VÝSLEDKY OVĚŘOVÁNÍ ZEMNÍHO MASIVU JAKO ZDROJE ENERGIE PRO TEPELNÁ ČERPADLA. Technická fakulta České zemědělské univerzity v Praze

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "VÝSLEDKY OVĚŘOVÁNÍ ZEMNÍHO MASIVU JAKO ZDROJE ENERGIE PRO TEPELNÁ ČERPADLA. Technická fakulta České zemědělské univerzity v Praze"

Transkript

1 VÝSLEDKY OVĚŘOVÁNÍ ZEMNÍHO MASIVU JAKO ZDROJE ENERGIE PRO TEPELNÁ ČERPADLA Radomír Adamovský Pavel Neuberger Technická fakulta České zemědělské univerzity v Praze

2 H = 1,0 2,0 m; D = 0,5 2,0 m; S = 0,1 0,5 m. S = 1,0 1,5 m Obr. 1. Konfigurace horizontálních zemních tepelných výměníků a). Typ Slinky; b) Šroubovitý; c) Lineární.

3 Tepelný odpor stěny trubky výměníku R t. R 1.ln t 1 t (m.k/w) (3) 2 d d 2 Tepelný odpor konvekcí R α na vnitřní straně trubky. R 1 2 r (m.k/w) (4) 1 s Obr. 2. Schéma procesů sdílení tepla. Celkový tepelný odpor R. R R R (m.k/w) (1) z t R Tepelný odpor zemního masivu R z. 1 2s h Rz.ln sinh 2 2 z d 2 s (m.k/w) (2) λ z součinitel tepelné vodivosti zemního masivu (W/m.K); d 2 vnější průměr trubek zemního výměníku (m); h hloubka uložení trubek zemního výměníku (m); s rozteč trubek zemního výměníku (m); λ t součinitel tepelné vodivosti materiálu trubky výměníku (W/m.K); d 1, d 2 vnitřní a vnější průměr trubky výměníku (m); α s součinitel přestupu tepla mezi stěnou trubky a teplonosnou kapalinou (W/m 2.K).

4 Faktory ovlivňující výkon zemního výměníku: R q ; Tepelný odpor zemního masivu R z ( z ; h; s; d 2 ). λ z - součinitel tepelné vodivosti zemního masivu (vlhkost, hustota, podíl jílu) (W/m.K) λ z R z ; (suchý písek 0,3-1,2 W/m.K, mokrý jíl, 1,6-1,8 W/m.K), vytvoření ledu, latentní teplo. h - hloubka uložení trubek zemního výměníku (m) h R z ; (omezení vlivu denních výkyvů teplot a vlivu nejnižších teplot v zimě, uložení pod zámrznou hloubkou, zachycení slunečního záření a tepelných toků z povrchu. s - rozteč trubek zemního výměníku (m) s R z ; d 2 - vnější průměr trubek zemního výměníku (m); d 2 R z ; Tepelný odpor stěny trubky výměníku R t ( t ; d 2 /d 1 ). λ t - součinitel tepelné vodivosti materiálu trubky (Polypropylen 0,22 W/m.K; Polyetylén o vysoké hustotě (HDPE) 0,45 W/m.K), λ t R t ; d 2 /d 1 R t ; Tepelný odpor konvekcí R α na vnitřní straně trubky ( s ; d 1 ). α s součinitel přestupu tepla mezi stěnou trubky a teplonosnou kapalinou (W/m 2.K); t,k, t,k, t,k; Etylenglykol (toxický); Freezium t,k, t,k, t,k ; s R d 1 R ;

5 t ( C) 30,00 25,00 20,00 15,00 10,00 5,00 0, τ (day) t02 ts tl te t02r tsr tlr ter Obr. 3 Teploty v období stagnace výměníku 2012 ( , 143 dní). (t e, = 20,44 C; t e,max. = 37,50 C; t e,min. =0,80 C)

6 Rovnice teplot půdního masivu v období stagnace výměníku : 2 t02 12,341 7,683 sin( 6,194) 2 I 02 0, 869 ( C) (5) 365 t L t S 2 11,179 6,207 sin( 5,844) ,107 6,555 sin( 5,930) ,989 I L 2 0,972 I S ( C) (6) ( C) (7) - počet dní od počátku stagnace (den). Schopnost regenerace energetického potenciálu v období stagnace výměníku; počáteční a konečné teploty zemního masivu v oblasti výměníku; snižování teplot zemního masivu na počátku topného období, známkou postupného snižování energetického potenciálu masivu a doby využití masivu jako zdroje pro tepelné čerpadlo.

7 Typ Slinky Horizontální výměník Lineární Topné období Datum Teplota masivu t L ;t S ( C) Rozdíl teplot Δt L ;Δt S (K) Začátek topného období 2010 / , / , / ,88 0,18 0,24 Konec topného období 2010 / , / , / ,60-0,28-0,77 Začátek topného období 2010 / , / , / ,90-0,04 1,54 Konec topného období 2010 / , / , / ,30-1,58 0,73 Tab.I Průměrné denní teploty zemního masivu na začátcích a konci topných období.

8 t ( C) t L, = 7,39 C; t S, = 5,54 C; t L,min = 2,30 C; t S,min = 0,44 C; t L t e > 0, 68,68 % top. s. t S t e > 0, 53,05 % top. s t02 ts tl te t02r tsr tlr ter Obr. 4 Teploty v topném období 2012/2013 ( , 217 dní). (t e, = 5,47 C; t e,max. = 28,60 C; t e,min. = -15,80 C)

9 Rovnice teplot půdního masivu v topném období : t 2 8,924 7,934 sin( ,232) I 2 02L 0,941 ( C) (8) t L 2 9,461 6,746 sin( 1,925) ,983 I L ( C) (9) t S ,666 sin( 2,073) ,961 I S ( C) (10) - počet dní od začátku vytápění (den).

10 q d (Wh/m 2 den) 1600, , ,00 25,00 20,00 15,00 t e ( C) 1000,00 800,00 600,00 400,00 200,00 10,00 5,00 0,00-5,00 0, ql qs te τ (day) -10,00 Obr. 5 Tepla odvedená půdnímu masivu lineárními výměníky v topném období 2012/2013 (217 dní). q d - teplo odvedené 1 m 2 (7,96 m) teplosměnné plochy výměníku (Wh/m 2.den).

