ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE. Barvové prostory.

Rozměr: px
Začít zobrazení ze stránky:

Download "ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE. Barvové prostory."

Transkript

1 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE Barvové prostory semestrální práce Jana Pospíšilová Lenka Roušarová V Praze dne Kartografická polygrafie a reprografie

2 Úvod Následující text pojednává o tom co je světlo, jak lidské oko ho vnímá. Větší část textu bude pak o jednotlivých barvových prostorech. Jedná se o dobře známé RGB a CMYK, či méně znémé HSB, Munsellův prostor, HSL a CIE prostory. 1 Světlo Světlo je přenášeno ve formě elektromagnetických vln. Jeho elektromagnetických spektrum vln je patrné z obrázku. Sahá od kosmických vln po vlny střídavého proudu. Člověk dokáže vnímat pouze malý kousek spektra o vlnových délkách od 380 do 750 nm, tomuto světlu se říká viditelné. Pokud necháme viditelné světlo lámat přes hranol, vytvoří se nám díky lomu světla barevné spektrum, ve kterém se jednotlivé barvy liší svojí vlnovou délkou. Největší vlnovou délku má barva červená a nejmenší barva fialová. Barevné spektrum lze rozdělit na 3 základní spektrální pásma sestávající z barvy červené (používané označení R z ang. red ), zelené (označení G z angl. green ) a modré (označení B z angl. blue ). Tyto tři barvy nazýváme základní (primární). Směs primárních barev vnímá náš mozek jako bílé světlo. A tento fakt je základem zobrazovacích technologií. Obr. 1: Spektrum světla 2 Vnímání světla Abychom vnímali barvu objektu, potřebujeme: Nejprve objekt případně jeho tvar Světlo, které na tento objekt dopadá a je odráženo Naše oči 1

3 Světlo dopadá na objekt a je od něj odráženo. Odražené světlo se hned potom dostává do našich očí, kde vyvolává ve světlocitlivých buňkách naší sítnice vzruch. Tyto světlocitlivé buňky se skládají z čípků a tyčinek. Tyčinky jsou více citlivé a rozlišujeme pomocí nich světlo a tmu. To nám umožňuje vidět při slabém světle a rozlišovat šedé tóny. Čípky nám zprostředkovávají barevné vidění Vědecké poznatky odůvodňují teorii, podle které jsou v oku tři druhy čípků citlivých na barvu, které se koncentrují v takzvané žluté skvrně, v centru oka. Světlocitlivost čípků je založena na chemické reakci zrakových pigmentů ve fotoreceptorech. V oku byly prokázány tři druhy pigmentů, určených pro červenou, zelenou a modrou. Citlivost na barvu je dána různými vzruchy tří druhů čípků. Např. z objektu, jehož barva je zelená, případně ze světla, které se od něj odráží, jsou osloveny v podstatě jen čípky citlivé na zelenou. Jakmile tyto čípky pošlou impuls do našeho mozku, uvidíme zelený objekt. Obr. 2: Jednoduché schéma vnímání 3 Barvové prostory Barvy se popisují pomocí tzv. modelování, které umožňuje definovat způsob vnímání barev. Standardy pro popis barev jsou označovány jako barvové prostory. Jejich podstatou je možnost matematicky definovat reprodukci barev reálného světa. Tyto modely sice nevystihují plně a dokonale realitu, ale jsou snadno, algoritmizovatelné. Díky jim se může uplatnit při zpracování barevného obrazu výpočetní technika. Z obecného hlediska můžeme barvy dělit na: Barvy achromatické (nebarevné), tj. barva bílá, černá a různé stupně šedi Barvy chromatické, které odpovídají jednotlivým částem viditelného světelného spektra 3.1 RGB prostor Systém RGB - aditivní míšení barev Aditivní míšení barev lze demonstrovat promítnutím světelných kuželů základních barev na bílou podložku tak, aby se tyto kužely vzájemně protínaly. 2

4 Míšením červeného a zeleného světla vznikne světlo žluté (používané označení Y z angl. yellow ), míšením modrého a červeného světla světlo purpurové (označení z angl. magenta ) a míšením modrého a zeleného světla světlo azurové (označení M z angl. cyan ). Barvy žlutá (Y), purpurová (M) a azurová (C) se též nazývají barvy doplňkové. Aditivním míšením červeného, zeleného a modrého světla (ale též žlutého, purpurového a azurového světla) vznikne světlo bílé. To vznikne i tím, že např. ke světlu červenému (barva základní) přidáme světlo azurové (tj. příslušné světlo doplňkové) a analogicky ke světlu zelenému světlo purpurové nebo ke světlu modrému světlo žluté. Při úplné absenci červeného, modrého a zeleného světla vznikne černá barva. Na principu aditivního míšení světla pracuje např. barevná televize. Na tomtéž principu pracují i barevné obrazovky počítačů. Barevný model získaný aditivním míšením základních barev nazýváme model RGB. Obr. 3: Aditivní míšení barev 3.2 CMYK prostor Systém CMYK - subtraktivním míšení barev Při subtraktivním míšení barev se od množiny vlnových délek určité vlnové délky světla odečítají. K vysvětlení subtraktivního míšení barev OBR použijeme barvy doplňkové tj. barvu purpurovou, azurovou a žlutou. Subtraktivním míšením barvy azurové s barvou purpurovou vznikne barva modrá, barvy azurové s barvou s barvou žlutou barva zelená a barvy purpurové s barvou žlutou barva červená. Subtraktivním míšením všech barev doplňkových (a rovněž barev základních) vznikne barva černá. Subtraktivní mísení barev lze demonstrovat pomocí barevných filtrů. Prochází-li bílé světlo, skládají se ze složky červené (R), zelené (G) a modré (B) žlutým filtrem, pohlcuje se tímto filtrem modré světlo (protože barva žlutá je doplňková k barvě modré) a filtr propouští jen světlo zelené a modré. Postupným filtrováním pohltí tři za sebou následující filtry v doplňkových barvách celé bílé světlo. Tento jev se uplatňuje při tiskovém procesu (tzv. tříbarvotisk), jímž vzniká barevný model CMY, kdy postupným soutiskem barev azurové, purpurové a žluté získáme neutrální šedý až černý tón. Kvalitnější reprodukci barevných předloh, zejména v oblasti tmavých tónů, docílíme při tisku doplněním čtvrté barvy, a to barvy černé (neutrální), tj. barvy achromatické. V 3

