ŘEŠENÍ PRO SNÍŽENÍ RIZIKA KOLIZÍ VYSOKOZDVIŽNÝCH VOZÍKŮ A CHODCŮ ZÁKAZNÍCI de 2 de 3 PAS - HISTORIE ICNITA je jednou z největších španělských společností

Více

3.2.4 Podobnost trojúhelníků II

3.2.4 Podobnost trojúhelníků II 3..4 odobnost trojúhelníků II ředpoklady: 33 ř. 1: Na obrázku jsou nakresleny podobné trojúhelníky. Zapiš jejich podobnost (aby bylo zřejmé, který vrchol prvního trojúhelníku odpovídá vrcholu druhého trojúhelníku).

Více

3. FYZIKÁLNĚ CHEMICKÉ VLASTNOSTI A TECHNICKO BEZPEČNOSTNÍ PARAMETRY NEBEZPEČNÝCH LÁTEK

3. FYZIKÁLNĚ CHEMICKÉ VLASTNOSTI A TECHNICKO BEZPEČNOSTNÍ PARAMETRY NEBEZPEČNÝCH LÁTEK 3. FYZIKÁLNĚ CHEMICKÉ VLASTNOSTI A TECHNICKO BEZPEČNOSTNÍ PARAMETRY NEBEZPEČNÝCH LÁTEK V této kapitole se dozvíte: Co jsou fyzikálně chemické vlastnosti. Co jsou technicko bezpečnostní parametry. Které

Více

Požární pojmy ve stavebním zákoně

Požární pojmy ve stavebním zákoně 1 - Hořlavé látky 2 - Výbušniny 3 - Tuhé hořlavé látky a jejich skladování 4 - Kapalné hořlavé látky a jejich skladování 5 - Plynné hořlavé látky a jejich skladování 6 - Hořlavé a nehořlavé stavební výrobky

Více

4.6.6 Složený sériový RLC obvod střídavého proudu

4.6.6 Složený sériový RLC obvod střídavého proudu 4.6.6 Složený sériový LC obvod střídavého proudu Předpoklady: 41, 4605 Minulá hodina: odpor i induktance omezují proud ve střídavém obvodu, nemůžeme je však sčítat normálně, ale musíme použít Pythagorovu

Více

Zateplovací systémy Baumit. Požární bezpečnost staveb PKO - 14-001 PKO - 14-002 PKO - 13-011

Zateplovací systémy Baumit. Požární bezpečnost staveb PKO - 14-001 PKO - 14-002 PKO - 13-011 Zateplovací systémy Baumit Požární bezpečnost staveb PKO - 14-001 PKO - 14-002 PKO - 13-011 www.baumit.cz duben 2014 Při provádění zateplovacích systémů je nutno dodržovat požadavky požárních norem, mimo

Více

TECHNICKÝ LIST Havarijní souprava chemická HSES 360-CH

TECHNICKÝ LIST Havarijní souprava chemická HSES 360-CH TECHNICKÝ LIST Havarijní souprava chemická HSES 360-CH HAPPY END CZ, a.s. HAPPY END CZ, a.s. Popis výrobku: Chemická havarijní souprava HSES 360-CH je ideálním prostředkem pro řešení havárií spojených

Více

Tabulka chemické odolnosti

Tabulka chemické odolnosti Acetaldehyd (vodný roztok), 40% + o x + o + x x o x x o + o + + + o Acetamid (vodný roztok), 50% + + 1 x + + 1 + x x x + 1 x x x + x + 1 x + x + Kyselina octová, 2% + + + + + + + + o + + + + o + x x o

Více

1. Cizinci v České republice

1. Cizinci v České republice 1. Cizinci v České republice Počet cizinců v ČR se již delší dobu udržuje na přibližně stejné úrovni, přičemž na území České republiky bylo k 31. 12. 2011 evidováno 434 153 osob III. Pokud vezmeme v úvahu

Více

MITHON NVA KONZERVAČNÍ PŘÍPRAVEK PRO ZDIVO A POVLAKY

MITHON NVA KONZERVAČNÍ PŘÍPRAVEK PRO ZDIVO A POVLAKY MITHON NVA KONZERVAČNÍ PŘÍPRAVEK PRO ZDIVO A POVLAKY Mithon NVA je určen ke konzervaci nebo k potlačení nežádoucího mikrobiálního napadení zdiva nebo jiných stavebních materiálů. Mithon NVA je dále určen