11 Měrná tepla odvedená půdnímu masivu q d Lineární výměník Výměník Slinky Průměrná hodnota (Wh/m 2.den) 503,38 264,25 Maximální hodnota (Wh/m 2.den) 1 658, ,47 Celkem za topné období (kwh/m 2 ) 109,23 57,34 Tab. II. Měrná tepla odvedená půdnímu masivu v topném období 2012/2013 (217 dní). q - teplo odvedené 1 m 2 teplosměnné plochy výměníku (Wh/m 2.den). Celkem za topné období = q (kwh/m 2 ) d

12 Teplota teplonosné kapaliny ( C) Typ Z výměníku Do výměníku výměníku Průměrná Minimální Průměrná Minimální Lineární Slink Tab. III Teploty teplonosné kapaliny v topném období 2012/2013. Bod tuhnutí teplonosné kapaliny (33 % C 2 H 6 O + 67 % H 2 O) -17,4 C. Výsledky měření ukázaly, že minimální teplota teplonosné kapaliny na výstupu z tepelného čerpadla byla -2,09 C. Vyhovující by tedy pro ověřované výměníky byla nižší koncentrace, např. 20 % etylalkoholu, kdy teplota tuhnutí směsi je -9,0 C. Ohřev teplonosné kapaliny přepočtený na 1 m 2 plochy výměníku: Lineární výměník při objemovém toku teplonosné kapaliny 6, m 3 /s, 0,0562 K/m 2. Výměník typu Slinky při objemovém toku teplonosné kapaliny 3, m 3 /s 0,0254 K/m 2.

13 q (W/m 2 ) 120,00 100,00 80,00 60,00 40,00 20,00 0, ql qs te tl ts τ (hour) 10,0 8,0 t ( C) 6,0 4,0 2,0 0,0-2,0-4,0-6,0-8,0-10,0 Obr.7 Teploty půdního masivu a měrné tepelné výkony horizontálních výměníků v typickém zimním dnu. (t e, = -5,33 C; t e,max. = -0,90 C; t e,min. = -8,70 C) q výkon výměníku přepočtený na 1 m 2 teplosměnné plochy (W/m 2 )

14 Měrný tepelný výkon, teplo Lineární výměník Výměník typu Slinky odvedené půdnímu masivu Průměrný výkon (W/m 2 ) 68,84 45,54 Maximální výkon (W/m 2 ) 103,12 81,66 Teplo odvedené za 24 h (Wh/m 2 ) 1652, ,98 Tab. IV. Měrné tepelné výkony a teplo odvedené půdnímu masivu za 24h q výkon výměníku přepočtený na 1 m 2 teplosměnné plochy (W/m 2 ).

15 Faktory ovlivňující spolehlivost zemního výměníku ve funkci nízkopotenciálního zdroje pro TČ: Plocha zemního masivu s výměníkem musí být dostatečně velká, aby došlo v letním období k regeneraci tepla odvedeného v zimním období akumulací solárního a atmosférického tepla. Důležité může být rovněž teplo dodávané zemnímu masivu dešťovými srážkami. Potrubí zemního výměníku musí být dostatečně dlouhé, aby odpovídalo špičkovému zatížení pro vytápění (nebo chlazení). Hloubka uložení zemního výměníku musí být optimalizována jak z hlediska extrémních zimních teplot (tak, abychom měli dostatečný objem zemního masivu jako zdroje tepla), tak i z hlediska akumulace tepla do zemního masivu během teplejších měsíců v roce. Půda by měla být dostatečně tepelně vodivá, aby efektivně přenášela teplo do teplosměnné plochy výměníku. Kontakt mezi zemním masivem a potrubím výměníku musí být efektivní z hlediska sdílení tepla. Potrubí výměníku by mělo být vyrobeno z materiálu, který je odolný, pevný a dostatečně tepelně vodivý.

16 Teplonosná kapalina by měla účinně sdílet teplo ze stěny potrubí výměníku neměla by být příliš viskózní, měla by mít nízkou toxicitu, měla by mít teplotu tuhnutí pod minimální provozní teplotou systému, a v ideálním případě by neměly být hořlavá. Primární okruh musí být vybaven pojistným ventilem, expanzní nádobou, filtrem a sestavou armatur pro napouštění a odvzdušnění výměníku. Primární okruh by měl pracovat s teplotním spádem 2 5 K. Závěry z ověřování zemních výměníků: Teploty půdního masivu v oblasti výměníků byly v topném období kladné. Vyšší teploty půdního masivu v oblasti lineárního výměníku umožní použít vyšších teplot vypařování chladiva a tím zvýšit COP tepelného čerpadla. Průběhy teplot půdního masivu v topném období a v období stagnace výměníku lze s dostatečnou přesností vyjádřit jednoduchými rovnicemi (8), (9), (10) a (5), (6), (7). Znalost průběhu teplot půdního masivu na povrchu, nebo v jeho blízkosti tvoří, spolu se znalostí tepelných charakteristik půdního masivu a teplot okolního prostředí, důležité podklady pro projekci a řízení energetických systémů s tepelnými čerpadly;

17 Teploty zemního masivu v oblasti obou výměníků byly po větší část topného období vyšší než teploty okolního prostředí. Výsledky ověřování potvrzují výhody HGHE jako zdroje nízkopotenciální energie a to zejména z hlediska HSPF; Teploty půdního masivu ve 3 topných obdobích ukazují, že rozdíly teplot na počátcích a koncích topných období nejsou významné. Výsledky naznačují, že půdní masiv lze považovat za stabilní nízkopotenciální zdroj energie s dlouhou životností. Měrné tepelné toky odvedené půdnímu masivu v topném období jsou u lineárního výměníku významně vyšší, než u výměníku Slinky. Vyšší odvedené teplo u lineárního výměníku však nezpůsobuje, díky většímu objemu půdního masivu, nižší teploty půdy v oblasti výměníku; Průměrné teploty teplonosné kapaliny vystupující z lineárního výměníku byly vyšší než z výměníku Slinky. Minimální teploty teplonosné kapaliny vstupující do výměníku byly u obou výměníků shodné a dosahovaly výjimečně záporných hodnot; Významnou příčinou nevýhodného laminárního proudění nebo proudění v přechodové oblasti je vysoká koncentrace etylalkoholu v teplonosné kapalině, která neodpovídá minimálním provozním teplotám teplonosné kapaliny.