5 tomto případě se jedná o tzv. čtyřbarvotisk. Barevný model získaný tímto postupem se označuje barevný model CMYK (písmeno K je používáno pro označení barvy Subtraktivní (odečítací, pigmentové) míchání - přidáním barevného odstínu vznikne tmavší barva, tento způsob používají například tiskárny. Obr. 4: Subtraktivní míšení barev 3.3 HSB prostor Model založen na způsobu lidského vnímání barvy. Název je odvozen z angl. hue odstín, saturation - sytost, brightness - jas). Barvy jsou v něm definovány pomocí tří základních charakteristik: odstínu (též: barevný tón, tón pestrosti) sytosti barvy jasu barvy Barevný tón označuje převládající spektrální barvu, sytost určuje příměsi jiných barev a jasová hodnota množství bílého světla. Odstín barvy Odstín zahrnuje druh barvy a kolorimetricky znamená přesun pozice barvy po barevném trojúhelníku. Je to vlastnost, s jejíž pomocí běžně rozlišujeme jednu barvu od druhé - červená se liší od modré, zelená od žluté. Odstín barvyje určen vlnovou délkou světla. Ve viditelné oblasti světla, tj. od 380 do 720 nm, lze rozlišit asi 150 monochromatických světel a asi 30 světel purpurových. Sytost (nasycení) barvy Týká se čistoty barev. Vyjadřuje rozdíl mezi vjevem barvy chromatické a achromatické, tj. barvy bílé, šedé a černé. Rozdílnost sytosti barvy se vyjadřuje v % barvy šedé. Spektrální barvy mají sytost 100%, bílé světlo 0%. Sytost barvy je tedy vyjádřena stupněm jejího znečištění barvou bílou. V barevnou trojúhelníku (obr.39b) se jedná o posun od pozice barvy k těžišti trojúhelníku. V těžišti mají všechny základní barvy stejný podíl a vzniká barva bílá, kolorimetricky vyjádřeno barva nepestrá. Z toho vyplývá, že sytost klesá směrem do středu. Všechny ostatní barvy, které je možno aditivně smísit z barev základních, leží uvnitř plochy barevného trojúhelníku, přičemž čím dále leží od středu, tím vyšší je jejich 4

6 nasycení. Smíšená barva má 100% nasycení tehdy, pokud neobsahuje žádný podíl třetí základní barvy. Jas (světlost) barvy Jas popisuje vlastnosti barvy ve smyslu přechodu od neutrální šedé k čistému odstínu při stálé hodnotě jasu. Názorně si nejlépe tuto vlastnost můžeme představit tím, že k šedé barvě začneme přidávat zvolený odstín (třeba žlutou) a pokračujeme tak dlouho, až získáme čistou žlutou. Jas určuje intenzitu barevného vjemu v souvislosti s množstvím vysílané nebo odražené světelné energie. Obr. 5: HSB barvový model 3.4 Munsellův prostor V roce 1905 vytvořil Albert H. Munsell systém třídění barev, zohledňující lidské vnímání. Munsellově notace vychází z toho, že barvu můžeme popsat třemi základními vlastnostmi: odstínem (Hue) Munsell stanovil pět základních barev (Red, Yellow, Green, Blue a Purple - viz obr.), které rovnoměrně rozmístil po obvodu kruhu a vsunul mezi ně ještě pět barev složených (YR, GY, BG, PB a RP). Na Munsellově barevném kruhu je celkem 10 barevných sektorů. jasem (Value, lightness) MPro každou základní barvu je definován jako přechod mezi černou, danou barvou a bílou. Je-li hodnota jasu 0, pak jde vždy o černou barvu (bez ohledu na barevný odstín). Jestliže se jas rovná 10, pak jde o barvu bílou (opět bez ohledu na barevný tón). V praxi se používají hodnoty od 1 do 9. sytostí (Chroma, saturation) Popisuje vlastnosti barvy ve smyslu přechodu od neutrální šedé k čistému odstínu při stálé hodnotě jasu. Stupnice začíná na nule pro čistou neutrální šedou, její konec však přesně stanoven není - s vývojem nových pigmentů se maximální hodnoty sytostí pro jednotlivé odstíny a světlosti mění. Stupnice sytostí není teoreticky omezena a v praxi končí u zatím dosažitelných hodnot sytostí pro jednotlivé odstíny. Protože prakticky dosažitelné sytosti jsou jiné u žluté a jiné třeba u modré, nemá Munsellův barevný prostor pravidelný tvar. 5

7 Jedna z možných podob Munsellova barevného prostoru na Munsellově notaci a barevném modelu je založena řada produktů pro barevnou komunikaci nejen v průmyslu, ale třeba i v medicíně nebo na psychologické testy. K dispozici je řada barevných knih, obsahujících barevné vzorky, sloužící k vizuální identifikaci a volbě barev, nebo např. produkty pro testování poruch ve vnímání barev. Obr. 6: Professor Albert H. Munsell Obr. 7: Munsell prostor Obr. 8: Munsell kruh 3.5 HLS prostor Tento model znázorňuje barevný prostor jako šestiboký jehlan. Po obvodu tohoto jehlanu se nachází barevný tón označovaný písmenem H z anglického Hue a nabývá hodnot ve stupních nebo radiánech, směrem od středové osy ke stěnám je sytost označená jako S z anglického Saturation, nabývá maximální hodnoty u stěny a minimální u středové osy, směrem od vrcholu k podstavě je jas (světlost) označený jako V z anglického Value, který nabývá maximální hodnoty v podstavě a minimální ve vrcholu jehlanu. Výhoda tohoto modelu spočívá v jeho relativní jednoduchosti pro výpočet i použití. 6

8 Nevýhodou je poměrně nepřesné vyjádření barevných přechodů díky šestiboké podstavě. Obr. 9: HLS prostor 3.6 CIE prostor Průkopnickou roli při definování barvových systémů tvoří komise CIE, Commission Internationale de l Eclairage, která byla založena v roce Barevné prostory definované CIE jsou nazvány nezávislými na zařízení, neboť označení jednotlivých barevných odstínů nezávísí na subjektivních vlastnostech pozorovatele - proto byl vytvořen tzv. standardní pozorovatel (spíše standardní podmínky pozorování barev). Mezi modely definované CIE patří CIE-UVW, CIE L*C*h (CIE Lch, je velice podobný modelu HSV), CIE-LAB (CIE L*a*b*, CIELAB) nebo CIE L*u*v* (CIE-uv). Základem barevných modelů CIE jsou chromatické diagramy. Prvním chromatickým diagramem definovaným CIE byl model vzniklý v roce CIE 1931 (x,y), někdy je známý pod označením CIE Yxy. CIE 1931 (x,y) - chromatický diagram, označovaný i jako Yxy. Tento systém je znázorňován ve formě dvojdimenzionální grafiky, která více méně odpovídá tvaru plachty nebo podpatku. Jas je vyjádřen hodnotou Y a barvy s tímto jasem jsou uspořádány v chromatickém diagramu (x,y). Odstíny (Hue) jsou rozloženy podél obvodu diagramu, sytost se za pohybu mění směrem k centrální neutrální oblasti. V tomto zobrazení není znázorněna světlost. Výhoda: model se lépe transformuje na modely CIE Lab a Luv a další z nich vycházející. Nevýhoda: nesoulad vzdáleností rozdílů mezi barvami, tj. ve značném odstupu je teprve vidět rozdíl mezi zelenou a zelenožlutou, zatímco mezi modrou a červenou se nachází jen velmi malý odstup. 7