Více

Praktikum II Elektřina a magnetismus

Praktikum II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Elektřina a magnetismus Úloha č. VII Název: Měření indukčnosti a kapacity metodou přímou Pracoval: Matyáš Řehák stud.sk.:

Více

Tvorba trendové funkce a extrapolace pro roční časové řady

Tvorba trendové funkce a extrapolace pro roční časové řady Tvorba trendové funkce a extrapolace pro roční časové řady Příklad: Základem pro analýzu je časová řada živě narozených mezi lety 1970 a 2005. Prvním úkolem je vybrat vhodnou trendovou funkci pro vystižení

Více

Zpracování ropy doc. Ing. Josef Blažek, CSc. 7. přednáška

Zpracování ropy doc. Ing. Josef Blažek, CSc. 7. přednáška ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Zpracování ropy doc. Ing. Josef Blažek, CSc. 7. přednáška Spalování pohonných hmot, vlastnosti a použití plynných uhlovodíků

Více

IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE

IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE Nové formy výuky s podporou ICT ve školách Libereckého kraje IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE Podrobný návod Autor: Mgr. Michal Stehlík IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE 1 Úvodem Tento

Více

Jakub Kákona, kaklik@mlab.cz 19.11.2010

Jakub Kákona, kaklik@mlab.cz 19.11.2010 Čerpání rotační olejovou vývěvou Jakub Kákona, kaklik@mlab.cz 19.11.2010 Abstrakt 1 Úvod 1. Sledujte čerpání uzavřeného objemu rotační olejovou vývěvou (ROV) s uzavřeným a otevřeným proplachováním, a to

Více

Základní chemické pojmy a zákony

Základní chemické pojmy a zákony Základní chemické pojmy a zákony LRR/ZCHV Základy chemických výpočtů Jiří Pospíšil Relativní atomová (molekulová) hmotnost A r (M r ) M r číslo udávající, kolikrát je hmotnost daného atomu (molekuly) větší

Více

1.3.1 Kruhový pohyb. Předpoklady: 1105

1.3.1 Kruhový pohyb. Předpoklady: 1105 .. Kruhový pohyb Předpoklady: 05 Předměty kolem nás se pohybují různými způsoby. Nejde pouze o přímočaré nebo křivočaré posuvné pohyby. Velmi často se předměty otáčí (a některé se přitom pohybují zároveň

Více

Funkce více proměnných

Funkce více proměnných Funkce více proměnných Funkce více proměnných Euklidův prostor Body, souřadnice, vzdálenost bodů Množina bodů, které mají od bodu A stejnou vzdálenost Uzavřený interval, otevřený interval Okolí bodu

Více

Dopravní nehoda automobilu s LPG a CNG

Dopravní nehoda automobilu s LPG a CNG SDH Klášterec nad Orlicí Odborná příprava členů výjezdové jednotky Dopravní nehoda automobilu s LPG a CNG Ondřej Janeček, janecek.ondrej@gmail.com leden 2013 Obsah Nebezpeční plynných paliv CNG LPG Identifikace

Více

Kvadratické rovnice pro učební obory

Kvadratické rovnice pro učební obory Variace 1 Kvadratické rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jkaékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické

Více

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Škola Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor Ing. Ivana Bočková Číslo projektu CZ.1.07/1.5.00/34.0394 Číslo dumu VY_32_INOVACE_13_V_3.02 Název Centralizované

Více

Název společnosti: PUMPS-ING.BAKALÁR. Telefon: +421557895701 Fax: - Datum: - Pozice Počet Popis 1 MAGNA1 40-80 F. Výrobní č.

Název společnosti: PUMPS-ING.BAKALÁR. Telefon: +421557895701 Fax: - Datum: - Pozice Počet Popis 1 MAGNA1 40-80 F. Výrobní č. Pozice Počet Popis 1 MAGNA1 4-8 F Telefon: +42155789571 Výrobní č.: 97924176 Pozn.: obr. výrobku se může lišit od skuteč. výrobku Oběhové čerpadlo MAGNA1 s jednoduchou volbou možností nastavení. Toto čerpadlo

Více

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f.