18 Děkuji za pozornost

METODIKA PRO VYUŽITÍ PŮDY JAKO NÍZKOTEPLOTNÍHO ZDROJE ENERGIE TEPELNÝCH ČERPADEL

METODIKA PRO VYUŽITÍ PŮDY JAKO NÍZKOTEPLOTNÍHO ZDROJE ENERGIE TEPELNÝCH ČERPADEL Česká zemědělská univerzita v Praze TF - katedra mechaniky a strojnictví FAPPZ - katedra pedologie a ochrany půd METODIKA PRO VYUŽITÍ PŮDY JAKO NÍZKOTEPLOTNÍHO ZDROJE ENERGIE TEPELNÝCH ČERPADEL CERTIFIKOVANÁ

Více

Požadavky tepelných čerpadel

Požadavky tepelných čerpadel Požadavky tepelných čerpadel na přípravu, pravu, návrh, projekt a stavební dokumentaci seminář ASPIRE v Rožnově pod Radhoštěm Ing. Tomáš Straka, Ph.D. 0 2000 4000 6000 8000 10000 12000 14000 1973 1979

Více

= [-] (1) Přednáška č. 9 Využití sluneční energie pro výrobu tepla 1. Úvod Součinitel znečištění atmosféry Z: Kde: I 0

= [-] (1) Přednáška č. 9 Využití sluneční energie pro výrobu tepla 1. Úvod Součinitel znečištění atmosféry Z: Kde: I 0 Přednáška č. 9 Využití sluneční energie pro výrobu tepla 1. Úvod Součinitel znečištění atmosféry Z: Z ln I ln I ln I ln I 0 n = [-] (1) 0 n, č Kde: I 0 sluneční konstanta 1 360 [W.m -2 ]; I n intenzita

Více

SOLÁRNÍ SYSTÉM S DLOUHODOBOU AKUMULACÍ TEPLA VE SLATIŇANECH ANALÝZA PROVOZU

SOLÁRNÍ SYSTÉM S DLOUHODOBOU AKUMULACÍ TEPLA VE SLATIŇANECH ANALÝZA PROVOZU SOLÁRNÍ SYSTÉM S DLOUHODOBOU AKUMULACÍ TEPLA VE SLATIŇANECH ANALÝZA PROVOZU Martin Kny student Ph.D., ČVUT v Praze, fakulta stavební, katedra technických zařízení budov martin.kny@fsv.cvut.cz Konference

Více

1/58 Solární soustavy

1/58 Solární soustavy 1/58 Solární soustavy hydraulická zapojení zásobníky tepla tepelné výměníky 2/58 Přehled solárních soustav příprava teplé vody kombinované soustavy ohřev bazénové vody hydraulická zapojení typické zisky

Více

Obnovitelné zdroje energie

Obnovitelné zdroje energie ČVUT v Praze Fakulta stavební Katedra technických zařízení budov TBA1 Vytápění Zdroje tepla - obnovitelné zdroje 1 Obnovitelné zdroje energie Zákon 406/2000 Sb o hospodaření energií OZE=nefosilní přírodní

Více

VÍCE-VÝMĚNÍKOVÁ TEPELNÁ ČERPADLA

VÍCE-VÝMĚNÍKOVÁ TEPELNÁ ČERPADLA VÍCE-VÝMĚNÍKOVÁ TEPELNÁ ČERPADLA ForArch 2015 Ing. Jan Sedlář, Univerzitní Centrum Energeticky Efektivních Budov České Vysoké Učení Technické v Praze OBSAH Motivace k vývoji tepelných čerpadel pokročilejších

Více

Tepelnáčerpadla, pracovní látky, principy, zdroje, zapojení, příklady využití 1. Pracovní látky - chladiva

Tepelnáčerpadla, pracovní látky, principy, zdroje, zapojení, příklady využití 1. Pracovní látky - chladiva Tepelnáčerpadla, pracovní látky, principy, zdroje, zapojení, příklady využití 1. Pracovní látky - chladiva Pracovní látkou tepelného čerpadla je látka, která v oběhu tepelného čerpadla přijímá teplo při

Více

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze Seminář z PHTH 3. ročník Fakulta strojní ČVUT v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Přenos tepla 2 Mechanismy přenosu tepla Vedení (kondukce) Fourierův zákon homogenní izotropní prostředí

Více

Systém podlahového vytápění. Euroflex extra ODOLNÝ SYSTÉM PRO SAMONIVELAČNÍ STĚRKU

Systém podlahového vytápění. Euroflex extra ODOLNÝ SYSTÉM PRO SAMONIVELAČNÍ STĚRKU Systém podlahového vytápění Euroflex extra ODOLNÝ SYSTÉM PRO SAMONIVELAČNÍ STĚRKU systém Euroflex extra VELMI ODOLNÝ A UNIVERZÁLNÍ SYSTÉM Velký kontakt trubky s deskou, typický pro systémové desky, je

Více

Vytápění budov Otopné soustavy

Vytápění budov Otopné soustavy ČVUT v Praze Fakulta stavební Katedra technických zařízení budov Vytápění budov Otopné soustavy 109 Systémy vytápění Energonositel Zdroj tepla Přenos tepla Vytápění prostoru Paliva Uhlí Zemní plyn Bioplyn

Více

Výpočet potřeby tepla na vytápění

Výpočet potřeby tepla na vytápění Výpočet potřeby tepla na vytápění Výpočty a posouzení byly provedeny při respektování zásad CSN 73 05 40-2:2011, CSN EN ISO 13789, CSN EN ISO 13790 a okrajových podmínek dle TNI 73 029, TNI 73 030. Vytvořeno

Více

Deskové výměníky řada - DV193, typ E

Deskové výměníky řada - DV193, typ E REGULUS spol. s r.o. tel.: +420 241 764 506 Do Koutů 1897/3 +420 241 762 726 143 00 Praha 4 fax: +420 241 763 976 ČESKÁ REPUBLIKA www.regulus.cz e-mail: obchod@regulus.cz Deskové výměníky řada - DV193,

Více

Měření prostupu tepla

Měření prostupu tepla KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření prostupu tepla Úvod Prostup tepla je kombinovaný případ

Více

Tematické okruhy z předmětu Vytápění a vzduchotechnika obor Technická zařízení budov

Tematické okruhy z předmětu Vytápění a vzduchotechnika obor Technická zařízení budov Tematické okruhy z předmětu Vytápění a vzduchotechnika obor Technická zařízení budov 1. Klimatické poměry a prvky (přehled prvků a jejich význam z hlediska návrhu a provozu otopných systémů) a. Tepelná

Více

PŘÍSTROJOVÉ SYSTÉMY. Elektrické rozváděče NN Oteplení v důsledku výkonových ztrát el. přístrojů

PŘÍSTROJOVÉ SYSTÉMY. Elektrické rozváděče NN Oteplení v důsledku výkonových ztrát el. přístrojů PŘÍSTROJOVÉ SYSTÉMY Elektrické rozváděče NN Oteplení v důsledku výkonových ztrát el. přístrojů Vnitřní teplota rozváděče jako důležitý faktor spolehlivosti Samovolný odvod tepla na základě teplotního rozdílu

