Geometrická optika. Vnímání a měření barev. světlo určitého spektrálního složení vyvolá po dopadu na sítnici oka v mozku subjektivní barevný vjem

Rozměr: px
Začít zobrazení ze stránky:

Download "Geometrická optika. Vnímání a měření barev. světlo určitého spektrálního složení vyvolá po dopadu na sítnici oka v mozku subjektivní barevný vjem"

Transkript

1 Vnímání a měření barev světlo určitého spektrálního složení vyvolá po dopadu na sítnici oka v mozku subjektivní barevný vjem fyzikální charakteristika subjektivní vjem světelný tok subjektivní jas vlnová délka tón barvy čistota sytost barvy Barva subjektivní psychofyziologický vjem zprostředkovaný zrakovým orgánem vjem závisí na podmínkách pozorování

2 Vnímání a měření barev barevné vnímání zprostředkovávají čípky tzv. fotopické vidění, které mají tři různé orgány citlivé na červenou, zelenou a fialově modrou složku barvy světla citlivost základních tříorgánů pro vnímání barev je vyjádřena tzv.barevnými podněty

3 Barva světla závisí pouze na spektrálním složení pozorovaného záření v praxi existují různé zdroje světla s různým spektrálním složení LED zářivka

4 Barva předmětů závisí na intenzitě světla vyzařovaného tělesem např. odraženého nebo prošlého záření a na spektrálním složení světla, kterým je předmět ozařován I I I vnímaná barva předmětu červené světlo bílé světlo

5 Míšení barev zrak nemá schopnost rozlišovat jednotlivé barvy ve složeném světle stejný barevný vjem lze získat kombinací různých světel Aditivní míšení barev součtové skládání barev sčítají se jednotlivé světelné toky a výsledné spektrum záření je poté vnímáno zrakem jako celek míšením tří základních barev A,B,C lze získat jakoukoliv barvu X smícháním doplňkových barev vznikne bílá barva X A + B + C X + C A + B

6 Subtraktivní míšení barev odečítání barev z dopadajícího spektra záření ze spektra se odebírají části světelného toku pomocí spektrální propustnosti T vhodného barevného filtru nebo různé spektrální odrazivosti povrchu předmětů T modrý filtr žlutý filtr zelená barva

7 Měření barev systém B aditivního skládání barev lze využít ke kvantifikování barev barevný vjem může být vytvořen aditivním míšením tříprimárních barevných podnětů,,b o definovaných světelných tocích Φ, Φ, Φ B ve velmi širokém oboru pozorovacích podmínek Φ Φ + Φ + Φ B monochromatická světla barevné podněty spektrální barvy W W W B 546,1 nm 7 nm g r b matně bílé plochy referenční pole ref W ref Φe, 1 2 konst., ref V charakterizují plně barvu B 435,8 nm

8 Barevné podněty spektrálních barev - experiment 7 nm matně bílé plochy monochromatická světla W W g r referenční pole ref, 1 2 spektrální složení barevného podnětu 546,1 nm W B B b 435,8 nm W ref Φe konst., ref V ϕ ϕ ϕ B K W V m K W V m K W V m B B ϕ ref ϕ + ϕ + ϕ B ϕ ref dφ ref d K m W ref V V B V B 1 V [ W V + W V + W VB ] W ref

9 ] [ 1 B ref V W V W V W W V + + Barevné podněty spektrálních barev ref V W W r C b C g C r C V B d d d b g r poměr světlosti barev --B: 1:4.6:.6 poměr zářivých toků --B: 72.1:1.38:1

10 Měření barev systém B světlo se dá jednoznačně určit pomocí složek --B barevné podněty dané barvy r W d B g W d b W d poměr světlosti barev --B: 1:4.6:.6 poměr zářivých toků --B: 72.1:1.38:1 7 nm 546,1 nm 435,8 nm B barevné souřadnice r g + + B + + B B b + + B

11 Transformace barevného systému --B barevný systém --B má tu nevýhodu, že některé souřadnice barev r,g,b vycházejí záporné a bílý bod je nesymetricky umístěn v chromatickém diagramu proto se provádí lineární transformace do systému XYZ, kde jsou všechny souřadnice kladné x y z 2, , ,597,5651 1,1316 r,61 g 5,59427 b

12 Měření barev systém CIE 1931 podle normy Mezinárodní osvětlovací komise CIE 1931, vzniklé na základě měření velkého počtu pozorovatelů, se předpokládá, že oko vnímá třemi základními fyziologickými orgány, jejichž citlivost k barvám je vyjádřena barevnými podněty trichromatickými členiteli spektrální barvy vlnové délky barevné podněty spektrálních barev druhý barevný podnět je roven poměrné světelné účinnosti záření y V z y x

13 barevné podněty trichromatické složky světla při určování barvy světla se nejprve určí barevné podněty X, Y, Z, které vytvoří světlo o spektrálním složení W X x W d Y y W d Z z W d hodnota Y je přímo úměrná celkovému světelnému toku jas barevného podnětu L 683Y [cd/m 2 ] barevné souřadnice x,y,z barva světla je potom jednoznačně definována pomocí tzv. barevných souřadnic x X X + Y + Z y X Y + Y + Z z Z x + y + z X + Y + Z 1

14 diagram chromatičnosti barevné souřadnice x,y lze pro přehlednost vynést do tzv. diagramu chromatičnosti kolorimetrického trojúhelníka křivka spektrálních barev

15 Vnímání barvy světla odraženého nebo propuštěného spektrum odraženého resp. prošlého světla se mění a tím se také mění barevný vjem barevný vjem poté závisí na spektrálním složení W zdroje světla a spektrální odrazivosti resp. propustnosti T pozorovaného předmětu X x W d Y y W d Z z W d

16 Teplota barvy světla teplota absolutněčerného tělesa, jehož záření má stejnou barvu Druh světla Teplota barvy T [K] plamen svíčky W žárovka 27-3 východ Slunce 32 měsíční světlo 41 přímé slunce 5-54 denní světlo slunce denní světlo zataženo 6-75 modrá obloha 9-14 rostoucí teplota