9 Obr. 10: CIE 1931 Obr. 11: CIE 1931 Obr. 12: CIE 1931 CIE - LAB(L*a*b*) a CIE L*u*v* model barev Problém nedostatečného reálného zobrazení našeho vnímání barev byl vyřešen v roce 1976 vývojem modelů LAB a Luv komisí CIE. Systém LAB vychází z barvového prostoru XYZ. Je složen z imaginárních barev, které jsou vytvořeny pouze matematicky a jsou proto nezávislé na přístrojovém barevném tělesu (oproti modelům RGB nebo CMYK). Model je zvolen tak, aby obsáhl množinu všech barev, zachytitelných lidským okem. Barvový prostor LAB (obr. 39E) využívá k popisu barvy tři základní barvy a barevný tón, sytost a jas. Systém vychází z protikladu (párů barev)tzv. původních barev, tj. červená-zelená, žlutá-modrá, černá bílá. 8

10 Složka L* (světlost) se zobrazuje na svislé ose a nabývá hodnot od 0% (červená) až po 100 (bílá). Hodnota a vyjadřuje polohu barvy mezi zelenou (záporná část osy) a červenou barvou (kladná část osy) a hodnota b polohu barvy na ose modrá-žlutá (modrá leží na záporné části osy, žlutá na kladné části osy). Ve středu kruhového diagramu se nachází odstíny šedé barvy. Analogicky je definován také model CIE L*u*v*. Obr. 13: Barvový prostor CIE - LAB 3.7 Další prostory YUV, UWB (Y, B-Y, R-Y) Model používaný pro přenos televizních signálův normě PAL. Všechny tři následující formáty oddělují jasovou složku od složky barevné. Toto oddělení odpovídá fyziologickým podmínkám lidského zraku. Ve zkratce UWB znamenají písmena U a W označení dvou barevných signálů, písmeno B znamená jas (Brightness). YIQ Model používaný pro přenos televizních signálův normě NTSC. YCBCR Model používaný pro přenos televizních signálův normě SECAM. V tomto barevném modelu se také zapisují obrázky ve formátu JPEG. Y představuje jasovou složku, CB modrou složku a CR červenou složku. NCS (Natural Color System) Systém přirozených barev vytvořený ve Švédsku. Znázorňuje šedých odstínů a odstínů s příměsemi bílé a černé barvy. Základními parametry jsou barevný tón, příměs bílé a černé barvy. Grayspace - barevný model používaný při práci černobílými daty. 4 Problémy s barvami Žádné zařízení v publikačním systému není schopné reprodukovat plný rozsah barev, které umí vnímat lidské oko. Každé zařízení pracuje v rámci určitého barevného prostoru, který může vytvořit určitý rozsah barev. Každý přístroj výrobního řetězce pracuje v rámci svého vlastního pracovního prostoru. Když skenujeme obraz, pohybujeme se v rámci barvového prostoru skeneru, většinou v rámci RGB. Když se podíváme následně na obraz na monitoru, tak se jedná sice stále ještě o RGB data, ale tato data se liší od dat získaných přes skener. Když tento obraz vytisknete na barevné tiskárně, tak se přesunete do barvového prostoru CMYK tiskárny. 9

11 Obr. 14: Barevné gamuty různých zařízení a dokumentů Závěr Ve výše uvedeném textu jsme se ve stručnosti dozvěděli, že přenos světla je ve formě elektromagnetických vln, primární barvy jsou červená, modrá a zelená. Abychom viděly objekty je zapotřebí několik podmínek. Barvových prostorů je několik - RGB, CMYK, HSB, Munsell, HLS, CIE (těch je více druhů). V samém závěru je dále pojednáno o problémech s barvami - různá zařízení mají různé barevné gamuty. Literatura [1] Mikšovský, Miroslav. Kartografická polygrafie a reprografie. Praha: ČVUT v Praze, s. str ISBN [2] Barvy, barvy, barvičky [online]. [cit ], URL: URL: vutbr.cz/pg/flash/teoriegrafika/pocgrafika2.pdf [3] Barvy a barvové modely [online] [cit ], URL: URL: printing.cz/art/colormanagement/barvy_a_modely_2.html [4] Barvy v počítači a v kartografii [online]. [cit ], URL: URL:URL:URL:http: // 10

Světlo, které vnímáme, představuje viditelnou část elektromagnetického spektra. V

Světlo, které vnímáme, představuje viditelnou část elektromagnetického spektra. V Kapitola 2 Barvy, barvy, barvičky 2.1 Vnímání barev Světlo, které vnímáme, představuje viditelnou část elektromagnetického spektra. V něm se vyskytují všechny známé druhy záření, např. gama záření či infračervené

Více

Grafické systémy. Obrázek 1. Znázornění elektromagnetického spektra.

Grafické systémy. Obrázek 1. Znázornění elektromagnetického spektra. 1. 1.5 Světlo a vnímání barev Pro vnímání barev je nezbytné světlo. Viditelné světlo je elektromagnetické záření o vlnové délce 400 750 nm. Různé frekvence světla vidíme jako barvy, od červeného světla

Více

Světlo. Podstata světla. Elektromagnetické záření Korpuskulární charakter. Rychlost světla. Vlnová délka. Vlnění, foton. c = 1 079 252 848,8 km/h

Světlo. Podstata světla. Elektromagnetické záření Korpuskulární charakter. Rychlost světla. Vlnová délka. Vlnění, foton. c = 1 079 252 848,8 km/h Světlo Světlo Podstata světla Elektromagnetické záření Korpuskulární charakter Vlnění, foton Rychlost světla c = 1 079 252 848,8 km/h Vlnová délka Elektromagnetické spektrum Rádiové vlny Mikrovlny Infračervené

Více

Barevné modely, práce s barvou. Martin Klíma

Barevné modely, práce s barvou. Martin Klíma Barevné modely, práce s barvou Martin Klíma Proč je barva důležitá Důležitý vizuální atribut Různá zařízení, aplikace, média Monitor Tiskárna Video Televize Světlo a barvy Elektromagnetické vlnění Viditelná

Více

Přednáška kurzu MPOV. Barevné modely

Přednáška kurzu MPOV. Barevné modely Přednáška kurzu MPOV Barevné modely Ing. P. Petyovský (email: petyovsky@feec.vutbr.cz), kancelář E512, tel. 1194, Integrovaný objekt - 1/11 - Barvy v počítačové grafice Barevné modely Aditivní modely RGB,

Více

Barvy. Radek Fiala. Podpořeno z projektu FRVŠ 584/2011

Barvy. Radek Fiala. Podpořeno z projektu FRVŠ 584/2011 fialar@kma.zcu.cz Podpořeno z projektu FRVŠ 584/2011 Kde se berou barvy? Co je barva Světlo jako elmg. záření nemá barvu. Jednou z vlastností světla je tzv. spektrální rozdělení (Spectral Power Distribution,

Více

Geometrická optika. Vnímání a měření barev. světlo určitého spektrálního složení vyvolá po dopadu na sítnici oka v mozku subjektivní barevný vjem

Geometrická optika. Vnímání a měření barev. světlo určitého spektrálního složení vyvolá po dopadu na sítnici oka v mozku subjektivní barevný vjem Vnímání a měření barev světlo určitého spektrálního složení vyvolá po dopadu na sítnici oka v mozku subjektivní barevný vjem fyzikální charakteristika subjektivní vjem světelný tok subjektivní jas vlnová