Více

Tepelné čerpadlo země/voda určené pro vnitřní instalaci o topném výkonu 5,9 kw

Tepelné čerpadlo země/voda určené pro vnitřní instalaci o topném výkonu 5,9 kw Tepelná čerpadla Logatherm WPS země/voda v kompaktním provedení a zvláštnosti Použití Tepelné čerpadlo země/voda s maximální výstupní teplotou 65 C Vnitřní provedení s regulátorem REGO 637J zařízení Je

Více

Proč Vaillant? Tradice, kvalita, inovace, technická podpora. Stacionární kondenzační kotle

Proč Vaillant? Tradice, kvalita, inovace, technická podpora. Stacionární kondenzační kotle Stacionární kondenzační kotle Proč Vaillant? Tradice, kvalita, inovace, technická podpora. VCC ecocompact VSC ecocompact VSC D aurocompact VKK ecocraft exclusiv ecocompact elegantní design Stacionární

Více

1/51 Prvky solárních soustav a jejich navrhování

1/51 Prvky solárních soustav a jejich navrhování 1/51 Prvky solárních soustav a jejich navrhování stagnace a její vliv na návrh prvků teplonosné kapaliny, potrubí, izolace pojistná a zabezpečovací zařízení odplynění, zpětná klapka čerpadlo, výměník,

Více

Geologie a tepelné vlastnosti hornin Projektování vrtů pro tepelná čerpadla na základě geologických předpokladů vliv na vodní režim, rizika

Geologie a tepelné vlastnosti hornin Projektování vrtů pro tepelná čerpadla na základě geologických předpokladů vliv na vodní režim, rizika Zpracoval: Mgr. Michal Havlík Geologie a tepelné vlastnosti hornin Projektování vrtů pro tepelná čerpadla na základě geologických předpokladů vliv na vodní režim, rizika Kapitola 4 - GEOLOGIE A TEPELNÉ

Více

Obnovitelné zdroje energie Budovy a energie

Obnovitelné zdroje energie Budovy a energie ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie Budovy a energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. M.Kabrhel 1 Typy tepelných

Více

BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D.

BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D. Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D. Průběh zkoušky, literatura Tepelně

Více

Tepelná čerpadla + solární soustavy = konkurence nebo spolupráce?

Tepelná čerpadla + solární soustavy = konkurence nebo spolupráce? Tepelná čerpadla + solární soustavy = konkurence nebo spolupráce? Tomáš Matuška, Bořivoj Šourek Ústav techniky prostředí, Fakulta strojní ČVUT v Praze Zdroje tepla pro tepelná čerpadla energie pocházející

Více

Tepelně vlhkostní posouzení

Tepelně vlhkostní posouzení Tepelně vlhkostní posouzení komínů výpočtové metody Přednáška č. 9 Základní výpočtové teploty Teplota v okolí komína 1 Teplota okolí komína 2 Teplota okolí komína 3 Teplota okolí komína 4 Teplota okolí

Více

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6. OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické

Více

Systémem Pro E. Kotel má následující charakteristické vlastnosti: - NO X

Systémem Pro E. Kotel má následující charakteristické vlastnosti: - NO X s atmosférickým hořákem Závěsný kotel v komínovém provedení nebo s nuceným odvodem spalin s vodou chlazeným hořákem pro velmi nízký obsah škodlivin ve spalinách. řady exclusiv se vyznačují speciální konstrukcí

Více

TEPELNÉ VLASTNOSTI HORNIN A JEJICH VLIV NA VYUŽITÍ ZEMNÍHO TEPLA

TEPELNÉ VLASTNOSTI HORNIN A JEJICH VLIV NA VYUŽITÍ ZEMNÍHO TEPLA Konference Alternativní zdroje energie 2016 21. a 22. června 2016 Kroměříž TEPELNÉ VLASTNOSTI HORNIN A JEJICH VLIV NA VYUŽITÍ ZEMNÍHO TEPLA Mgr. Michal Havlík, Ing. arch. Pavel Cihelka, Stavební geologie

Více

Katalogový list č. Verze: 01 ecocompact VSC../4, VCC../4 a aurocompact VSC D../4 06-S3

Katalogový list č. Verze: 01 ecocompact VSC../4, VCC../4 a aurocompact VSC D../4 06-S3 Verze: 0 ecocompact VSC../, VCC../ a aurocompact VSC D../ 0-S Stacionární kondenzační kotle s vestavěným zásobníkem teplé vody pro zajištění maximálních kompaktních rozměrů ve velmi elegantím designu.

Více

Technický list pro tepelné čerpadlo země-voda HP3BW-model B

Technický list pro tepelné čerpadlo země-voda HP3BW-model B Technický list pro tepelné čerpadlo země-voda HP3BW-model B Technický popis TČ Tepelné čerpadlo země-voda, voda-voda s označením HPBW B je kompaktní zařízení pro instalaci do vnitřního prostředí, které

Více

Deskové výměníky řada - DV285, typ E

Deskové výměníky řada - DV285, typ E REGULUS spol. s r.o. tel.: +420 241 764 506 Do Koutů 1897/3 +420 241 762 726 143 00 Praha 4 fax: +420 241 763 976 ČESKÁ REPUBLIKA www.regulus.cz e-mail: obchod@regulus.cz Deskové výměníky řada - DV285,

Více

1/69 Solární soustavy

1/69 Solární soustavy 1/69 Solární soustavy hydraulická zapojení zásobníky tepla tepelné výměníky 2/69 Přehled solárních soustav příprava teplé vody kombinované soustavy ohřev bazénové vody hydraulická zapojení typické zisky

Více

Posouzení konstrukce podle ČS :2007 TOB v PROTECH, s.r.o. Nový Bor Datum tisku:

Posouzení konstrukce podle ČS :2007 TOB v PROTECH, s.r.o. Nový Bor Datum tisku: Posouzení konstrukce podle ČS 050-:00 TOB v...0 00 POTECH, s.r.o. Nový Bor 080 - Ing.Petr Vostal - Třebíč Datum tisku:..009 Tepelný odpor, teplota rosného bodu a průběh kondenzace. Firma: Stavba: Místo:

Více

Ukázka knihy z internetového knihkupectví www.kosmas.cz

Ukázka knihy z internetového knihkupectví www.kosmas.cz Ukázka knihy z internetového knihkupectví www.kosmas.cz U k á z k a k n i h y z i n t e r n e t o v é h o k n i h k u p e c t v í w w w. k o s m a s. c z, U I D : K O S 1 8 1 4 7 8 VELKOPLOŠNÉ SÁLAVÉ VYTÁPĚNÍ