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f. I. Funkce dvou a více reálných proměnných 5. Lokální extrémy. Budeme uvažovat funkci f = f(x 1, x 2,..., x n ), která je definovaná v otevřené množině G R n. Řekneme, že funkce f = f(x 1, x 2,..., x n

Více

1 Typografie. 1.1 Rozpal verzálek. Typografie je organizace písma v ploše.

1 Typografie. 1.1 Rozpal verzálek. Typografie je organizace písma v ploše. 1 Typografie Typografie je organizace písma v ploše. 1.1 Rozpal verzálek vzájemné vyrovnání mezer mezi písmeny tak, aby vzdálenosti mezi písmeny byly opticky stejné, aby bylo slovo, řádek a celý text opticky

Více

PROVÁDĚCÍ PŘEDPIS K BURZOVNÍM PRAVIDLŮM

PROVÁDĚCÍ PŘEDPIS K BURZOVNÍM PRAVIDLŮM PROVÁDĚCÍ PŘEDPIS K BURZOVNÍM PRAVIDLŮM STANOVENÍ PARAMETRŮ OBCHODOVÁNÍ TVŮRCŮ TRHU Článek 1 Počet tvůrců trhu (dále jen TT ), kritéria a kategorie Burzovní komora stanovuje v následující tabulce č. 1:

Více

Požární odolnost betonových konstrukcí

Požární odolnost betonových konstrukcí Požární odolnost betonových konstrukcí K.B.K. fire, s.r.o. Heydukova 1093/26 70200 Ostrava - Přívoz Ing. Petr Bebčák, Ph.D. Tel.777881892 bebcakp@kbkfire.cz Základním ukazatelem, který vyplývá z kodexu

Více

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013 Výsledky testování školy Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy Školní rok 2012/2013 Základní škola Ústí nad Orlicí, Komenského 11 Termín zkoušky:

Více

Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba

Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba Petr Pošta Text pro soutěžící FO a ostatní zájemce o fyziku 2 1. úloha Obrázek 1.1 ukazuje pevný, homogenní míč poloměru R. Před pádem na

Více

Nebezpečí popálení, poleptání

Nebezpečí popálení, poleptání Nebezpečí popálení, poleptání Popálení - výskyt Nebezpečí popálení spočívá v možnosti zranění tepelnými účinky (sálavé teplo, horký vzduch, horké předměty) nechráněných částí těla, dýchacích cest nebo

Více

AE50S. 1. Bezpečnost. 2. Všeobecné informace o výrobku. 4. Uvedení do provozu. 5. Provoz. 7. Náhradní díly

AE50S. 1. Bezpečnost. 2. Všeobecné informace o výrobku. 4. Uvedení do provozu. 5. Provoz. 7. Náhradní díly IM-P017-11 ST Vydání 3 AE50S Automatický odvzdušňovač pro kapalinové systémy Návod k montáži a údržbě 1. Bezpečnost 2. Všeobecné informace o výrobku 3. Montáž 4. Uvedení do provozu 5. Provoz 6. Údržba

Více

Poznámky k verzi. Scania Diagnos & Programmer 3, verze 2.27

Poznámky k verzi. Scania Diagnos & Programmer 3, verze 2.27 cs-cz Poznámky k verzi Scania Diagnos & Programmer 3, verze 2.27 Verze 2.27 nahrazuje verzi 2.26 programu Scania Diagnos & Programmer 3 a podporuje systémy ve vozidlech řady P, G, R a T a řady F, K a N

Více

KAPITOLA 3.4 NEBEZPEČNÉ VĚCI BALENÉ V OMEZENÝCH MNOŽSTVÍCH

KAPITOLA 3.4 NEBEZPEČNÉ VĚCI BALENÉ V OMEZENÝCH MNOŽSTVÍCH KAPITOLA 3.4 NEBEZPEČNÉ VĚCI BALENÉ V OMEZENÝCH MNOŽSTVÍCH 3.4.1 Všeobecná ustanovení 3.4.1.1 Obaly použité v souladu s 3.4.3 až 3.4.6 musí odpovídat pouze všeobecným ustanovením pododdílů 4.1.1.1, 4.1.1.2

Více

C v celé výkonnostní třídě.