17 Standardizované zdroje světla pro měření barvy odraženého resp. prošlého světla byly standardizovány následující zdroje A, B, C, D, E, D 65 A B C E D 65 žárovka 3 W přímé sluneční světlo rozptýlené sluneční světlo izoenergetické bílé světlo průměrné denní světlo zdroj A B C E D 65 T [K] 2856 K 4874 K 6774 K 56 K 65 K

18 Bílé achromatické světlo za bílé světlo se nejčastěji považuje světlo zdroje C, D 65 nebo izoenergetické světlo E o barevných souřadnicích x 1/3, y 1/3 převládající vlnová délka vlnová délka, ve které spojnice bílého bodu s bodem znázorňujícím danou barvu protíná křivku spektrálních barev udává barevný tón X 2 X 1 sytost barvy vzdálenost bodu X 2 znázorňujícího danou barvu od bílého bodu E, vyjádřená v procentech vzdálenosti bílého bodu od spektrálního bodu X 1 měřené na spojnici uvažovaného bodu s bílým bodem

19 Zobrazení barev na obrazovce při zobrazování barev na nejrůznějších zařízeních barevné obrazovky, LCD displeje, skenery, tiskárny, apod. není možné zobrazit všechny možné barvy, ale pouze určitou část sb barevný prostor

5.1 Měření barevných souřadnic světla pomocí Donaldsonova kolorimetru

5.1 Měření barevných souřadnic světla pomocí Donaldsonova kolorimetru Měření barevných souřadnic světla pomocí Donaldsonova kolorimetru 25 5 LABORATORNÍ ÚLOHY ZE SVĚTELNÉ A OSVĚTLOVACÍ TECHNIKY 5.1 Měření barevných souřadnic světla pomocí Donaldsonova kolorimetru 5.1.1 Úvod

Více

Barvy. Radek Fiala. Podpořeno z projektu FRVŠ 584/2011

Barvy. Radek Fiala. Podpořeno z projektu FRVŠ 584/2011 fialar@kma.zcu.cz Podpořeno z projektu FRVŠ 584/2011 Kde se berou barvy? Co je barva Světlo jako elmg. záření nemá barvu. Jednou z vlastností světla je tzv. spektrální rozdělení (Spectral Power Distribution,

Více

Světlo, které vnímáme, představuje viditelnou část elektromagnetického spektra. V

Světlo, které vnímáme, představuje viditelnou část elektromagnetického spektra. V Kapitola 2 Barvy, barvy, barvičky 2.1 Vnímání barev Světlo, které vnímáme, představuje viditelnou část elektromagnetického spektra. V něm se vyskytují všechny známé druhy záření, např. gama záření či infračervené

Více

světelný tok -Φ [ lm ] (lumen) Světelný tok udává, kolik světla celkem vyzáří zdroj do všech směrů.

světelný tok -Φ [ lm ] (lumen) Světelný tok udává, kolik světla celkem vyzáří zdroj do všech směrů. Světeln telné veličiny iny a jejich jednotky Světeln telné veličiny iny a jejich jednotky, světeln telné vlastnosti látekl světelný tok -Φ [ lm ] (lumen) Světelný tok udává, kolik světla celkem vyzáří

Více

Radiometrie se zabývá objektivním a fotometrie subjektivním měřením světla.

Radiometrie se zabývá objektivním a fotometrie subjektivním měřením světla. 12. Radiometrie a fotometrie 12.1. Základní optické schéma 12.2. Zdroj světla 12.3. Objekt a prostředí 12.4. Detektory světla 12.5. Radiometrie 12.6. Fotometrie 12.7. Oko 12.8. Měření barev 12. Radiometrie

Více

1. Určete spektrální propustnost vybraných materiálů (různých typů stavebních skel, fólií a optických filtrů) pomocí spektrofotometru

1. Určete spektrální propustnost vybraných materiálů (různých typů stavebních skel, fólií a optických filtrů) pomocí spektrofotometru FP 5 Měření optických vlastností materiálů Úkoly : 1. Určete spektrální propustnost vybraných materiálů různých typů stavebních skel, fólií a optických filtrů pomocí spektrofotometru 2. Určete spektrální

Více

Viditelné elektromagnetické záření

Viditelné elektromagnetické záření Aj to bude masakr 1 Viditelné elektromagnetické záření Vlnová délka 1 až 1 000 000 000 nm Světlo se chová jako vlnění nebo proud fotonů (záleží na okolnostech) 2 Optické záření 1645 Korpuskulární teorie

Více

Barvy. Vítězslav Otruba doc. Otruba 1

Barvy. Vítězslav Otruba doc. Otruba 1 Barvy Vítězslav Otruba 2006 doc. Otruba 1 Elektromagnetické záření 2006 doc. Otruba 2 Achromatické světlo Bílé světlo : signál složený ze záření všech vlnových délek viditelného spektra Difúzní odraz dopadajícího

Více

Barevné modely, práce s barvou. Martin Klíma

Barevné modely, práce s barvou. Martin Klíma Barevné modely, práce s barvou Martin Klíma Proč je barva důležitá Důležitý vizuální atribut Různá zařízení, aplikace, média Monitor Tiskárna Video Televize Světlo a barvy Elektromagnetické vlnění Viditelná

Více

Světlo. Podstata světla. Elektromagnetické záření Korpuskulární charakter. Rychlost světla. Vlnová délka. Vlnění, foton. c = 1 079 252 848,8 km/h

Světlo. Podstata světla. Elektromagnetické záření Korpuskulární charakter. Rychlost světla. Vlnová délka. Vlnění, foton. c = 1 079 252 848,8 km/h Světlo Světlo Podstata světla Elektromagnetické záření Korpuskulární charakter Vlnění, foton Rychlost světla c = 1 079 252 848,8 km/h Vlnová délka Elektromagnetické spektrum Rádiové vlny Mikrovlny Infračervené

Více

Práce na počítači. Bc. Veronika Tomsová

Práce na počítači. Bc. Veronika Tomsová Práce na počítači Bc. Veronika Tomsová Barvy Barvy v počítačové grafice I. nejčastější reprezentace barev: 1-bitová informace rozlišující černou a bílou barvu 0... bílá, 1... černá 8-bitové číslo určující

Více

Grafické systémy. Obrázek 1. Znázornění elektromagnetického spektra.