Více

solární systémy Brilon SUNPUR Trubicové solární kolektory www.brilon.cz

solární systémy Brilon SUNPUR Trubicové solární kolektory www.brilon.cz solární systémy Brilon SUNPUR Trubicové solární kolektory www.brilon.cz Proč zvolit vakuové solární kolektory Sunpur? Vakuové kolektory SUNPUR jsou při srovnání s tradičními plochými kolektory mnohem účinnější,

Více

Označení materiálu: VY_32_INOVACE_ZMAJA_VYTAPENI_18 Název materiálu: Teplovodní otopné soustavy s přirozeným oběhem vody

Označení materiálu: VY_32_INOVACE_ZMAJA_VYTAPENI_18 Název materiálu: Teplovodní otopné soustavy s přirozeným oběhem vody Označení materiálu: VY_32_INOVACE_ZMAJA_VYTAPENI_18 Název materiálu: Teplovodní otopné soustavy s přirozeným oběhem vody Tematická oblast: Vytápění 1. ročník Instalatér Anotace: Prezentace uvádí popisuje

Více

Solární teplo pro rodinný dům - otázky / odpovědi

Solární teplo pro rodinný dům - otázky / odpovědi 1/24 Solární teplo pro rodinný dům - otázky / odpovědi Tomáš Matuška Československá společnost pro sluneční energii (ČSSE) Novotného lávka 5, 116 68 Praha 1 Česká republika info@solarnispolecnost.cz 2/24

Více

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Říjen 2009 Pracovní materiály pro seminář Tepelná čerpadla Vývoj Principy Moderní technická řešení Vazba na energetické systémy budov Navrhování

Více

NELUMBO ENERGY TEPELNÁ ČERPADLA OHŘEV + CHLAZENÍ

NELUMBO ENERGY TEPELNÁ ČERPADLA OHŘEV + CHLAZENÍ NELUMBO ENERGY TEPELNÁ ČERPADLA OHŘEV + CHLAZENÍ Solární tepelné čerpadlo! Nejnovější solární hybridní technologie, přímý solární ohřev chladiva TČ: TF > 5,0! Kvalitní značkové kompresory, stabilní provoz

Více

Efektivita provozu solárních kolektorů. Energetické systémy budov I

Efektivita provozu solárních kolektorů. Energetické systémy budov I Efektivita provozu solárních kolektorů Energetické systémy budov I Sluneční energie Doba slunečního svitu a zářivý výkon závisí na: zeměpisné poloze ročním obdobím povětrnostních podmínkách Základní pojmy:

Více

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013 Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno

Více

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Investice do Vaší budoucnosti. Projekt je spolufinancován Evropskou Unií prostřednictvím Evropského fondu pro regionální rozvoj

Investice do Vaší budoucnosti. Projekt je spolufinancován Evropskou Unií prostřednictvím Evropského fondu pro regionální rozvoj EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO TEPELNÁ ČERPADLA ekonomika provozu a dimenzování Jiří Čaloun, DiS Investice do Vaší budoucnosti Projekt je spolufinancován Evropskou Unií prostřednictvím

Více

solární systémy Copyright (c) 2009 Strojírny Bohdalice, a.s.. All rights reserved. STISKNI ENTER

solární systémy Copyright (c) 2009 Strojírny Bohdalice, a.s.. All rights reserved. STISKNI ENTER solární systémy Copyright (c) 2009 Strojírny Bohdalice, a.s.. All rights reserved. TERMICKÉ SOLÁRNÍ SYSTÉMY k ohřevu vody pro hygienu (sprchování, koupel, mytí rukou) K ČEMU k ohřevu pro technologické

Více

MĚŘENÍ EMISÍ A VÝPOČET TEPELNÉHO VÝMĚNÍKU

MĚŘENÍ EMISÍ A VÝPOČET TEPELNÉHO VÝMĚNÍKU MĚŘENÍ EMISÍ A VÝPOČET TEPELNÉHO VÝMĚNÍKU. Cíl práce: Roštový kotel o jmenovitém výkonu 00 kw, vybavený automatickým podáváním paliva, je určen pro spalování dřevní štěpky. Teplo z topného okruhu je předáváno

Více

Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha

Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha Názvosloví páry Pro správné pochopení funkce parních systémů musíme znát základní pojmy spojené s párou. Entalpie Celková energie, příslušná danému

Více

Jiří Kalina. rní soustavy. bytových domech

Jiří Kalina. rní soustavy. bytových domech Jiří Kalina Solárn rní soustavy pro přípravu p pravu teplé vody v bytových domech Parametry solárn rních soustav pro přípravu p pravu teplé vody celkové tepelné zisky využité pro krytí potřeby tepla [kwh/rok]

Více

ceník tepelných čerpadel Vaillant Proč Vaillant? Tradice, kvalita, inovace, technická podpora.

ceník tepelných čerpadel Vaillant Proč Vaillant? Tradice, kvalita, inovace, technická podpora. ceník tepelných čerpadel Vaillant Proč Vaillant? Tradice, kvalita, inovace, technická podpora. platný od 1..01 Obsah Příklady hydraulických schémat zapojení tepelných čerpadel. Více v projekčních podkladech

Více

ODĚVNÍ KOMFORT TERMOFYZIOLOGICKÝ KOMFORT

ODĚVNÍ KOMFORT TERMOFYZIOLOGICKÝ KOMFORT ODĚVNÍ KOMFORT TERMOFYZIOLOGICKÝ KOMFORT ČLOVĚK ODĚV - PROSTŘEDÍ FYZIOLOGICKÉ REAKCE ČLOVĚKA NA OKOLNÍ PROSTŘEDÍ Lidské tělo - nepřetržitý zdroj tepla Bazální metabolismus, teplo je produkováno na základě

Více

Tepelná čerpadla. Proč Vaillant? Tradice, kvalita, inovace, technická podpora. arotherm VWL vzduch/voda

Tepelná čerpadla. Proč Vaillant? Tradice, kvalita, inovace, technická podpora. arotherm VWL vzduch/voda Tepelná čerpadla Proč Vaillant? Tradice, kvalita, inovace, technická podpora. arotherm VWL vzduch/voda Tepelná čerpadla arotherm VWL vzduch/voda Vzduch jako zdroj tepla Tepelná čerpadla Vaillant arotherm

Více

TERMOMECHANIKA 15. Základy přenosu tepla

TERMOMECHANIKA 15. Základy přenosu tepla FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí Prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 15. Základy přenosu tepla OSNOVA 15. KAPITOLY Tři mechanizmy přenosu tepla Tepelný

Více

Buderus Tepelná čerpadla vzduch/voda splitové provedení. Logatherm WPLS.2. Všestranné využití obnovitelné energie. Teplo je náš živel