C v celé výkonnostní třídě. Dobrý den. Aktuální informace k 01.09.2013 Emisní třída 4 a automatický kotel na uhlí = Benekov C S potěšením Vám mohu oznámit, že jako první v ČR má firma Benekov certifikovaný automatický kotel na uhlí

Více

Nouzové telefonní číslo: +420 224 919 293 nebo +420 224 915 402 Toxikologické informační středisko

Nouzové telefonní číslo: +420 224 919 293 nebo +420 224 915 402 Toxikologické informační středisko Strana 1 (celkem 5) 1. Identifikace látky nebo přípravku a výrobce nebo dovozce 1. Chemický název látky/obchodní název přípravku: Lněná fermež Číslo CAS: 8001 26 1 Číslo ES (EINECS): 232 278 6 Další názvy

Více

Lokální a globální extrémy funkcí jedné reálné proměnné

Lokální a globální extrémy funkcí jedné reálné proměnné Lokální etrémy Globální etrémy Použití Lokální a globální etrémy funkcí jedné reálné proměnné Nezbytnou teorii naleznete Breviáři vyšší matematiky (odstavec 1.). Postup při hledání lokálních etrémů: Lokální

Více

Posuzování hluku v pracovním prostředí podle ČSN EN ISO 9612

Posuzování hluku v pracovním prostředí podle ČSN EN ISO 9612 Posuzování hluku v pracovním prostředí podle ČSN EN ISO 9612 Ing. Zdeněk Jandák, CSc. Státní zdravotní ústav Praha Obecně závazné předpisy Nařízení vlády č. 148/2006 Sb. o ochraně zdraví před nepříznivými

Více

ANALÝZA A HODNOCENÍ RIZIK ZÁVAŽNÉ HAVÁRIE

ANALÝZA A HODNOCENÍ RIZIK ZÁVAŽNÉ HAVÁRIE Projekt: ANALÝZA A HODNOCENÍ RIZIK ZÁVAŽNÉ HAVÁRIE podle zákona č. 59/2006 Sb., o prevenci závažných havárií způsobených vybranými nebezpečnými chemickými látkami nebo chemickými přípravky AIR LIQUIDE

Více

Využití válcových zkušeben při ověřování tachografů. Prezentace pro 45. konferenci ČKS 1. část: metrologické požadavky

Využití válcových zkušeben při ověřování tachografů. Prezentace pro 45. konferenci ČKS 1. část: metrologické požadavky Využití válcových zkušeben při ověřování tachografů Prezentace pro 45. konferenci ČKS 1. část: metrologické požadavky Lukáš Rutar, GŘ Brno Související nařízení a předpisy: TPM 5210-08 Metody zkoušení při

Více

POKYNY PRO DEZINFEKCI TEPELNÉHO VÝMĚNÍKU

POKYNY PRO DEZINFEKCI TEPELNÉHO VÝMĚNÍKU POKYNY PRO DEZINFEKCI TEPELNÉHO VÝMĚNÍKU Obsah Úvod 1 Bezpečnostní opatření pro použití roztoku chlornanu sodného 1%... 2 1.1 Všeobecně... 2 1.2 Bezpečnostní pokyny a opatření... 2 2 Návod... 3 Přílohy:

Více

3M OH&ES/EMEA. Úvod do legislativy / Co je to hluk?

3M OH&ES/EMEA. Úvod do legislativy / Co je to hluk? Úvod do legislativy / Co je to hluk? Agenda: Něco málo z legislativy Co je vlastně hluk? Něco málo ze statistických údajů 2 3M 2008. All Rights Reserved. Co je vlastně hluk? 3 3M 2008. All Rights Reserved.

Více

Příslušné podklady z hlediska požární bezpečnosti obsahují:

Příslušné podklady z hlediska požární bezpečnosti obsahují: Zpracování požárně bezpečnostního řešení stavby Oprávněna zpracovávat požárně bezpečnostní řešení stavby je fyzická osoba, která získala oprávnění k výkonu projektové činnosti podle zvláštního předpisu.

Více

neviditelné a o to více nebezpečné radioaktivní částice. Hrozbu představují i freony, které poškozují ozónovou vrstvu.

neviditelné a o to více nebezpečné radioaktivní částice. Hrozbu představují i freony, které poškozují ozónovou vrstvu. OCHRANA OVZDUŠÍ Ovzduší je pro člověka jednou z nejdůležitějších složek, které tvoří životního prostředí a bez které se nemůže obejít. Vdechovaný vzduch a vše, co obsahuje, se dostává do lidského těla

Více

Téma 10: Podnikový zisk a dividendová politika

Téma 10: Podnikový zisk a dividendová politika Téma 10: Podnikový zisk a dividendová politika 1. Tvorba zisku (výsledku hospodaření) 2. Bod zvratu a provozní páka 3. Zdanění zisku a rozdělení výsledku hospodaření 4. Dividendová politika 1. Tvorba hospodářského

Více

Ing. Jaromír Střeska. Zpráva o provedení diagnostického průzkumu říms mostu ev.č. 18019-2 přes řeku Úslavu v Plzni - Božkově.