Grafické systémy. Obrázek 1. Znázornění elektromagnetického spektra. 1. 1.5 Světlo a vnímání barev Pro vnímání barev je nezbytné světlo. Viditelné světlo je elektromagnetické záření o vlnové délce 400 750 nm. Různé frekvence světla vidíme jako barvy, od červeného světla

Více

Digitální fotografie. Mgr. Milana Soukupová Gymnázium Česká Třebová

Digitální fotografie. Mgr. Milana Soukupová Gymnázium Česká Třebová Digitální fotografie Mgr. Milana Soukupová Gymnázium Česká Třebová Téma sady didaktických materiálů Digitální fotografie I. Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu

Více

ZÁKLADNÍ FOTOMETRICKÉ VELIČINY

ZÁKLADNÍ FOTOMETRICKÉ VELIČINY ZÁKLADNÍ FOTOMETRICKÉ VELIČINY Ing. Petr Žák VÝVOJ ČLOVĚKA vývoj člověka přizpůsobení okolnímu prostředí (adaptace) příjem informací o okolním prostředí smyslové orgány rozhraní pro příjem informací SMYSLOVÉ

Více

Gamut. - souřadný systém, ve kterém udáváme barvy (CIE, CMYK,RGB )

Gamut. - souřadný systém, ve kterém udáváme barvy (CIE, CMYK,RGB ) Přežiju to? 1 Gamut CMYK,RGB ) - souřadný systém, ve kterém udáváme barvy (CIE, dosažitelná oblast barev v barevném prostoru Vyjadřuje Rozsah barevného snímání (rozlišitelné barvy) Barevnou reprodukci

Více

Správa barev při digitalizaci archiválií. Magdalena Buriánková

Správa barev při digitalizaci archiválií. Magdalena Buriánková Magdalena Buriánková 21. 6. 2012 Význam správy barev při digitalizaci archiválií Základní vlastnosti barev a práce s nimi Správa barev při digitalizaci archiválií v praxi Jedním z důležitých požadavků

Více

Ing. Jan Buriánek. Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jan Buriánek, 2010

Ing. Jan Buriánek. Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jan Buriánek, 2010 Ing. Jan Buriánek (ČVUT FIT) Barvy a barevné prostory I BI-MGA, 2010, Přednáška 3 1/32 Ing. Jan Buriánek Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v

Více

Jednou z nejstarších partií fyziky je nauka o světle tj. optika. Existovaly dva názory na fyzikální podstatu světla:

Jednou z nejstarších partií fyziky je nauka o světle tj. optika. Existovaly dva názory na fyzikální podstatu světla: Optika Jednou z nejstarších partií fyziky je nauka o světle tj. optika. Existovaly dva názory na fyzikální podstatu světla: Světlo je proud částic (I. Newton, 1704). Ale tento částicový model nebyl schopen

Více

Barvy v počítačové grafice

Barvy v počítačové grafice arvy v počítačové grafice 2. přednáška předmětu Zpracování obrazů Martina Mudrová 24 arvy v počítačové grafice o je barva? světlo = elmg. vlnění v rozsahu 4,3. 4-7,5. 4 Hz viditelná č ást spektra rentgenové

Více

Barvy v počítačové grafice

Barvy v počítačové grafice arvy v počítačové grafice 2. přednáška předmětu Zpracování obrazů Martina Mudrová 2004 arvy v počítačové grafice Co je barva? světlo = elmg. vlnění v rozsahu 4,3.10 14-7,5.10 14 Hz rentgenové zář ení zář

Více

3.1 Laboratorní úlohy z osvětlovacích soustav

3.1 Laboratorní úlohy z osvětlovacích soustav Osvětlovací soustavy. Laboratorní cvičení 11 3.1 Laboratorní úlohy z osvětlovacích soustav 3.1.1 Měření odraznosti povrchů Cíl: Cílem laboratorní úlohy je porovnat spektrální a integrální odraznosti různých

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE. Barvové prostory.

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE. Barvové prostory. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE Barvové prostory semestrální práce Jana Pospíšilová Lenka Roušarová V Praze dne 26. 4. 2010

Více

4.1 Barva vlastnost zrakového vjemu

4.1 Barva vlastnost zrakového vjemu 4. ZÁKLAD NAUK O BARVĚ Předmětem nauky o barvě je objektivní hodnocení barvy světla různých světelných zdrojů i barvy pozorovaných předmětů. Jde o náročný úkol, neboť vnímání barev je složitý fyziologicko-psychický

Více

Přednáška kurzu MPOV. Barevné modely

Přednáška kurzu MPOV. Barevné modely Přednáška kurzu MPOV Barevné modely Ing. P. Petyovský (email: petyovsky@feec.vutbr.cz), kancelář E512, tel. 1194, Integrovaný objekt - 1/11 - Barvy v počítačové grafice Barevné modely Aditivní modely RGB,

Více

Barva. v počítačové grafice. Poznámky k přednášce předmětu Počítačová grafika

Barva. v počítačové grafice. Poznámky k přednášce předmětu Počítačová grafika Barva v počítačové grafice Poznámky k přednášce předmětu Počítačová grafika Martina Mudrová 2007 Barvy v počítačové grafice Co je barva? světlo = elmg. vlnění v rozsahu 4,3.10 14-7,5.10 14 Hz rentgenové

Více

Obsah. Úvod 9 Co v knize najdete 9 Komu je kniha určena 9 Konvence užité v knize 9 Vzkaz čtenářům 10 Typografické konvence použité v knize 11