Více

Práce na počítači. Bc. Veronika Tomsová

Práce na počítači. Bc. Veronika Tomsová Práce na počítači Bc. Veronika Tomsová Barvy Barvy v počítačové grafice I. nejčastější reprezentace barev: 1-bitová informace rozlišující černou a bílou barvu 0... bílá, 1... černá 8-bitové číslo určující

Více

VOLBA BAREVNÝCH SEPARACÍ

VOLBA BAREVNÝCH SEPARACÍ VOLBA BAREVNÝCH SEPARACÍ SOURAL Ivo Fakulta chemická, Ústav fyzikální a spotřební chemie Vysoké učení technické v Brně, Purkyňova 118, 612 00 Brno E-mail : Pavouk.P@centrum.cz K tomu aby byly pochopitelné

Více

Barva. v počítačové grafice. Poznámky k přednášce předmětu Počítačová grafika

Barva. v počítačové grafice. Poznámky k přednášce předmětu Počítačová grafika Barva v počítačové grafice Poznámky k přednášce předmětu Počítačová grafika Martina Mudrová 2007 Barvy v počítačové grafice Co je barva? světlo = elmg. vlnění v rozsahu 4,3.10 14-7,5.10 14 Hz rentgenové

Více

Barvy v počítačové grafice

Barvy v počítačové grafice arvy v počítačové grafice 2. přednáška předmětu Zpracování obrazů Martina Mudrová 2004 arvy v počítačové grafice Co je barva? světlo = elmg. vlnění v rozsahu 4,3.10 14-7,5.10 14 Hz rentgenové zář ení zář

Více

Barevné prostory. RGB, CMYK, HSV a Lab gamut

Barevné prostory. RGB, CMYK, HSV a Lab gamut J. Vrzal, 1.0 Barevné prostory RGB, CMYK, HSV a Lab gamut rozsah všech barev, které jsou dosažitelné v určitém barevném prostoru barvy mimo oblast gamutu jsou reprodukovány nejbližší dostupnou barvou z

Více

Rozšíření bakalářské práce

Rozšíření bakalářské práce Rozšíření bakalářské práce Vojtěch Vlkovský 2011 1 Obsah Seznam obrázků... 3 1 Barevné modely... 4 1.1 RGB barevný model... 4 1.2 Barevný model CMY(K)... 4 1.3 Další barevné modely... 4 1.3.1 Model CIE

Více

Multimediální systémy. 02 Reprezentace barev v počítači

Multimediální systémy. 02 Reprezentace barev v počítači Multimediální systémy 02 Reprezentace barev v počítači Michal Kačmařík Institut geoinformatiky, VŠB-TUO Osnova přednášky Reprezentace barev v PC Způsoby míchání barev Barevné modely Bitová hloubka Barvy

Více

Barevné systémy 1995-2015 Josef Pelikán CGG MFF UK Praha

Barevné systémy 1995-2015 Josef Pelikán CGG MFF UK Praha Barevné systémy 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Colors 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 21 Rozklad spektrálních barev

Více

Gamut. - souřadný systém, ve kterém udáváme barvy (CIE, CMYK,RGB )

Gamut. - souřadný systém, ve kterém udáváme barvy (CIE, CMYK,RGB ) Přežiju to? 1 Gamut CMYK,RGB ) - souřadný systém, ve kterém udáváme barvy (CIE, dosažitelná oblast barev v barevném prostoru Vyjadřuje Rozsah barevného snímání (rozlišitelné barvy) Barevnou reprodukci

Více

Přednáška kurzu BZVS. Barevné modely

Přednáška kurzu BZVS. Barevné modely Přednáška kurzu BZVS Barevné modely Ing. P. Petyovský (email: petyovsky@feec.vutbr.cz), kancelář SD3.152, tel. 6434, Technická 12, VUT v Brně - 1/16 - Barvy v počítačové grafice Barevné modely Aditivní

Více

Viditelné elektromagnetické záření

Viditelné elektromagnetické záření Aj to bude masakr 1 Viditelné elektromagnetické záření Vlnová délka 1 až 1 000 000 000 nm Světlo se chová jako vlnění nebo proud fotonů (záleží na okolnostech) 2 Optické záření 1645 Korpuskulární teorie

Více

Teorie barev. 1. Barvený model. 2. Gamut. 3. Barevný prostor. Barevný prostor různých zařízení

Teorie barev. 1. Barvený model. 2. Gamut. 3. Barevný prostor. Barevný prostor různých zařízení Teorie barev 1. Barvený model Barevný model představuje metodu (obvykle číselnou) popisu barev. Různé barevné modely popisují barvy, které vidíme a se kterými pracujeme v digitálních obrazech a při jejich

Více

Digitální fotografie. Mgr. Milana Soukupová Gymnázium Česká Třebová

Digitální fotografie. Mgr. Milana Soukupová Gymnázium Česká Třebová Digitální fotografie Mgr. Milana Soukupová Gymnázium Česká Třebová Téma sady didaktických materiálů Digitální fotografie I. Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu

Více

Barvy v počítačové grafice

Barvy v počítačové grafice arvy v počítačové grafice 2. přednáška předmětu Zpracování obrazů Martina Mudrová 24 arvy v počítačové grafice o je barva? světlo = elmg. vlnění v rozsahu 4,3. 4-7,5. 4 Hz viditelná č ást spektra rentgenové

Více

Ing. Jan Buriánek. Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jan Buriánek, 2010

Ing. Jan Buriánek. Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jan Buriánek, 2010 Ing. Jan Buriánek (ČVUT FIT) Barvy a barevné prostory I BI-MGA, 2010, Přednáška 3 1/32 Ing. Jan Buriánek Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v

Více

Color Management System

Color Management System Semestrální práce z předmětu Kartografická polygrafie a reprografie Color Management System Autor: Lenka Bajusová, Stanislava Balcarová Editor: Václav Kysela Praha, červen 2010 Katedra mapování a kartografie

Více

Úvod do počítačové grafiky

Úvod do počítačové grafiky Úvod do počítačové grafiky elmag. záření s určitou vlnovou délkou dopadající na sítnici našeho oka vnímáme jako barvu v rámci viditelné části spektra je člověk schopen rozlišit přibližně 10 milionů barev

Více

Výukový materiál v rámci projektu OPVK 1.5 Peníze středním školám

Výukový materiál v rámci projektu OPVK 1.5 Peníze středním školám Výukový materiál v rámci projektu OPVK 1.5 Peníze středním školám Číslo projektu: CZ.1.07/1.5.00/34.0883 Název projektu: Rozvoj vzdělanosti Číslo šablony: III/2 Datum vytvoření: 17. 1. 2013 Autor: MgA.