Ing. Jaromír Střeska. Zpráva o provedení diagnostického průzkumu říms mostu ev.č. 18019-2 přes řeku Úslavu v Plzni - Božkově. Ing. Jaromír Střeska geologické práce Kamenice 62, 356 01 Březová IČ: 187 30 817 tel.: 603 849 979, e-mail: streska@volny.cz Zpráva o provedení diagnostického průzkumu říms mostu ev.č. 18019-2 přes řeku

Více

1. Úvod ROZVODY ELEKTRICKÉ ENERGIE V PROSTORÁCH S NEBEZPEČÍM VÝBUCHU. 2. Vlastnosti hořlavých látek ve vztahu k výbuchu

1. Úvod ROZVODY ELEKTRICKÉ ENERGIE V PROSTORÁCH S NEBEZPEČÍM VÝBUCHU. 2. Vlastnosti hořlavých látek ve vztahu k výbuchu Obsah : 1. Úvod ROZVODY ELEKTRICKÉ ENERGIE V PROSTORÁCH S NEBEZPEČÍM VÝBUCHU 2. Vlastnosti hořlavých látek ve vztahu k výbuchu 3. Klasifikace výbušné atmosféry 4. Zdroje iniciace, klasifikace těchto zdrojů

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 5. 9. 2012 Číslo DUM: VY_32_INOVACE_13_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 5. 9. 2012 Číslo DUM: VY_32_INOVACE_13_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 5. 9. 2012 Číslo DUM: VY_32_INOVACE_13_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika

Více

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013 Výsledky testování školy Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy Školní rok 2012/2013 Gymnázium, Šternberk, Horní náměstí 5 Termín zkoušky: 13.

Více

2.7.2 Mocninné funkce se záporným celým mocnitelem

2.7.2 Mocninné funkce se záporným celým mocnitelem .7. Mocninné funkce se záporným celým mocnitelem Předpoklady: 70 Mocninné funkce se záporným celým mocnitelem: znamená? 3 y = = = = 3 y y y 3 = ; = ; = ;.... Co to Pedagogická poznámka: Nechávám studenty,

Více

Aktualizace krajského programu ke zlepšení kvality ovzduší Ústeckého kraje Příloha III. Příloha III

Aktualizace krajského programu ke zlepšení kvality ovzduší Ústeckého kraje Příloha III. Příloha III Příloha III Porovnání spalování paliv v malém stacionárním zdroji ASCEND s.r.o. Strana 1 (celkem 10) Dle výsledků projektu, který porovnával emise ze spalování hnědého uhlí a jiných typů paliv (Státní

Více

Název a registrační číslo projektu: Číslo a název oblasti podpory: Realizace projektu: Autor: Období vytváření výukového materiálu: Ročník:

Název a registrační číslo projektu: Číslo a název oblasti podpory: Realizace projektu: Autor: Období vytváření výukového materiálu: Ročník: Název a registrační číslo projektu: CZ.1.07/1.5.00/34.0498 Číslo a název oblasti podpory: 1.5 Zlepšení podmínek pro vzdělávání na středních školách Realizace projektu: 02. 07. 2012 01. 07. 2014 Autor:

Více

SMĚRNICE REKTORA č. 7/2001. Pokyny k obsluze tlakových nádob na plyny

SMĚRNICE REKTORA č. 7/2001. Pokyny k obsluze tlakových nádob na plyny SMĚRNICE REKTORA č. 7/2001 Pokyny k obsluze tlakových nádob na plyny Rozdělovník: rektor, kvestor, tajemníci fakult, TPO, ředitel KMZ Zpracovala: Libuše Křesálková Anotace: Pokyny k obsluze jsou zpracovány

Více

Bezpečnostní předpisy

Bezpečnostní předpisy Bezpečnostní předpisy pro montáž, provoz a údržbu uzavíracích klapek ABO série 3 E 1. Nutno pozorně přečíst a respektovat veškeré bezpečnostní pokyny, jinak jsou veškeré záruky výrobce neúčinné. Veškeré

Více

Následuje legislativa používaných strojů

Následuje legislativa používaných strojů Následuje legislativa používaných strojů Provozované výrobky Bezpečnost strojů, technických zařízení, přístrojů a nářadí nařízení vlády NV č. 378/2001 Sb minimální požadavky na bezpečný provoz a používání