Obsah. Úvod 9 Co v knize najdete 9 Komu je kniha určena 9 Konvence užité v knize 9 Vzkaz čtenářům 10 Typografické konvence použité v knize 11 Obsah Úvod 9 Co v knize najdete 9 Komu je kniha určena 9 Konvence užité v knize 9 Vzkaz čtenářům 10 Typografické konvence použité v knize 11 KAPITOLA 1 Působení barev 13 Fyzikální působení barev 15 Spektrum

Více

Michal Vik a Martina Viková: Základy koloristiky ZKO3

Michal Vik a Martina Viková: Základy koloristiky ZKO3 Fyziologie vnímání barev Příklady vizuáln lních iluzí: Vliv barvy pozadí I Jsou tyto kruhy barevně shodné? Příklady vizuáln lních iluzí: Vliv barvy pozadí II Jsou tyto kruhy barevně shodné? Příklady vizuáln

Více

Barevné prostory. RGB, CMYK, HSV a Lab gamut

Barevné prostory. RGB, CMYK, HSV a Lab gamut J. Vrzal, 1.0 Barevné prostory RGB, CMYK, HSV a Lab gamut rozsah všech barev, které jsou dosažitelné v určitém barevném prostoru barvy mimo oblast gamutu jsou reprodukovány nejbližší dostupnou barvou z

Více

08 - Optika a Akustika

08 - Optika a Akustika 08 - Optika a Akustika Zvuk je mechanické vlnění v látkovém prostředí, které je schopno vyvolat sluchový vjem. Člověk je schopen vnímat vlnění o frekvenci 16 Hz až 20000 Hz (20kHz). Frekvenci nižší než

Více

Počítače a grafika. Ing. Radek Poliščuk, Ph.D. Přednáška 4. z předmětu

Počítače a grafika. Ing. Radek Poliščuk, Ph.D. Přednáška 4. z předmětu Ústav automatizace a informatiky Fakulta strojního inženýrství Vysoké učení technické v Brně Přednáška 4. z předmětu Počítače a grafika Ing. Radek Poliščuk, Ph.D. 1/19 Obsah přednášky Přednáška 4 Barvy

Více

Konstrukce zdroje záření a jeho využití ve výuce optiky

Konstrukce zdroje záření a jeho využití ve výuce optiky Konstrukce zdroje záření a jeho využití ve výuce optiky LENKA TICHÁČKOVÁ, LENKA HÖNIGOVÁ Ostravská univerzita v Ostravě Abstrakt Tento článek se věnuje zdroji záření viditelné oblasti a UV. Jak tento levný

Více

1. Zpracování barev v publikacích

1. Zpracování barev v publikacích 1. Zpracování barev v publikacích Studijní cíl V tomto bloku kurzu se budeme zabývat problematikou zpracování barev, vnímání barev, rozlišení barev a vlastnostmi barev. Vysvětlíme si co je to barvový model,

Více

Hodnocení termodegradace PVC folií

Hodnocení termodegradace PVC folií Laboratorní cvičení z předmětu "Kontrolní a zkušební metody" Hodnocení termodegradace PVC folií Zadání: Proveďte hodnocení tepelné odolnosti PVC optickými metodami. Předmět normy: Norma platí pro měření

Více

EXPERIMENTÁLNÍ METODY I 11. Měření světelných veličin

EXPERIMENTÁLNÍ METODY I 11. Měření světelných veličin FSI UT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I 11. Měření světelných veličin OSNOA 11. KAPITOLY Úvod do měření světelných

Více

Barvy. Vítězslav Otruba prof. Otruba 1

Barvy. Vítězslav Otruba prof. Otruba 1 Barvy Vítězslav Otruba 2014 prof. Otruba 1 Elektromagnetické záření 2014 prof. Otruba 2 Achromatické světlo Bílé světlo : signál složený ze záření všech vlnových délek viditelného spektra Difúzní odraz

Více

Úvod do počítačové grafiky

Úvod do počítačové grafiky Úvod do počítačové grafiky elmag. záření s určitou vlnovou délkou dopadající na sítnici našeho oka vnímáme jako barvu v rámci viditelné části spektra je člověk schopen rozlišit přibližně 10 milionů barev

Více

Řízení robota pomocí senzoru barev. Tematický celek: Světlo. Úkol:

Řízení robota pomocí senzoru barev. Tematický celek: Světlo. Úkol: Název: Řízení robota pomocí senzoru barev. Tematický celek: Světlo. Úkol: Zopakuj si, čím je daná barva předmětu a jak se míchají barvy ve fyzice a výpočetní technice. Zjisti, jak pracuje senzor barev.

Více

Barevné systémy 1995-2015 Josef Pelikán CGG MFF UK Praha

Barevné systémy 1995-2015 Josef Pelikán CGG MFF UK Praha Barevné systémy 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Colors 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 21 Rozklad spektrálních barev

Více

Charakteristiky optického záření

Charakteristiky optického záření Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární

Více

Barvy a barevné systémy. Ivo Peterka

Barvy a barevné systémy. Ivo Peterka Barvy a barevné systémy Ivo Peterka Viditelné světlo. Elektromagnetické záření o vlnové délce 390 760 nanometrů. Jsou-li v konktrétním světle zastoupeny složky všech vlnových délek, vnímáme toto světlo

Více

ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika

ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika ODRAZ A LOM SVĚTLA Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika Odraz světla Vychází z Huygensova principu Zákon odrazu: Úhel odrazu vlnění je roven úhlu dopadu. Obvykle provádíme konstrukci pomocí

Více

Světlo x elmag. záření. základní principy

Světlo x elmag. záření. základní principy Světlo x elmag. záření základní principy Jak vzniká a co je to duha? Spektrum elmag. záření Viditelné 380 760 nm, UV 100 380 nm, IR 760 nm 1mm Spektrum elmag. záření Harmonická vlna Harmonická vlna E =