Více

Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 CZ.1.07 Vzděláním pro konkurenceschopnost Projekt je realizován v rámci Operačního programu Vzdělávání pro konkurence schopnost, který je spolufinancován

Více

Barva a barevné modely

Barva a barevné modely Počítačová grafika Elektromagnetické spektrum Barva a barevné modely Jana Dannhoferová (jana.dannhoferova@mendelu.cz) Ústav informatiky, PEF MZLU Zdroj: Svět barev, Albatros 2 Elektromagnetické spektrum

Více

Obsah. Úvod 9 Co v knize najdete 9 Komu je kniha určena 9 Konvence užité v knize 9 Vzkaz čtenářům 10 Typografické konvence použité v knize 11

Obsah. Úvod 9 Co v knize najdete 9 Komu je kniha určena 9 Konvence užité v knize 9 Vzkaz čtenářům 10 Typografické konvence použité v knize 11 Obsah Úvod 9 Co v knize najdete 9 Komu je kniha určena 9 Konvence užité v knize 9 Vzkaz čtenářům 10 Typografické konvence použité v knize 11 KAPITOLA 1 Působení barev 13 Fyzikální působení barev 15 Spektrum

Více

Kde se používá počítačová grafika

Kde se používá počítačová grafika POČÍTAČOVÁ GRAFIKA Kde se používá počítačová grafika Tiskoviny Reklama Média, televize, film Multimédia Internetové stránky 3D grafika Virtuální realita CAD / CAM projektování Hry Základní pojmy Rastrová

Více

Řízení robota pomocí senzoru barev. Tematický celek: Světlo. Úkol:

Řízení robota pomocí senzoru barev. Tematický celek: Světlo. Úkol: Název: Řízení robota pomocí senzoru barev. Tematický celek: Světlo. Úkol: Zopakuj si, čím je daná barva předmětu a jak se míchají barvy ve fyzice a výpočetní technice. Zjisti, jak pracuje senzor barev.

Více

Montážní program XMF

Montážní program XMF Montážní program Slovníček pojmů www.isspolygr.cz Vytvořila: Eva Bartoňková Vytvořila dne: 2. 4. 2013 Strana: 1/9 Škola Ročník 4. ročník (SOŠ, SOU) Název projektu Interaktivní metody zdokonalující proces

Více

Mgr. Markéta Trnečková, Ph.D. Palacký University, Olomouc

Mgr. Markéta Trnečková, Ph.D. Palacký University, Olomouc Světlo a barvy v počítačové grafice Počítačová grafika Mgr. Markéta Trnečková, Ph.D. Palacký University, Olomouc EM spektrum λ = c f, E = h f c... rychlost světla (300000 km/h) h... Planckova konstanta

Více

Správa barev při digitalizaci archiválií. Magdalena Buriánková

Správa barev při digitalizaci archiválií. Magdalena Buriánková Magdalena Buriánková 21. 6. 2012 Význam správy barev při digitalizaci archiválií Základní vlastnosti barev a práce s nimi Správa barev při digitalizaci archiválií v praxi Jedním z důležitých požadavků

Více

ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika

ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika ODRAZ A LOM SVĚTLA Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika Odraz světla Vychází z Huygensova principu Zákon odrazu: Úhel odrazu vlnění je roven úhlu dopadu. Obvykle provádíme konstrukci pomocí

Více

PV156 Digitální fotografie Barvy Tomáš Slavíček / Vít Kovalčík FI MU, podzim 2012

PV156 Digitální fotografie Barvy Tomáš Slavíček / Vít Kovalčík FI MU, podzim 2012 PV156 Digitální fotografie Barvy Tomáš Slavíček / Vít Kovalčík FI MU, podzim 2012 Barva jako součást kompozice barva hraje důležitou roli barva je samostatným prvkem kompozice, který má na diváka (estetický)

Více

Počítačová grafika. Studijní text. Karel Novotný

Počítačová grafika. Studijní text. Karel Novotný Počítačová grafika Studijní text Karel Novotný P 1 Počítačová grafika očítačová grafika je z technického hlediska obor informatiky 1, který používá počítače k tvorbě umělých grafických objektů a dále také

Více

B_PPG PRINCIPY POČÍTAČOVÉ GRAFIKY

B_PPG PRINCIPY POČÍTAČOVÉ GRAFIKY B_PPG PRINCIPY POČÍTAČOVÉ GRAFIKY RNDr. Jana Štanclová, Ph.D. jana.stanclova@ruk.cuni.cz ZS 2/0 Z Obrázky (popř. slajdy) převzaty od RNDr. Josef Pelikán, CSc., KSVI MFF UK Obsah seminářů 03.10.2011 [1]

Více

PV156 Digitální fotografie Barvy Tomáš Slavíček / Vít Kovalčík FI MU, podzim 2014

PV156 Digitální fotografie Barvy Tomáš Slavíček / Vít Kovalčík FI MU, podzim 2014 PV156 Digitální fotografie Barvy Tomáš Slavíček / Vít Kovalčík FI MU, podzim 2014 Dva úhly pohledu v DF se na barvy můžeme dívat ze dvou pohledů estetický působení na člověka jejich využití v kompozici

Více

1. Zpracování barev v publikacích

1. Zpracování barev v publikacích 1. Zpracování barev v publikacích Studijní cíl V tomto bloku kurzu se budeme zabývat problematikou zpracování barev, vnímání barev, rozlišení barev a vlastnostmi barev. Vysvětlíme si co je to barvový model,

Více

Barvy a barevné modely. Počítačová grafika

Barvy a barevné modely. Počítačová grafika Barvy a barevné modely Počítačová grafika Barvy Barva základní atribut pro definici obrazu u každého bodu, křivky či výplně se definuje barva v rastrové i vektorové grafice všechny barvy, se kterými počítač

Více

DUM 01 téma: Úvod do počítačové grafiky

DUM 01 téma: Úvod do počítačové grafiky DUM 01 téma: Úvod do počítačové grafiky ze sady: 02 tematický okruh sady: Bitmapová grafika ze šablony: 09 Počítačová grafika určeno pro: 2. ročník vzdělávací obor: vzdělávací oblast: číslo projektu: anotace:

Více

5.3.1 Disperze světla, barvy

5.3.1 Disperze světla, barvy 5.3.1 Disperze světla, barvy Předpoklady: 5103 Svítíme paprskem bílého světla ze žárovky na skleněný hranol. Světlo se láme podle zákona lomu na zdi vznikne osvětlená stopa Stopa vznikla, ale není bílá,

Více

Charakteristiky videomateriálu. Digitalizace Barevné schéma Barevná hloubka Rozlišení Framerate Streamování

Charakteristiky videomateriálu. Digitalizace Barevné schéma Barevná hloubka Rozlišení Framerate Streamování Charakteristiky videomateriálu Digitalizace Barevné schéma Barevná hloubka Rozlišení Framerate Streamování Digitalizace Při získání počítačového obrazu je jedním ze základních jevů přechod od spojité funkce

Více

4.1 Barva vlastnost zrakového vjemu

4.1 Barva vlastnost zrakového vjemu 4. ZÁKLAD NAUK O BARVĚ Předmětem nauky o barvě je objektivní hodnocení barvy světla různých světelných zdrojů i barvy pozorovaných předmětů. Jde o náročný úkol, neboť vnímání barev je složitý fyziologicko-psychický

Více

Reprodukce tónových předloh

Reprodukce tónových předloh Semestrální práce z předmětu Kartografická polygrafie a reprografie Reprodukce tónových předloh Autor: Petra Bernátková, Marcela Lacinová Editor: Veronika Stýblová Praha, duben 2011 Katedra mapování a

Více

Barvy v počítači a HTML.