Více

Střední škola obchodu, řemesel a služeb Žamberk. Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ

Střední škola obchodu, řemesel a služeb Žamberk. Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ Střední škola obchodu, řemesel a služeb Žamberk Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ Registrační číslo projektu: CZ.1.07/1.5.00/34.0130 Šablona: III/2 Ověřeno ve výuce dne: 7.10.2013

Více

+ 420 495 535 671 / /

+ 420 495 535 671 / / regulační šroub Princip Regulační šroub MARCOVIS EiSYS byl navržen tak, aby se v maximální možné míře snížil počet tepelných mostů způsobených kovovými částmi nosné konstrukce fasády. Při použití tohoto

Více

Výdej pod kontrolou. Mobilní nádrže na (bio)naftu a AdBlue. Proč si pořídit nádrž? FDC 2800 5000 7000 14000 FDE 2800-5000 -7000

Výdej pod kontrolou. Mobilní nádrže na (bio)naftu a AdBlue. Proč si pořídit nádrž? FDC 2800 5000 7000 14000 FDE 2800-5000 -7000 Mobilní nádrže na (bio)naftu a AdBlue FDC 2800 5000 7000 14000 FDE 2800-5000 -7000 PR Proč si pořídit nádrž? UKT OD UCT OD PR Výdej pod kontrolou DOPRAVA ZDARMA Nádrže slouží k bezpečnému uskladnění a

Více

Drážní úřad Rail Authority

Drážní úřad Rail Authority Povolování staveb v souvislosti s evropskou legislativou 2. část Praha - 13.3.2012 RNDr. Jan Karnolt ČVTSS, Praha 13.3.2012 1 Dokumenty upravující problematiku 1. Evropské: Směrnice Evropského parlamentu

Více

Jaké jsou důsledky použití kulového ventilu jako regulačního ventilu?

Jaké jsou důsledky použití kulového ventilu jako regulačního ventilu? regulačního ventilu? Kulový ventil zavřen Objemový průtok kulového ventilu je regulován axiální rotací koule s otvorem. Kulové ventily jsou konstrukčně on/off uzavírací ventily. Při plně otevřeném ventilu

Více

Elektrické teplovzdušné jednotky. Leo EL 23 Leo KMEL 23

Elektrické teplovzdušné jednotky. Leo EL 23 Leo KMEL 23 Elektrické teplovzdušné jednotky Leo EL 23 Leo KMEL 23 Základní charakteristika EL topný výkon [kw] 9* nebo 16* / 23 průtok vzduchu [m³/h] 3400* / 4200 hmotnost [kg] 23,5 barva stříbrná - šedá opláštění

Více

{ } 9.1.9 Kombinace II. Předpoklady: 9108. =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce.

{ } 9.1.9 Kombinace II. Předpoklady: 9108. =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce. 9.1.9 Kombinace II Předpoklady: 9108 Př. 1: Je dána pěti prvková množina: M { a; b; c; d; e} =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce. Vypisujeme

Více

PROCESNÍ INŽENÝRSTVÍ cvičení 4

PROCESNÍ INŽENÝRSTVÍ cvičení 4 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESNÍ INŽENÝRSTVÍ cvičení 4 Hana Charvátová, Dagmar Janáčová Zlín 01 Tento studijní materiál vznikl za finanční podpory Evropského sociálního

Více

Pingpongový míček. Petr Školník, Michal Menkina. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií

Pingpongový míček. Petr Školník, Michal Menkina. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Petr Školník, Michal Menkina TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.7/../7.47, který je spolufinancován

Více

4.2.7 Voltampérová charakteristika rezistoru a žárovky

4.2.7 Voltampérová charakteristika rezistoru a žárovky 4.2.7 Voltampérová charakteristika rezistoru a žárovky Předpoklady: 4205 Pedagogická poznámka: Tuto hodinu učím jako běžnou jednohodinovku s celou třídou. Některé dvojice stihnou naměřit více odporů. Voltampérová

Více

Vzduchové dveřní clony COR 1000 N

Vzduchové dveřní clony COR 1000 N COR 1000 N regulace na tel. 602 679 69 a návrh clony tel. 72 071 506 Montáž Clony lze montovat přímo na stěnu nebo zavěsit pomocí závitových tyčí M8 na strop. Minimální výška má být 2 m a maximální 3 m