Více

5.3.1 Disperze světla, barvy

5.3.1 Disperze světla, barvy 5.3.1 Disperze světla, barvy Předpoklady: 5103 Svítíme paprskem bílého světla ze žárovky na skleněný hranol. Světlo se láme podle zákona lomu na zdi vznikne osvětlená stopa Stopa vznikla, ale není bílá,

Více

Fyzikální demonstrace s využitím LED pásků

Fyzikální demonstrace s využitím LED pásků Fyzikální demonstrace s využitím LED pásků JAN HRDÝ, IVO ROHLENA Gymnázium Jana Pivečky a SOŠ Slavičín Tento příspěvek řeší použití barevných LED pásků [1,2] pro základní fyzikální demonstrace z oblasti

Více

Michal Vik a Martina Viková: Základy koloristiky ZKO10. Správa barev

Michal Vik a Martina Viková: Základy koloristiky ZKO10. Správa barev Správa barev Přenos barevné a obrazové informace I Každodenn dodenní problémy s přenosem... p en samý dokument vypadá jinak, když: je vytištěn na různých tiskárnách je vyobrazen na různých monitorech je

Více

SFA1. Denní osvětlení. Přednáška 4. Bošová- SFA1 Přednáška 4/1

SFA1. Denní osvětlení. Přednáška 4. Bošová- SFA1 Přednáška 4/1 SFA1 Denní osvětlení Přednáška 4 Bošová- SFA1 Přednáška 4/1 CÍL: Přístup světla rozptýleného v atmosféře do interiéru (denní světlo je nezávislé na světových stranách) Vytvoření zrakové pohody pro uživatele

Více

Aplikace barevného vidění ve studiu elastohydrodynamického mazání

Aplikace barevného vidění ve studiu elastohydrodynamického mazání Ústav fyzikálního inženýrství Fakulta strojního inženýrství Vysoké učení technické v Brně Aplikace barevného vidění ve studiu elastohydrodynamického mazání Ing. Radek Poliščuk 1/16 Cíle disertační práce

Více

Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm.

Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. 1. Podstata světla Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. Vznik elektromagnetických vln (záření): 1. při pohybu elektricky nabitých částic s nenulovým zrychlením

Více

PV156 Digitální fotografie Barvy Tomáš Slavíček / Vít Kovalčík FI MU, podzim 2012

PV156 Digitální fotografie Barvy Tomáš Slavíček / Vít Kovalčík FI MU, podzim 2012 PV156 Digitální fotografie Barvy Tomáš Slavíček / Vít Kovalčík FI MU, podzim 2012 Barva jako součást kompozice barva hraje důležitou roli barva je samostatným prvkem kompozice, který má na diváka (estetický)

Více

3. FYZIOLOGIE VIDĚNÍ. KRITERIA A LIMITY DENNÍ OSVĚTLENOSTI. VÝPOČTY ČINITELE DENNÍ OSVĚTLENOSTI. MĚŘENÍ OSVĚTLENÍ. ZRAK A VIDĚNÍ:

3. FYZIOLOGIE VIDĚNÍ. KRITERIA A LIMITY DENNÍ OSVĚTLENOSTI. VÝPOČTY ČINITELE DENNÍ OSVĚTLENOSTI. MĚŘENÍ OSVĚTLENÍ. ZRAK A VIDĚNÍ: 3. FYZIOLOGIE VIDĚNÍ. KRITERIA A LIMITY DENNÍ OSVĚTLENOSTI. VÝPOČTY ČINITELE DENNÍ OSVĚTLENOSTI. MĚŘENÍ OSVĚTLENÍ. ZRAK A VIDĚNÍ: Záření je definováno jako šíření energie prostorem. Tato energie je popisována

Více

Správa barev. Měřící přístroje. Správa barev. Vytvořila: Jana Zavadilová Vytvořila dne: 14. února 2013. www.isspolygr.cz

Správa barev. Měřící přístroje. Správa barev. Vytvořila: Jana Zavadilová Vytvořila dne: 14. února 2013. www.isspolygr.cz Měřící přístroje www.isspolygr.cz Vytvořila: Jana Zavadilová Vytvořila dne: 14. února 2013 Strana: 1/12 Škola Ročník 4. ročník (SOŠ, SOU) Název projektu Interaktivní metody zdokonalující proces edukace

Více

Cv NS-i-3. Ústav nauky o budovách, 1. ročník, zimní semestr 2015/2016 21. 10. 31. 10. 2015. Jan Paroubek, Zbyšek Stýblo

Cv NS-i-3. Ústav nauky o budovách, 1. ročník, zimní semestr 2015/2016 21. 10. 31. 10. 2015. Jan Paroubek, Zbyšek Stýblo Cv NS-i-3 Ústav nauky o budovách, 1. ročník, zimní semestr 2015/2016 21. 10. 31. 10. 2015 Jan Paroubek, Zbyšek Stýblo NS I -3_ Cvičení Paroubek 2014/15 Fyziologie vidění Stavba oka řasnaté tělísko

Více

Montážní program XMF

Montážní program XMF Montážní program Slovníček pojmů www.isspolygr.cz Vytvořila: Eva Bartoňková Vytvořila dne: 2. 4. 2013 Strana: 1/9 Škola Ročník 4. ročník (SOŠ, SOU) Název projektu Interaktivní metody zdokonalující proces

Více

Více denního světla, více pohody

Více denního světla, více pohody Izolace První vydání Květen 2017 Více denního světla, více pohody STUDIE ZLEPŠENÍ DENNÍHO OSVĚTLENÍ V ZÁVISLOSTI NA POUŽITÍ FASÁDNÍ IZOLACE Kingspan Kooltherm K5 KONTAKTNÍ FASÁDNÍ DESKA NAMÍSTO MINERÁLNÍ