Buderus Tepelná čerpadla vzduch/voda splitové provedení. Logatherm WPLS.2. Všestranné využití obnovitelné energie. Teplo je náš živel Buderus Tepelná čerpadla vzduch/voda ogatherm WPS.2 Všestranné využití obnovitelné energie Teplo je náš živel Nová řada čerpadel ogatherm WPS.2 Kompaktní a flexibilní ogatherm WPS.2 Tepelná čerpadla vzduch/voda

Více

METODIKA PRO NÁVRH TEPELNÉHO ČERPADLA ZEMĚ VODA

METODIKA PRO NÁVRH TEPELNÉHO ČERPADLA ZEMĚ VODA METODIKA PRO NÁVRH TEPELNÉHO ČERPADLA ZEMĚ VODA Získávání tepla ze země Pro jímání tepla ze zemního masivu se s největším úspěchem používá speciální plastové potrubí, ve kterém koluje ekologicky odbouratelná

Více

2012/1. Vakuový trubicový kolektor Logasol SKR...CPC. Popis a zvláštnosti. Ceny a provedení Logasol SKR. Změny vyhrazeny

2012/1. Vakuový trubicový kolektor Logasol SKR...CPC. Popis a zvláštnosti. Ceny a provedení Logasol SKR. Změny vyhrazeny Vakuový trubicový kolektor Logasol SKR...CPC Popis a zvláštnosti Vysoce výkonný vakuový trubicový kolektor SKR...CPC Kolektory jsou vyráběny v Německu Vhodný pro montáž na šikmou a plochou střechu případně

Více

VIESMANN VITOTRANS 100. List technických údajů Obj. č. aceny:vizceník VITOTRANS 100. Deskový výměník tepla. Pokyny pro uložení:

VIESMANN VITOTRANS 100. List technických údajů Obj. č. aceny:vizceník VITOTRANS 100. Deskový výměník tepla. Pokyny pro uložení: VIESMANN VITOTRANS 100 Deskový výměník tepla List technických údajů Obj. č. aceny:vizceník Pokyny pro uložení: Složka Vitotec, registr 17 VITOTRANS 100 Typ PWT Pro předávací stanice zásobovacích tepelných

Více

1/61 Solární soustavy

1/61 Solární soustavy 1/61 Solární soustavy příprava teplé vody vytápění ohřev bazénové vody navrhování a bilancování hydraulická zapojení Aktivní solární soustavy 2/61 soustavy pro ohřev bazénové vody (do 35 C) soustavy pro

Více

Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

ČVUT v Praze Fakulta stavební Katedra technických zařízení budov Situace v ČR 55% uhelné 42% jádro 3% vodní 0,1 % ostatní (vítr, fotovoltaická)

ČVUT v Praze Fakulta stavební Katedra technických zařízení budov Situace v ČR 55% uhelné 42% jádro 3% vodní 0,1 % ostatní (vítr, fotovoltaická) ČVUT v Praze Fakulta stavební Katedra technických zařízení budov TZ1 Vytápění Elektrická energie - výroba Situace v ČR 55% uhelné 42% jádro 3% vodní 0,1 % ostatní (vítr, fotovoltaická) Zdroje tepla - elektrické

Více

THERM 24 KDN, KDZN, KDCN

THERM 24 KDN, KDZN, KDCN TŘÍDA NOx THERM KDN, KDZN, KDCN THERM KDN, KDZN, KDCN Kotle jsou určeny pro vytápění objektů s tepelnou ztrátou do kw. Díky široké modulaci výkonu se optimálně přizpůsobují aktuální tepelné potřebě objektu

Více

Snížení energetické náročnosti ZŠ Dolní Újezd (okr. Svitavy)

Snížení energetické náročnosti ZŠ Dolní Újezd (okr. Svitavy) Snížení energetické náročnosti ZŠ Dolní Újezd (okr. Svitavy) Trochu historie První žáci vstoupili do ZŠ v září 1910. Škola měla 7 tříd vytápělo se v kamnech na uhlí. V roce 1985 byl zahájen provoz nových

Více

Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek

Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek Univerzita obrany K-216 Laboratorní cvičení z předmětu TERMOMECHANIKA Měření na výměníku tepla Protokol obsahuje 13 listů Vypracoval: Vít Havránek Studijní skupina: 21-3LRT-C Datum zpracování: 7.5.2011

Více

Chlazení kapalin. řada WDE. www.jdk.cz. CT120_CZ WDE (Rev.04-11)

Chlazení kapalin. řada WDE. www.jdk.cz. CT120_CZ WDE (Rev.04-11) Chlazení kapalin řada WDE www.jdk.cz CT120_CZ WDE (Rev.04-11) Technický popis WDE-S1K je řada kompaktních chladičů kapalin (chillerů) s nerezovým deskovým výparníkem a se zabudovanou akumulační nádobou

Více

9.1 Okrajové podmínky a spotřeba energie na ohřev teplé vody

9.1 Okrajové podmínky a spotřeba energie na ohřev teplé vody 00+ příklad z techniky prostředí 9. Okrajové podmínky a spotřeba energie na ohřev teplé vody Úloha 9.. V úlohách 9, 0 a určíme spotřebu energie pro provoz zóny zadaného objektu. Zadaná zóna představuje

Více

I Vy můžete snížit své náklady na vytápění. Využijte atraktivní letní akci.

I Vy můžete snížit své náklady na vytápění. Využijte atraktivní letní akci. I Vy můžete snížit své náklady na vytápění. Využijte atraktivní letní akci. Od 12. července do 12. září 2010 2 Velká letní akce Ti, kteří se v letním období rozhodnou zmodernizovat svůj topný systém instalací

Více

LIST S ÚDAJI O PRODUKTU

LIST S ÚDAJI O PRODUKTU WPF 04-16 / WPF 04-16 cool Účinnost ve špičkové formě. S novým optimalizovaným WPF je dosaženo magické hranice topného faktoru až 5,0 (COP). Tím patří WPF ke špičce na trhu tepelných čerpadel - i s ohledem

Více

Zpracování teorie 2010/11 2011/12

Zpracování teorie 2010/11 2011/12 Zpracování teorie 2010/11 2011/12 Cykly Děje Proudění (turbíny) počet v: roce 2010/11 a roce 2011/12 Chladící zařízení (nakreslete cyklus a nakreslete schéma)... zde 13 + 2 (15) Izochorický děj páry (nakreslit

Více

Budovy a energie Obnovitelné zdroje energie

Budovy a energie Obnovitelné zdroje energie ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra technických zařízení budov Budovy a energie Obnovitelné zdroje energie doc. Ing. Michal Kabrhel, Ph.D. Verze 2.17 Solární energie Kolektory