Více

INMED 2013. Klasifikační systém DRG 2014

INMED 2013. Klasifikační systém DRG 2014 INMED 2013 Klasifikační systém DRG 2014 Anotace Příspěvek bude sumarizovat připravené změny v klasifikačním systému DRG pro rok 2014. Dále bude prezentovat datovou základnu produkčních dat v NRC a popis

Více

Dopravní úloha. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Dopravní úloha. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 9 Katedra ekonometrie FEM UO Brno Distribuční úlohy Budeme se zabývat 2 typy distribučních úloh dopravní úloha přiřazovací problém Dopravní úloha V dopravním problému se v typickém případě

Více

Číselné soustavy Ing. M. Kotlíková, Ing. A. Netrvalová Strana 1 (celkem 7) Číselné soustavy

Číselné soustavy Ing. M. Kotlíková, Ing. A. Netrvalová Strana 1 (celkem 7) Číselné soustavy Číselné soustavy Ing. M. Kotlíková, Ing. A. Netrvalová Strana (celkem 7) Polyadické - zobrazené mnohočlenem desítková soustava 3 2 532 = 5 + 3 + 2 + Číselné soustavy Číslice tvořící zápis čísla jsou vlastně

Více

9.2.5 Sčítání pravděpodobností I

9.2.5 Sčítání pravděpodobností I 9.2.5 Sčítání pravděpodobností I Předpoklady: 9203 Pedagogická poznámka: Následující problém sice zadávám jako příklad, ale minimálně na začátku s žáky počítám na tabuli. I kvůli tomu, aby jejich úprava

Více

BEZPEČNOSTNÍ LIST dle nařízení ES 1907/2006 a nařízení ES 453/2010

BEZPEČNOSTNÍ LIST dle nařízení ES 1907/2006 a nařízení ES 453/2010 dle nařízení ES 1907/2006 a nařízení ES 453/ PROPAN - BUTAN Strana 1 z 9 1. Identifikace látky/směsi a společnosti/podniku 1.1. Identifikátor výrobku Název výrobku: Propan butan Název chemických látek:

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.15 Konstrukční materiály Kapitola 1 Vlastnosti

Více

Dualita v úlohách LP Ekonomická interpretace duální úlohy. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Dualita v úlohách LP Ekonomická interpretace duální úlohy. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 6 Katedra ekonometrie FEM UO Brno Uvažujme obecnou úlohu lineárního programování, tj. úlohu nalezení takového řešení vlastních omezujících podmínek a 11 x 1 + a 1 x +... + a 1n x n = b 1 a

Více

KYSELINY KYSLÍKATÉ. Obecný vzorec: H I XO -II (X = S, N, P, C, Cl..)

KYSELINY KYSLÍKATÉ. Obecný vzorec: H I XO -II (X = S, N, P, C, Cl..) KYSELINY KYSLÍKATÉ Kyslíkaté kyseliny jsou tříprvkové sloučeniny, jejichž molekuly jsou tvořeny z atomů vodíku H, dalšího kyselinotvorného prvku X a kyslíku O, Obecný vzorec: H I XO -II (X = S, N, P, C,

Více

Zadání bakalářské/diplomové práce

Zadání bakalářské/diplomové práce Analýza systémového chování experimentální smyčky S-ALLEGRO V rámci projektu SUSEN Udržitelná energetika bude vyprojektována a postavena experimentální heliová smyčka S-Allegro. Tato smyčka má modelově

Více

Smlouva o spolupráci při realizaci odborných praxí studentů

Smlouva o spolupráci při realizaci odborných praxí studentů Smlouva o spolupráci při realizaci odborných praxí studentů I. Smluvní strany Masarykova univerzita Filozofická fakulta se sídlem, 602 00 Brno zastoupená prof. PhDr. Milanem Polem, CSc., děkanem Filozofické

Více

1 Rozbor vývoje smrtelných následků dopravních nehod v ČR

1 Rozbor vývoje smrtelných následků dopravních nehod v ČR 1 Rozbor vývoje smrtelných následků dopravních nehod v ČR 1.1 Úvod Následující analýza je zaměřena na problematiku vývoje smrtelných následků nehodovosti v ČR především v období 2006-2012 (období, kdy