Barvy v počítači a HTML. Barvy v počítači a HTML. Barevný prostor RGB Barvy zobrazované na monitoru jsou skládány ze tří složek (částí světelného spektra). Červená (Red) Zelená (Green) Modrá (Blue) Výsledná barva je dána intenzitou

Více

Téma: Barevné modely, formáty souborů

Téma: Barevné modely, formáty souborů Téma: Barevné modely, formáty souborů Vypracoval/a: Ing. Jana Wasserbauerová TE NTO PR OJ E KT J E S POLUFINANC OVÁN EVR OPS KÝ M S OC IÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Barevné modely

Více

Konstrukce zdroje záření a jeho využití ve výuce optiky

Konstrukce zdroje záření a jeho využití ve výuce optiky Konstrukce zdroje záření a jeho využití ve výuce optiky LENKA TICHÁČKOVÁ, LENKA HÖNIGOVÁ Ostravská univerzita v Ostravě Abstrakt Tento článek se věnuje zdroji záření viditelné oblasti a UV. Jak tento levný

Více

SVĚTLO A TMA ROZKLAD A MÍCHÁNÍ BAREV

SVĚTLO A TMA ROZKLAD A MÍCHÁNÍ BAREV SVĚTLO A TMA ROZKLAD A MÍCHÁNÍ BAREV Světlo vypadá jako bezbarvé, ale ve skutečnosti je směsí červené, žluté, zelené, modré, indigové modři a fialové barvy. Jednoduchými pokusy můžeme světlo rozkládat

Více

Barevné vidění Josef Pelikán CGG MFF UK Praha

Barevné vidění Josef Pelikán CGG MFF UK Praha Barevné vidění 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ ColorPerception 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 15 Co je světlo? Špatnota

Více

Jednou z nejstarších partií fyziky je nauka o světle tj. optika. Existovaly dva názory na fyzikální podstatu světla:

Jednou z nejstarších partií fyziky je nauka o světle tj. optika. Existovaly dva názory na fyzikální podstatu světla: Optika Jednou z nejstarších partií fyziky je nauka o světle tj. optika. Existovaly dva názory na fyzikální podstatu světla: Světlo je proud částic (I. Newton, 1704). Ale tento částicový model nebyl schopen

Více

Přípravy VIKBB11 pracovní verze. Přednáška 1 barvy.

Přípravy VIKBB11 pracovní verze. Přednáška 1 barvy. Přípravy VIKBB11 pracovní verze. Přednáška 1 barvy. Světlo se šíří rychlostí 300tis. km/s. Jak se světlo vlastně chová? Albert Einstein v roce 1905 popsal dualitu částice a vlnění, která se vztahuje k

Více

Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527

Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice

Více

Počítačová grafika - úvod

Počítačová grafika - úvod Autor: Mgr. Dana Kaprálová Počítačová grafika - úvod Datum (období) tvorby: listopad, prosinec 2013 Ročník: osmý Vzdělávací oblast: IVT 1 Anotace: Žáci se seznámí se základními pojmy počítačové grafiky,

Více

Základy informatiky. 10 Počítačová grafika

Základy informatiky. 10 Počítačová grafika Základy informatiky 10 Počítačová grafika Michal Kačmařík Institut geoinformatiky, VŠB-TUO Osnova přednášky Reprezentace barev v PC Způsoby míchání barev Barevné modely Bitová hloubka Rastrová grafika

Více

Michal Vik a Martina Viková: Základy koloristiky ZKO3

Michal Vik a Martina Viková: Základy koloristiky ZKO3 Fyziologie vnímání barev Příklady vizuáln lních iluzí: Vliv barvy pozadí I Jsou tyto kruhy barevně shodné? Příklady vizuáln lních iluzí: Vliv barvy pozadí II Jsou tyto kruhy barevně shodné? Příklady vizuáln

Více

On-line škola mladých autorů , pořadatel: ČVUT FEL. Jak na obrázky? Martin Žáček

On-line škola mladých autorů , pořadatel: ČVUT FEL. Jak na obrázky? Martin Žáček On-line škola mladých autorů 20. 2. 18. 4. 2013, pořadatel: ČVUT FEL Jak na obrázky? Martin Žáček zacekm@fel.cvut.cz http://www.aldebaran.cz/onlineskola/ Jak na obrázky? Osnova 1. Co je to vůbec obrázek,

Více

Historie a elementární základy teorie barev II. RGB, CMY(K), tristimulus a jeho objev. Fyzika kolem nás

Historie a elementární základy teorie barev II. RGB, CMY(K), tristimulus a jeho objev. Fyzika kolem nás Školská fyzika 2013/1 Fyzika kolem nás Historie a elementární základy teorie barev II. Václav Kohout 1, Nakladatelství Fraus, s. r. o., Plzeň Dostává se vám do rukou druhý díl série článků zabývajích se

Více

Digitální učební materiál

Digitální učební materiál Střední hotelová škola, s.r.o. Floriánské náměstí 350, 272 01 Kladno Digitální učební materiál Číslo projektu Název projektu Název školy Předmět Tematický okruh Téma CZ.1.07/1.5.00/34.0112 Moderní škola

Více

Programátorská dokumentace

Programátorská dokumentace Programátorská dokumentace Požadavky Cílem tohoto programu bylo představit barevné systémy, zejména převody mezi nejpoužívanějšími z nich. Zároveň bylo úkolem naprogramovat jejich demonstraci. Pro realizaci

Více

Webové stránky. 6. Grafické formáty pro web. Datum vytvoření: 11. 10. 2012. str ánk y. Vytvořil: Petr Lerch. www.isspolygr.cz

Webové stránky. 6. Grafické formáty pro web. Datum vytvoření: 11. 10. 2012. str ánk y. Vytvořil: Petr Lerch. www.isspolygr.cz Webové stránky 6. Vytvořil: Petr Lerch www.isspolygr.cz Datum vytvoření: 11. 10. 2012 Webové Strana: 1/6 Škola Ročník Název projektu Číslo projektu Číslo a název šablony Autor Tématická oblast Název DUM

Více

Počítačová grafika. OBSAH Grafické formy: Vektorová grafika Bitmapová (rastrová grafika) Barevné modely

Počítačová grafika. OBSAH Grafické formy: Vektorová grafika Bitmapová (rastrová grafika) Barevné modely Počítačová grafika OBSAH Grafické formy: Vektorová grafika Bitmapová (rastrová grafika) Barevné modely Vektorová grafika Vektorová grafika Příklad vektorové grafiky Zpět na Obsah Vektorová grafika Vektorový

Více

Komplexní modely pro hodnocení barevnosti a vzhledu

Komplexní modely pro hodnocení barevnosti a vzhledu Komplexní modely pro hodnocení barevnosti a vzhledu A C1 C2 C3 C0 Mozek Kolorimetrická soustava CIE1931 Mozek Co se stane v případech, p padech, kdy dojde k porušen ení podmínek Wright-Guildova experimentu?