Více

Přednáška kurzu BZVS. Barevné modely

Přednáška kurzu BZVS. Barevné modely Přednáška kurzu BZVS Barevné modely Ing. P. Petyovský (email: petyovsky@feec.vutbr.cz), kancelář SD3.152, tel. 6434, Technická 12, VUT v Brně - 1/16 - Barvy v počítačové grafice Barevné modely Aditivní

Více

Mgr. Markéta Trnečková, Ph.D. Palacký University, Olomouc

Mgr. Markéta Trnečková, Ph.D. Palacký University, Olomouc Světlo a barvy v počítačové grafice Počítačová grafika Mgr. Markéta Trnečková, Ph.D. Palacký University, Olomouc EM spektrum λ = c f, E = h f c... rychlost světla (300000 km/h) h... Planckova konstanta

Více

Její uplatnění lze nalézt v těchto oblastech zkoumání:

Její uplatnění lze nalézt v těchto oblastech zkoumání: RADIOMETRIE, FOTOMETRIE http://cs.wikipedia.org/wiki/kandela http://www.gymhol.cz/projekt/fyzika/12_energie/12_energie.htm M. Vrbová, H. Jelínková, P. Gavrilov. Úvod do laserové techniky, skripta ČVUT,

Více

ZÁKLADY LED TECHNOLOGIE

ZÁKLADY LED TECHNOLOGIE ZÁKLADY LED TECHNOLOGIE ELEKTROLUMINISCENČNÍ DIODA LED je polovodičový světelný zdroj, který se výrazně liší od konvenčních světelných zdrojů. Na rozdíl od konvenčních svítidel, kde je světlo vyzařováno

Více

Barevné vidění Josef Pelikán CGG MFF UK Praha

Barevné vidění Josef Pelikán CGG MFF UK Praha Barevné vidění 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ ColorPerception 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 15 Co je světlo? Špatnota

Více

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce

Více

Rozšíření bakalářské práce

Rozšíření bakalářské práce Rozšíření bakalářské práce Vojtěch Vlkovský 2011 1 Obsah Seznam obrázků... 3 1 Barevné modely... 4 1.1 RGB barevný model... 4 1.2 Barevný model CMY(K)... 4 1.3 Další barevné modely... 4 1.3.1 Model CIE

Více

ČOS vydání ČESKÝ OBRANNÝ STANDARD BÍLÁ BARVA PRO MASKOVÁNÍ OBJEKTŮ VE SNĚHU

ČOS vydání ČESKÝ OBRANNÝ STANDARD BÍLÁ BARVA PRO MASKOVÁNÍ OBJEKTŮ VE SNĚHU ČESKÝ OBRANNÝ STANDARD BÍLÁ BARVA PRO MASKOVÁNÍ OBJEKTŮ VE SNĚHU (VOLNÁ STRANA) 2 ČESKÝ OBRANNÝ STANDARD BÍLÁ BARVA PRO MASKOVÁNÍ OBJEKTŮ VE SNĚHU Základem pro tvorbu tohoto standardu byly originály následujících

Více

DIGITÁLNÍ FOTOGRAFIE

DIGITÁLNÍ FOTOGRAFIE DIGITÁLNÍ FOTOGRAFIE Petr Vaněček, katedra informatiky a výpočetní techniky Fakulta aplikovaných věd, Západočeská univerzita v Plzni 19. listopadu 2009 1888, Geroge Eastman You press the button, we do

Více

Stanovení povrchových vlastností (barva, lesk) materiálů exponovaných za podmínek simulující vnější prostředí v QUV panelu

Stanovení povrchových vlastností (barva, lesk) materiálů exponovaných za podmínek simulující vnější prostředí v QUV panelu Stanovení povrchových vlastností (barva, lesk materiálů exponovaných za podmínek simulující vnější prostředí v QUV panelu Cíle práce: Cílem této práce je stanovení optických změn povrchu vzorků během dlouhodobých

Více

Barevné a transparentní obaly potravin, barevnost potravin. Zadání: Charakterizujete barevnost vybraných vzorků obalů a potravin.

Barevné a transparentní obaly potravin, barevnost potravin. Zadání: Charakterizujete barevnost vybraných vzorků obalů a potravin. Barevné a transparentní obaly potravin, barevnost potravin Zadání: Charakterizujete barevnost vybraných vzorků obalů a potravin. 1. Změřte remisní křivky a určete barevnost v souřadnicích L*a*b* pro přinesené

Více

Komplexní modely pro hodnocení barevnosti a vzhledu

Komplexní modely pro hodnocení barevnosti a vzhledu Komplexní modely pro hodnocení barevnosti a vzhledu A C1 C2 C3 C0 Mozek Kolorimetrická soustava CIE1931 Mozek Co se stane v případech, p padech, kdy dojde k porušen ení podmínek Wright-Guildova experimentu?

Více

Úvod do správy barev a profilace monitorů a fotoaparátů. Ing. Tomáš Syrový, Ph.D.

Úvod do správy barev a profilace monitorů a fotoaparátů. Ing. Tomáš Syrový, Ph.D. Úvod do správy barev a profilace monitorů a fotoaparátů Ing. Tomáš Syrový, Ph.D. Barva Barva je subjektivní zrakový vjem a je dána třemi aspekty Lidský zrak (subjektivní), záznamové médium sensor spektrofotometru,

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 1.4.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Měření s polarizovaným světlem

Více

PV156 Digitální fotografie Barvy Tomáš Slavíček / Vít Kovalčík FI MU, podzim 2014

PV156 Digitální fotografie Barvy Tomáš Slavíček / Vít Kovalčík FI MU, podzim 2014 PV156 Digitální fotografie Barvy Tomáš Slavíček / Vít Kovalčík FI MU, podzim 2014 Dva úhly pohledu v DF se na barvy můžeme dívat ze dvou pohledů estetický působení na člověka jejich využití v kompozici