Více

DRAIN BACK zásobník včetně integrované čerpadlové jednotky, elektrické

DRAIN BACK zásobník včetně integrované čerpadlové jednotky, elektrické DRAIN BACK zásobník včetně integrované čerpadlové jednotky, elektrické patrony 5/4" a regulace (součástí IVAR.KIT DRAIN BACK 200): Pozn. Rozměry v mm. Technické charakteristiky: Max. provozní tlak zásobníku:

Více

Fe AKU TV 300 400 600 750 850 1000 1200 1350 1650 2000

Fe AKU TV 300 400 600 750 850 1000 1200 1350 1650 2000 Odvzdušnění nádrže Výstup TUV (teplé užitkové vody) Plastový kryt TUV z oceli 1.4404 Ochranný vnější obal Vstup topné vody do nádrže Teploměr 0-120 C Ocelová nádrž Max. provozní tlak: 0,6MPa Propojovací

Více

Jak vybrat solární kolektor?

Jak vybrat solární kolektor? 1/25 Jak vybrat solární kolektor? Tomáš Matuška Československá společnost pro sluneční energii (ČSSE) Fakulta strojní, ČVUT v Praze 2/25 Druhy solárních tepelných kolektorů Nezasklený plochý kolektor bez

Více

IVT AIR X nejlepší vzduch/voda na trhu

IVT AIR X nejlepší vzduch/voda na trhu IVT AIR X nejlepší vzduch/voda na trhu Nakupujte od zkušených specialistů S více než deseti tisíci spokojených zákazníků, jsme největším dodavatelem tepelných čerpadel v České republice. První tepelné

Více

Kondenzační plynové kotle

Kondenzační plynové kotle Kondenzační plynové kotle Primární výměník z nerez oceli: spolehlivost Snadná obsluha díky ovládacímu panelu vybavenému ručními ovladači, elektronickým displejem a multifunkčními kontrolkami Možnost připojení

Více

Porovnání solárního fototermického a fotovoltaického ohřevu vody

Porovnání solárního fototermického a fotovoltaického ohřevu vody Porovnání solárního fototermického a fotovoltaického ohřevu vody Tomáš Matuška, Bořivoj Šourek RP2 Energetické systémy budov Univerzitní centrum energeticky efektivních budov ČVUT v Praze ÚPRAVA OPROTI

Více

Solární systémy. aurostep Solar Set 1

Solární systémy. aurostep Solar Set 1 Solární systémy aurostep Solar Set 1 Vše připraveno: aurostep Největší předností solárního systému aurostep pro přípravu teplé užitkové vody je jeho kompaktnost. Veškeré nutné prvky systému, čerpadlová

Více

Solární tepelné soustavy. Ing. Stanislav Bock 3.května 2011

Solární tepelné soustavy. Ing. Stanislav Bock 3.května 2011 Solární tepelné soustavy Ing. Stanislav Bock 3.května 2011 Princip sluneční kolektory solární akumulační zásobník kotel pro dohřev čerpadlo Možnosti využití nízkoteplotní aplikace do 90 C ohřev bazénové

Více

ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ

ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ Rok vzniku: 29 Umístěno na: Vysoké učení technické v Brně, Fakulta strojního ženýrství, Technická 2, 616 69 Brno, Hala C3/Energetický ústav

Více

SAMSUNG Eco Heating System. Vzduch-voda

SAMSUNG Eco Heating System. Vzduch-voda -voda Je nejideálnějším, nákladově efektivním vytápěcím systémem, v němž se zdroj tepla ve formě venkovního vzduchu používá k vytápění podlah a vody v domácnostech. Podlahové vytápění Radiátor Teplá voda

Více

Obnovitelné zdroje. Modul: Akumulační zásobníky. Verze: 01 Bivalentní zásobník VIH RW 400 B 02-E3

Obnovitelné zdroje. Modul: Akumulační zásobníky. Verze: 01 Bivalentní zásobník VIH RW 400 B 02-E3 Zásobník Vaillant je jako nepřímo ohřívaný zásobník teplé vody určen speciálně pro tepelná čerpadla, u nichž je možno zajistit také zásobování teplou vodou podporované solárním ohřevem. Aby se zajistila

Více

účinnost zdroje tepla

účinnost zdroje tepla Ztráty tepelných rozvodů při rozvodu tepelné energie Ing. Roman Vavřička, Ph.D. ČVUT v Praze, Fakulta strojní Ústav techniky prostředí Roman.Vavricka@fs.cvut.cz www.utp.fs.cvut.cz Účinnost přeměny energie

Více

VIESMANN VITOTRANS 100 Deskový výměník tepla

VIESMANN VITOTRANS 100 Deskový výměník tepla VIESMANN VITOTRANS 100 Deskový výměník tepla List technických údajů Obj. čísla a ceny: viz ceník VITOTRANS 100 Typ PWT Pro předávací stanice zásobovacích tepelných sítí, k oddělování systémů v topných

Více

Solární systém pro ohřev vody s vakuovými trubicovými kolektory VIA SOLIS DOMOV 160-300 HODNOCENÍ

Solární systém pro ohřev vody s vakuovými trubicovými kolektory VIA SOLIS DOMOV 160-300 HODNOCENÍ Solární systém pro ohřev vody s vakuovými trubicovými kolektory VIA SOLIS DOMOV 160-300 1. Sestava systému DOMOV 160-300 HODNOCENÍ Solární systém sestává ze 3 kolektorů VIA SOLIS VK6 ve spojení se zásobníkem

Více

Tepelné ztráty akumulační nádoby

Tepelné ztráty akumulační nádoby HP HP Parametr - akumulační nádoba Hodnota Poznámka Průměr bez tepelné izolace 786 mm S tepelnou izolací cca 950 mm Výška bez izolace 1 815 mm S tepelnou izolací cca 1 900 mm Vodní obsah 750 litrů Standardní

Více

22,3 25,6. Neobnovitelná primární energie (Vliv provozu budovy na životní prostředí) Celková dodaná energie (Energie na vstupu do budovy)

22,3 25,6. Neobnovitelná primární energie (Vliv provozu budovy na životní prostředí) Celková dodaná energie (Energie na vstupu do budovy) vydaný podle zákona č. 46/2 Sb., o hospodaření energií, a vyhlášky č. 78/213 Sb., o energetické náročnosti budov Ulice, číslo: ppč. 1751/12, k.ú. Ruprechtice PSČ, místo: Liberec 14, 416 14 Typ budovy:

Více

NIBE SPLIT ideální řešení pro rodinné domy

NIBE SPLIT ideální řešení pro rodinné domy NIBE SPLIT ideální řešení pro rodinné domy Co je NIBE SPLIT? Je to systém, sestávající z 1 venkovní a 1 vnitřní jednotky Tepelný výměník je součástí vnitřní jednotky Vnitřní a venkovní jednotka je propojena

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Ing. Tomáš Matuška,

Více

NÁVOD K OBSLUZE A INSTALACI

NÁVOD K OBSLUZE A INSTALACI NÁVOD K OBSLUZE A INSTALACI Akumulační nádrže 300/20v6 500/25v6 750/35v6 1000/45v6 Družstevní závody Dražice - strojírna s.r.o. Dražice 69, 294 71 Benátky nad Jizerou tel.: +420 / 326 370 990 fax: +420

Více

Instalace solárního systému

Instalace solárního systému Instalace solárního systému jako opatření ve všech podoblastech podpory NZÚ Kombinace solární soustavy a různých opatření v rámci programu NZÚ výzva RD 2 Podoblast A Úspory nejen na obálce budovy, ale

Více

Realizace solární soustavy od A do Z

Realizace solární soustavy od A do Z 1/22 Realizace solární soustavy od A do Z Marie Hrádková Československá společnost pro sluneční energii (ČSSE) JH Solar s.r.o., Plavsko 88 2/22 Vstupní předpoklady typ soustavy ohřev TV, přitápění, ohřev

Více

TZB - VZDUCHOTECHNIKA

TZB - VZDUCHOTECHNIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ HIRŠ, GÜNTER GEBAUER TZB - VZDUCHOTECHNIKA MODUL BT02-08 KLIMATIZACE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA TZB Vzduchotechnika,

Více

Splitová tepelná čerpadla vzduch/voda

Splitová tepelná čerpadla vzduch/voda Technická dokumentace Splitová tepelná čerpadla vzduch/voda BWL-1 S(B)-07/10/14 NOVINKA 2 BWL-1S BWL-1SB COP DO 3,8* BWL-1S(B) BWL-1S(B)-07 BWL-1S(B)-10/14 2 Sestava vnitřní jednotky odvzdušňovací ventil

Více

elios nová zelená úsporám Solární systémy pro ohřev teplé vody a podporu vytápění

elios nová zelená úsporám Solární systémy pro ohřev teplé vody a podporu vytápění elios nová zelená úsporám Solární systémy pro ohřev teplé vody a podporu vytápění Vysoce účinné sluneční ploché kolektory Xelios vyráběné v EU jsou osvědčeným výrobkem nejen v evropských klimatických podmínkách.

Více

Protokol k průkazu energetické náročnosti budovy

Protokol k průkazu energetické náročnosti budovy str. 1 / 21 Protokol k průkazu energetické náročnosti budovy Účel zpracování průkazu Nová budova Prodej budovy nebo její části Větší změna dokončené budovy Jiný účel zpracování: Budova užívaná orgánem

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Kolektor: SK 218 Objednatel:

Více

1/61 Stagnační chování solárních soustav a vliv na návrh jejich prvků

1/61 Stagnační chování solárních soustav a vliv na návrh jejich prvků 1/61 Stagnační chování solárních soustav a vliv na návrh jejich prvků stagnace teplonosná kapalina potrubí tepelné izolace pojistný ventil expanzní nádoba Stagnace 2/61 stav bez odběru tepla z kolektoru

Více

ČVUT v Praze Fakulta stavební Katedra technických zařízení budov. 125ESB Energetické systémy budov. prof. Ing. Karel Kabele, CSc. ESB1 - Harmonogram

ČVUT v Praze Fakulta stavební Katedra technických zařízení budov. 125ESB Energetické systémy budov. prof. Ing. Karel Kabele, CSc. ESB1 - Harmonogram ČVUT v Praze Fakulta stavební Katedra technických zařízení budov 125ESB Energetické systémy budov prof. Ing. Karel Kabele, CSc. prof.karel Kabele 1 ESB1 - Harmonogram 1 Vytápění budov. Navrhování teplovodních

Více

Slunce # Energie budoucnosti

Slunce # Energie budoucnosti Možnosti využití sluneční energie Slunce # Energie budoucnosti www.nelumbo.cz 1 Globální klimatická změna hrozí Země se ohřívá a to nejrychleji od doby ledové.# Prognózy: další růst teploty o 1,4 až 5,8

Více

Tomáš Matuška Ústav techniky prostředí, Fakulta strojní RP2 Energetické systémy budov, UCEEB ČVUT v Praze 1/39

Tomáš Matuška Ústav techniky prostředí, Fakulta strojní RP2 Energetické systémy budov, UCEEB ČVUT v Praze 1/39 Zdroje tepla pro pasivní domy Tomáš Matuška Ústav techniky prostředí, Fakulta strojní RP2 Energetické systémy budov, UCEEB ČVUT v Praze 1/39 Pasivní domy (ČSN 73 0540-2) PHPP: měrná potřeba primární energie

Více

Solární systémy pro ohřev teplé vody a podporu vytápění

Solární systémy pro ohřev teplé vody a podporu vytápění Solární systémy pro ohřev teplé vody a podporu vytápění TRUBICOVÉ SOLÁRNÍ KOLEKTORY www.varisol.cz Změňte svůj způsob myšlení s kolektory Thermomax, Varisol Thermomax, Varisol špičkový evropský originál

Více

Průkaz ENB podle vyhlášky č.78/2013 Sb. PROTOKOL PRŮKAZU. Účel zpracování průkazu

Průkaz ENB podle vyhlášky č.78/2013 Sb. PROTOKOL PRŮKAZU. Účel zpracování průkazu Průkaz ENB podle vyhlášky č.78/213 Sb. Průkaz 213 v.3.4.4 PROTECH spol. s r.o. 377 Comfort space, a.s. Praha 7 Datum tisku: 1.12.214 Zakázka: penb1411282 Archiv: 1723 PROTOKOL PRŮKAZU Účel zpracování průkazu

Více

Energetické systémy pro nízkoenergetické stavby

Energetické systémy pro nízkoenergetické stavby Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologií Ústav elektroenergetiky Energetické systémy pro nízkoenergetické stavby Systémy pro vytápění a přípravu TUV doc. Ing. Petr

Více

Třecí ztráty při proudění v potrubí

Třecí ztráty při proudění v potrubí Třecí ztráty při proudění v potrubí Vodorovným ocelovým mírně zkorodovaným potrubím o vnitřním průměru 0 mm proudí 6 l s - kapaliny o teplotě C. Určete tlakovou ztrátu vlivem tření je-li délka potrubí

Více