Více

světelný tok -Φ [ lm ] (lumen) Světelný tok udává, kolik světla celkem vyzáří zdroj do všech směrů.

světelný tok -Φ [ lm ] (lumen) Světelný tok udává, kolik světla celkem vyzáří zdroj do všech směrů. Světeln telné veličiny iny a jejich jednotky Světeln telné veličiny iny a jejich jednotky, světeln telné vlastnosti látekl světelný tok -Φ [ lm ] (lumen) Světelný tok udává, kolik světla celkem vyzáří

Více

Barvy. Vítězslav Otruba doc. Otruba 1

Barvy. Vítězslav Otruba doc. Otruba 1 Barvy Vítězslav Otruba 2006 doc. Otruba 1 Elektromagnetické záření 2006 doc. Otruba 2 Achromatické světlo Bílé světlo : signál složený ze záření všech vlnových délek viditelného spektra Difúzní odraz dopadajícího

Více

Mýty a omyly v systému správy barev aneb dodržováním několika principů se správy barev nemusím bát

Mýty a omyly v systému správy barev aneb dodržováním několika principů se správy barev nemusím bát Mýty a omyly v systému správy barev aneb dodržováním několika principů se správy barev nemusím bát Jan Kaiser Fomei a.s., Hradec Králové Kaiser@fomei.com, +420 603 587 898 červen 2012 Který obraz je správný?

Více

Mezipředmětové výukové téma Barvy kolem nás II.

Mezipředmětové výukové téma Barvy kolem nás II. Školská fyzika 2013/4 Na pomoc školské praxi Mezipředmětové výukové téma Barvy kolem nás II. Václav Kohout 1, Nakladatelství Fraus, s. r. o., Plzeň V minulých číslech časopisu školská fyzika jste měli

Více

VYUŽITÍ POČÍTAČOVÉ GRAFIKY

VYUŽITÍ POČÍTAČOVÉ GRAFIKY POČÍTAČOVÁ GRAFIKA VYUŽITÍ POČÍTAČOVÉ GRAFIKY ÚPRAVA FOTOGRAFIÍ NAFOCENÉ FOTOGRAFIE Z DIGITÁLNÍHO FOTOAPARÁTU MŮŽEME NEJEN PROHLÍŽET, ALE TAKÉ UPRAVOVAT JAS KONTRAST BAREVNOST OŘÍZNUTÍ ODSTRANĚNÍ ČERVENÝCH

Více

Správa barev. Měřící přístroje. Správa barev. Vytvořila: Jana Zavadilová Vytvořila dne: 14. února 2013. www.isspolygr.cz

Správa barev. Měřící přístroje. Správa barev. Vytvořila: Jana Zavadilová Vytvořila dne: 14. února 2013. www.isspolygr.cz Měřící přístroje www.isspolygr.cz Vytvořila: Jana Zavadilová Vytvořila dne: 14. února 2013 Strana: 1/12 Škola Ročník 4. ročník (SOŠ, SOU) Název projektu Interaktivní metody zdokonalující proces edukace

Více

Základní vyšetření zraku

Základní vyšetření zraku Základní vyšetření zraku Až 80 % informací z okolí přijímáme pomocí zraku. Lidské oko je přibližně kulového tvaru o velikosti 24 mm. Elektromagnetické vlny o vlnové délce 400 až 800 nm, které se odrazily

Více

Optické přístroje. Oko

Optické přístroje. Oko Optické přístroje Oko Oko je orgán živočichů reagující na světlo. Obratlovci a hlavonožci mají jednoduché oči, členovci, kteří mají menší rozměry a jednoduché oko by trpělo difrakčními jevy, mají složené

Více

ZÁKLADNÍ TERMINOLOGIE V COLOR MANAGEMENTU

ZÁKLADNÍ TERMINOLOGIE V COLOR MANAGEMENTU ZÁKLADNÍ TERMINOLOGIE V COLOR MANAGEMENTU V Colormanagementu se neustále operuje s několika termíny: a) barevný gamut, b) barevné prostory CMYK a RGB, c) nezávislý barevný prostor, d) ICC profil S těmito

Více

Reprodukce tónových předloh

Reprodukce tónových předloh ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE Reprodukce tónových předloh semestrální práce Petra Bernátková Marcela Lacinová editor:

Více

IVT. 8. ročník. listopad, prosinec 2013. Autor: Mgr. Dana Kaprálová

IVT. 8. ročník. listopad, prosinec 2013. Autor: Mgr. Dana Kaprálová IVT Počítačová grafika - úvod 8. ročník listopad, prosinec 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443

Více

5.1 Měření barevných souřadnic světla pomocí Donaldsonova kolorimetru

5.1 Měření barevných souřadnic světla pomocí Donaldsonova kolorimetru Měření barevných souřadnic světla pomocí Donaldsonova kolorimetru 25 5 LABORATORNÍ ÚLOHY ZE SVĚTELNÉ A OSVĚTLOVACÍ TECHNIKY 5.1 Měření barevných souřadnic světla pomocí Donaldsonova kolorimetru 5.1.1 Úvod

Více

Světlo 1) Světlo patří mezi elektromagnetické vlnění (jako rádiový signál, Tv signál) elmg. vlnění = elmg. záření

Světlo 1) Světlo patří mezi elektromagnetické vlnění (jako rádiový signál, Tv signál) elmg. vlnění = elmg. záření OPTIKA = část fyziky, která se zabývá světlem Studuje zejména: vznik světla vlastnosti světla šíření světla opt. přístroje (opt. soustavami) Otto Wichterle (gelové kontaktní čočky) Světlo 1) Světlo patří

Více

Fungování předmětu. 12 vyučovacích hodin ve 3 blocích Evidence docházky Zápočtový test Aktuální informace a materiály na smetana.filmovka.