Více

A5M13VSO MĚŘENÍ INTENZITY A SPEKTRA SLUNEČNÍHO ZÁŘENÍ

A5M13VSO MĚŘENÍ INTENZITY A SPEKTRA SLUNEČNÍHO ZÁŘENÍ MĚŘENÍ INTENZITY A SPEKTRA SLUNEČNÍHO ZÁŘENÍ Zadání: 1) Pomocí pyranometru SG420, Light metru LX-1102 a měřiče intenzity záření Mini-KLA změřte intenzitu záření a homogenitu rozložení záření na povrchu

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012. Číslo DUM: VY_32_INOVACE_20_FY_C

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012. Číslo DUM: VY_32_INOVACE_20_FY_C Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012 Číslo DUM: VY_32_INOVACE_20_FY_C Ročník: II. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:

Více

B_PPG PRINCIPY POČÍTAČOVÉ GRAFIKY

B_PPG PRINCIPY POČÍTAČOVÉ GRAFIKY B_PPG PRINCIPY POČÍTAČOVÉ GRAFIKY RNDr. Jana Štanclová, Ph.D. jana.stanclova@ruk.cuni.cz ZS 2/0 Z Obrázky (popř. slajdy) převzaty od RNDr. Josef Pelikán, CSc., KSVI MFF UK Obsah seminářů 03.10.2011 [1]

Více

Přípravy VIKBB11 pracovní verze. Přednáška 1 barvy.

Přípravy VIKBB11 pracovní verze. Přednáška 1 barvy. Přípravy VIKBB11 pracovní verze. Přednáška 1 barvy. Světlo se šíří rychlostí 300tis. km/s. Jak se světlo vlastně chová? Albert Einstein v roce 1905 popsal dualitu částice a vlnění, která se vztahuje k

Více

25 A Vypracoval : Zdeněk Žák Pyrometrie υ = -40 C.. +10000 C. Výhody termovize Senzory infračerveného záření Rozdělení tepelné senzory

25 A Vypracoval : Zdeněk Žák Pyrometrie υ = -40 C.. +10000 C. Výhody termovize Senzory infračerveného záření Rozdělení tepelné senzory 25 A Vypracoval : Zdeněk Žák Pyrometrie Bezdotykové měření Pyrometrie (obrázky viz. sešit) Bezdotykové měření teplot je měření povrchové teploty těles na základě elektromagnetického záření mezi tělesem

Více

Základní vyšetření zraku

Základní vyšetření zraku Základní vyšetření zraku Až 80 % informací z okolí přijímáme pomocí zraku. Lidské oko je přibližně kulového tvaru o velikosti 24 mm. Elektromagnetické vlny o vlnové délce 400 až 800 nm, které se odrazily

Více

VOLBA BAREVNÝCH SEPARACÍ

VOLBA BAREVNÝCH SEPARACÍ VOLBA BAREVNÝCH SEPARACÍ SOURAL Ivo Fakulta chemická, Ústav fyzikální a spotřební chemie Vysoké učení technické v Brně, Purkyňova 118, 612 00 Brno E-mail : Pavouk.P@centrum.cz K tomu aby byly pochopitelné

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. Fakulta elektrotechnická BAKALÁŘSKÁ PRÁCE Václav Zelenka

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. Fakulta elektrotechnická BAKALÁŘSKÁ PRÁCE Václav Zelenka ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická BAKALÁŘSKÁ PRÁCE 2017 Václav Zelenka Název bakalářské práce: Možnosti užití svítidel s volitelnou teplotou chromatičnosti Possibilities of

Více

Optické přístroje. Oko

Optické přístroje. Oko Optické přístroje Oko Oko je orgán živočichů reagující na světlo. Obratlovci a hlavonožci mají jednoduché oči, členovci, kteří mají menší rozměry a jednoduché oko by trpělo difrakčními jevy, mají složené

Více

Spektrální charakteristiky

Spektrální charakteristiky Spektrální charakteristiky Cíl cvičení: Měření spektrálních charakteristik filtrů a zdrojů osvětlení 1 Teoretický úvod Interakcí elektromagnetického vlnění s libovolnou látkou vzniká optický jev, který

Více

SVĚTLO A TMA ROZKLAD A MÍCHÁNÍ BAREV

SVĚTLO A TMA ROZKLAD A MÍCHÁNÍ BAREV SVĚTLO A TMA ROZKLAD A MÍCHÁNÍ BAREV Světlo vypadá jako bezbarvé, ale ve skutečnosti je směsí červené, žluté, zelené, modré, indigové modři a fialové barvy. Jednoduchými pokusy můžeme světlo rozkládat

Více

4. Z modové struktury emisního spektra laseru určete délku aktivní oblasti rezonátoru. Diskutujte,

4. Z modové struktury emisního spektra laseru určete délku aktivní oblasti rezonátoru. Diskutujte, 1 Pracovní úkol 1. Změřte současně světelnou i voltampérovou charakteristiku polovodičového laseru. Naměřené závislosti zpracujte graficky. Stanovte prahový proud i 0. 2. Pomocí Hg výbojky okalibrujte

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. IV Název: Měření fotometrického diagramu. Fotometrické veličiny a jejich jednotky Pracoval: Jan Polášek stud.

Více

Spektrální charakteristiky světelných zdrojů a světla prošlého

Spektrální charakteristiky světelných zdrojů a světla prošlého Spektrální charakteristiky světelných zdrojů a světla prošlého a odraženého LENKA LIČMANOVÁ, LIBOR KONÍČEK Přírodovědecká fakulta, Ostravská univerzita v Ostravě, Ostrava Abstrakt Příspěvek se zabývá popisem

Více

SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE)

SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE) SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE) Elektromagnetické vlnění SVĚTLO Charakterizace záření Vlnová délka - (λ) : jednotky: m (obvykle nm) λ Souvisí s povahou fotonu Charakterizace záření

Více

Kde se používá počítačová grafika

Kde se používá počítačová grafika POČÍTAČOVÁ GRAFIKA Kde se používá počítačová grafika Tiskoviny Reklama Média, televize, film Multimédia Internetové stránky 3D grafika Virtuální realita CAD / CAM projektování Hry Základní pojmy Rastrová