Více

3. Rozměry a hmotnosti... 3. 4. Přiřazení typů a velikostí čelních desek... 7. 5. Odchylka od TPM... 8

3. Rozměry a hmotnosti... 3. 4. Přiřazení typů a velikostí čelních desek... 7. 5. Odchylka od TPM... 8 Tyto technické podmínky stanovují řadu vyráběných velikostí připojovacích skříní v ekonomickém provedení, které lze použít k čelním deskám VVM, VVPM, ALCM a ALKM. Platí pro výrobu, navrhování, objednávání,

Více

1 Statické zkoušky. 1.1 Zkouška tahem L L. R = e [MPa] S S

1 Statické zkoušky. 1.1 Zkouška tahem L L. R = e [MPa] S S 1 Statické zkoušky 1.1 Zkouška tahem Zkouška tahem je základní a nejrozšířenější mechanická zkouška. Princip: Přetržení zkušební tyče a následné stanovení tzv. napěťových a deformačních charakteristik

Více

M - Rovnice - lineární a s absolutní hodnotou

M - Rovnice - lineární a s absolutní hodnotou Rovnice a jejich ekvivalentní úpravy Co je rovnice Rovnice je matematický zápis rovnosti dvou výrazů. př.: x + 5 = 7x - M - Rovnice - lineární a s absolutní hodnotou Písmeno zapsané v rovnici nazýváme

Více

Logatherm WPLS 4.2 Light 7738502343 55 C 35 C A ++ A + A B C D E F G. db kw kw 2015 811/2013

Logatherm WPLS 4.2 Light 7738502343 55 C 35 C A ++ A + A B C D E F G. db kw kw 2015 811/2013 Ι 55 C 35 C A B C D E F G 36 5 5 4 5 5 5 db kw kw 65 db 2015 811/2013 Ι A B C D E F G 2015 811/2013 Informační list výrobku o spotřebě elektrické energie Následující údaje o výrobku vyhovují požadavkům

Více

5. Přehled pracovišť používajících hořlavé kapaliny k nevýrobním účelům

5. Přehled pracovišť používajících hořlavé kapaliny k nevýrobním účelům ř á í ěř ý í í úě ý ě í Ě ží á í ř ý Ú í úč ů Ú í é ě š ě í č é á í Ží á í ň ý Ží ý ý í úč ů ě á á á š š ě á š ě ý ů ří í á á í í é š á ů í ší č í ů čí Í í ě ě á ý á á Žá ě ů í ě í ří í é ů í ů á č ř í

Více

10.1.13 Asymptoty grafu funkce

10.1.13 Asymptoty grafu funkce .. Asmptot grafu funkce Předpoklad:, Asmptot grafu už známe kreslili jsme si je jako přímk, ke kterým se graf funkce přibližuje. Nakreslení asmptot, pak umožňuje přesnější kreslení grafu. Například u hperbol

Více

Zajištění bezpečnosti a ochrany zdraví při práci v prostředí s nebezpečím výbuchu

Zajištění bezpečnosti a ochrany zdraví při práci v prostředí s nebezpečím výbuchu práci v prostředí s nebezpečím výbuchu Strana: 1 z: 24 práci v prostředí s nebezpečím výbuchu Schválil: Ing. Tomáš Procházka, v.r. generální ředitel Synthesia, a.s. Určeno jen pro vnitřní potřebu. Předávání,

Více

Bezpečnostní list podle Vyhlášky 231/2004 Sb. v aktualizovaném znění strana 1 z 7

Bezpečnostní list podle Vyhlášky 231/2004 Sb. v aktualizovaném znění strana 1 z 7 Bezpečnostní list podle Vyhlášky 231/2004 Sb. v aktualizovaném znění strana 1 z 7 1. Identifikace přípravku a výrobce: 1.1 Obchodní název přípravku: Čistič PU-pěny Doporučené použití: Čistění aplikační

Více

BEZPEČNOSTNÍ LIST Podle nařízení EP a Rady ES č. 1907/2006 v aktuálním znění Datum vydání: 15.11.2007 Strana: 1/4 Datum revize: 12.8.

BEZPEČNOSTNÍ LIST Podle nařízení EP a Rady ES č. 1907/2006 v aktuálním znění Datum vydání: 15.11.2007 Strana: 1/4 Datum revize: 12.8. BEZPEČNOSTNÍ LIST Podle nařízení EP a Rady ES č. 1907/2006 v aktuálním znění Datum vydání: 15.11.2007 Strana: 1/4 1. IDENTIFIKACE LÁTKY / PŘÍPRAVKU A SPOLEČNOSTI / PODNIKU 1.1. Identifikace přípravku:

Více