Fungování předmětu. 12 vyučovacích hodin ve 3 blocích Evidence docházky Zápočtový test Aktuální informace a materiály na smetana.filmovka. Fungování předmětu 12 vyučovacích hodin ve 3 blocích Evidence docházky Zápočtový test Aktuální informace a materiály na smetana.filmovka.cz Počítačová grafika, základy počítačového zobrazení 2 Cíle předmětu

Více

Editace obrazu úvod doc. Ing. Stanislav Horný, CSc. horny@vse.cz

Editace obrazu úvod doc. Ing. Stanislav Horný, CSc. horny@vse.cz Digitální fotografie Editace obrazu úvod doc. Ing. Stanislav Horný, CSc. horny@vse.cz http://gml.vse.cz Vysoká škola ekonomická fakulta Informatiky a statistiky katedra Systémové analýzy Workflow (co,

Více

Color Management System

Color Management System ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE Color Management System semestrální práce Lena Bajusová Stanislava Balcarová V Praze dne

Více

CZ.1.07/1.5.00/34.0304

CZ.1.07/1.5.00/34.0304 Barevné modely Barevné modely se používají především pro zjednodušení záznamu barevné informace. Pokud bychom chtěli věrně reprodukovat barvy nějakého objektu, pak bychom museli zaznamenat v každém bodu

Více

Vyšší odborná škola a Střední škola,varnsdorf, příspěvková organizace. Šablona 1 VY 32 INOVACE 0101 0201

Vyšší odborná škola a Střední škola,varnsdorf, příspěvková organizace. Šablona 1 VY 32 INOVACE 0101 0201 Vyšší odborná škola a Střední škola,varnsdorf, příspěvková organizace Šablona 1 VY 32 INOVACE 0101 0201 VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Autor

Více

Lidský zrak, vnímání a reprezentace barev

Lidský zrak, vnímání a reprezentace barev Lidský zrak, vnímání a reprezentace barev Pavel Strachota FJFI ČVUT v Praze 11. října 2013 Obsah 1 Úvod 2 Vnímání barev 3 Reprezentace barev 4 Hardwarově založené barevné modely 5 Další barevné modely

Více

DIGITÁLNÍ FOTOGRAFIE

DIGITÁLNÍ FOTOGRAFIE DIGITÁLNÍ FOTOGRAFIE Petr Vaněček, katedra informatiky a výpočetní techniky Fakulta aplikovaných věd, Západočeská univerzita v Plzni 19. listopadu 2009 1888, Geroge Eastman You press the button, we do

Více

Barvy a barevné systémy. Ivo Peterka

Barvy a barevné systémy. Ivo Peterka Barvy a barevné systémy Ivo Peterka Viditelné světlo. Elektromagnetické záření o vlnové délce 390 760 nanometrů. Jsou-li v konktrétním světle zastoupeny složky všech vlnových délek, vnímáme toto světlo

Více

NCS - Natural Color System

NCS - Natural Color System Systém přírodních barev NCS Natural Colour System je logicky vytvořený systém uspořádání barev, který odráží přirozené vnímání barevného spektra člověkem. Díky systému NCS lze vizuálně popsat a zařadit

Více

Úvod do počítačové grafiky

Úvod do počítačové grafiky Úvod do počíta tačové grafiky Počíta tačová grafika zobrazování popis objektů obraz modelování (model světa) rekostrukce zpracování obrazu Popis obrazu rastrový neboli bitmapový obraz = matice bodů vektorový

Více

POČÍTAČOVÁ GRAFIKA. Lenka Bednaříková

POČÍTAČOVÁ GRAFIKA. Lenka Bednaříková POČÍTAČOVÁ GRAFIKA Lenka Bednaříková POČÍTAČOVÁ GRAFIKA - OBSAH Barevné modely Základní dělení počítačové grafiky Vektorová grafika Rastrová (bitmapová) grafika Rozlišení Barevná hloubka Komprese, komprimace

Více

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA OPTIKA ZÁKLADNÍ POJMY Optika a její dělení Světlo jako elektromagnetické vlnění Šíření světla Odraz a lom světla Disperze (rozklad) světla OPTIKA

Více

Co je počítačová grafika

Co je počítačová grafika Počítačová grafika Co je počítačová grafika Počítačovou grafikou rozumíme vše, co zpracovává počítač a co lze sledovat očima Využití počítačové grafiky Tiskoviny - časopisy, noviny, knihy, letáky Reklama

Více

Barva a barevné vidění

Barva a barevné vidění 1 2 Historie barvy Barva a barevné vidění I. Newton (1704) použil hranol, aby ukázal, že sluneční světlo se skládá ze světla se všemi barvami duhy. Toto světlo definoval jako spektrum. Josef Pelikán, MFF

Více

Barvy v počítačové grafice

Barvy v počítačové grafice Barvy v počítačové grafice KAPITOLA 4 V této kapitole: Reprezentace barev v počítači Barevné prostory Barvy na periferiích počítače Barvy a design webových stránek Počítačová grafika je velmi široký pojem

Více

III/ 2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/ 2 Inovace a zkvalitnění výuky prostřednictvím ICT Metodický list k didaktickému materiálu Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu Autor Téma sady didaktických materiálů Téma didaktického materiálu Vyučovací předmět

Více

PROGRAM PRO VÝPOČET TRANSFORMACÍ BAREVNÝCH SOUŘADNIC A MÍSENÍ BAREV

PROGRAM PRO VÝPOČET TRANSFORMACÍ BAREVNÝCH SOUŘADNIC A MÍSENÍ BAREV VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

84. Barvové profily (monitory, skenery)

84. Barvové profily (monitory, skenery) Semestrální práce z předmětu Kartografická polygrafie a reprografie 84. Barvové profily (monitory, skenery) Autor: Tomáš Kysilko, Zdeněk Sovadina Editor: Jakub Kozák Praha, květen 2010 Katedra mapování

Více

Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm.

Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. 1. Podstata světla Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. Vznik elektromagnetických vln (záření): 1. při pohybu elektricky nabitých částic s nenulovým zrychlením

Více

L A TEX Barevné profily tiskových zařízení (tiskárny, plotry)

L A TEX Barevné profily tiskových zařízení (tiskárny, plotry) Semestrální práce z předmětu Kartografická polygrafie a reprografie L A TEX Barevné profily tiskových zařízení (tiskárny, plotry) Autor: Petr Douša, Jan Antropius Editor: Ivana Řezníková Praha, duben 2011

Více

Mezipředmětové výukové téma Barvy kolem nás I.

Mezipředmětové výukové téma Barvy kolem nás I. Školská fyzika 2013/3 Na pomoc školské praxi Mezipředmětové výukové téma Barvy kolem nás I. Václav Kohout 1, Nakladatelství Fraus, s. r. o., Plzeň V minulých číslech časopisu školská fyzika jste měli možnost

Více

Informační a komunikační technologie. Základy informatiky. 5 vyučovacích hodin. Osobní počítače, soubory s fotografiemi

Informační a komunikační technologie. Základy informatiky. 5 vyučovacích hodin. Osobní počítače, soubory s fotografiemi Výstupový indikátor 06.43.19 Název Autor: Vzdělávací oblast: Vzdělávací obory: Ročník: Časový rozsah: Pomůcky: Projekt Integrovaný vzdělávací systém města Jáchymov - Mosty Digitální fotografie Petr Hepner,

Více

Úvod Digitální tisk Firma Xeikon Společnost Hewlett-Packard Literatura Konec. Digitální tisk

Úvod Digitální tisk Firma Xeikon Společnost Hewlett-Packard Literatura Konec. Digitální tisk Semestrální práce z předmětu Kartografická polygrafie a reprografie Digitální tisk Autor: Milan Přilkryl, Lenka Mezníková Editor: Alena Voráčková Praha, duben 2011 Katedra mapování a kartografie Fakulta

Více

Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ

Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ BAKALÁŘSKÁ PRÁCE Michaela Elgrová Plzeň 2012 Prohlašuji, že jsem bakalářskou práci vypracovala samostatně s použitím uvedené literatury a zdrojů informací.

Více