Více

Barvy a barevné systémy Formáty obrázků pro WWW

Barvy a barevné systémy Formáty obrázků pro WWW Barvy a barevné systémy Formáty obrázků pro WWW Viditelné světlo. Elektromagnetické záření o vlnové délce 390 760 nanometrů. Jsou-li v konkrétním světle zastoupeny složky všech vlnových délek, vnímáme

Více

8. Denní a sdružené osvětlení

8. Denní a sdružené osvětlení 8. Denní a sdružené osvětlení 8.1 Denní osvětlení Denní osvětlení je přirozené sluneční osvětlení. Vyskytuje se tedy pouze v průběhu dne mezi východem a západem Slunce. Jedná se o nestálý zdroj světla

Více

Barvy a barevné modely. Počítačová grafika

Barvy a barevné modely. Počítačová grafika Barvy a barevné modely Počítačová grafika Barvy Barva základní atribut pro definici obrazu u každého bodu, křivky či výplně se definuje barva v rastrové i vektorové grafice všechny barvy, se kterými počítač

Více

Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Projekt je realizován v rámci Operačního programu Vzdělávání pro konkurence

Více

Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země

Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země strana 2 Co je DPZ Dálkový průzkum je umění rozdělit svět na množství malých barevných čtverečků, se kterými si lze hrát na počítači a odhalovat jejich neuvěřitelný

Více

MĚŘENÍ ABSORPCE SVĚTLA SPEKOLEM

MĚŘENÍ ABSORPCE SVĚTLA SPEKOLEM MĚŘENÍ ABSORPCE SVĚTLA SPEKOLEM Průchodem světla homogenním prostředím se jeho intenzita zmenšuje podle Lambertova zákona. Klesne-li intenzita monochromatického světla po projití vrstvou tloušťky l z hodnoty

Více

LABORATORNÍ PRACOVIŠTĚ PRO MĚŘENÍ VĚRNOSTI BAREV VE VIDEOTECHNICE LABORATORY SITE FOR COLOR MEASUREMENT IN VIDEO TECHNOLOGY

LABORATORNÍ PRACOVIŠTĚ PRO MĚŘENÍ VĚRNOSTI BAREV VE VIDEOTECHNICE LABORATORY SITE FOR COLOR MEASUREMENT IN VIDEO TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

Pokroky matematiky, fyziky a astronomie

Pokroky matematiky, fyziky a astronomie Pokroky matematiky, fyziky a astronomie Pavel Chmela Matematické vyjádření barvy a problémy barevného vidění Pokroky matematiky, fyziky a astronomie, Vol. 9 (1964), No. 2, 65--[72a],73 Persistent URL:

Více

ZRAKOVÝ ORGÁN A PROCES VIDĚNÍ. Prof. Ing. Jiří Habel, DrSc. FEL ČVUT Praha

ZRAKOVÝ ORGÁN A PROCES VIDĚNÍ. Prof. Ing. Jiří Habel, DrSc. FEL ČVUT Praha ZRAKOVÝ ORGÁN A PROCES VIDĚNÍ Prof. Ing. Jiří Habel, DrSc. FEL ČVUT Praha prosinec 2014 1 ZRAKOVÝ ORGÁN A PROCES VIDĚNÍ PROCES VIDĚNÍ - 1. oko jako čidlo zraku zajistí nejen příjem informace přinášené

Více

3. SVĚTELNÉ JEVY. Světelné zdroje. Rychlost světla.

3. SVĚTELNÉ JEVY. Světelné zdroje. Rychlost světla. 3. SVĚTELNÉ JEVY. Světelné zdroje. Rychlost světla. Pokud máme zdravý zrak, vidíme kolem sebe různé předměty, ze kterých do našeho oka přichází světlo. Předměty můžou být samy zdrojem světla (hvězdy, oheň,

Více

Barvy a barevné systémy Formáty obrázků pro WWW

Barvy a barevné systémy Formáty obrázků pro WWW Barvy a barevné systémy Formáty obrázků pro WWW Viditelné světlo. Elektromagnetické záření o vlnové délce 390 760 nanometrů. Jsou-li v konkrétním světle zastoupeny složky všech vlnových délek, vnímáme

Více

Michal Vik a Martina Viková: Základy koloristiky ZKO1

Michal Vik a Martina Viková: Základy koloristiky ZKO1 Atlasy a číselníky barev I Barva I Barva je to první, co vnímáme, pak teprve vnímáme tvary, detaily,... Je pro nás často jednodušší si vybavit barvu předmětu než například jeho tvar. Kdybychom neviděli

Více

Ing. Ondrej Panák, ondrej.panak@upce.cz Katedra polygrafie a fotofyziky, Fakulta chemicko-technologická, Univerzita Pardubice

Ing. Ondrej Panák, ondrej.panak@upce.cz Katedra polygrafie a fotofyziky, Fakulta chemicko-technologická, Univerzita Pardubice 1 ěřní barvnosti studijní matriál Ing. Ondrj Panák, ondrj.panak@upc.cz Katdra polygrafi a fotofyziky, Fakulta chmicko-tchnologická, Univrzita Pardubic Úvod Abychom mohli či už subjktivně nbo objktivně

Více

Počítačová grafika III Radiometrie. Jaroslav Křivánek, MFF UK

Počítačová grafika III Radiometrie. Jaroslav Křivánek, MFF UK Počítačová grafika III Radiometrie Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Směr, prostorový úhel, integrování na jednotkové kouli Směr ve 3D Směr = jednotkový vektor ve 3D Kartézské souřadnice

Více

Optika nauka o světle

Optika nauka o světle Optika nauka o světle 50_Světelný zdroj, šíření světla... 2 51_Stín, fáze Měsíce... 3 52_Zatmění Měsíce, zatmění Slunce... 3 53_Odraz světla... 4 54_Zobrazení předmětu rovinným zrcadlem... 4 55_Zobrazení

Více