RISC a CISC architektura

Rozměr: px
Začít zobrazení ze stránky:

Download "RISC a CISC architektura"

Transkript

1 RISC a CISC architektura = dva rozdílné přístupy ke konstrukci CPU CISC (Complex Instruction Set Computer) vývojově starší přístup: pomoci konstrukci překladače z VPP co nejpodobnějšími instrukcemi s příkazy VPP : o volání podprogramů o cykly (DJNZ apod.) o komplexní větvení (CJNE apod.) o výpočty s operandy v paměti během jednoho cyklu (ADD A, Adr) Základní znaky: o komplikovaný instrukční soubor (100ky instrukcí) o komplexní instrukce = postupný ústup ze slávy složitý návrh čipu cena zpracování instrukce nutné více kroků řadiče dlouhý instrukční cyklus kratší program (nutné méně instrukcí) méně přístupů od paměti, úspora nákladů na up systém (60.léta 20 stol.) Zástupci: 8051, první x86 (až do 80486) RISC (Reduced Instruction Set Computer) protipól CISC? Jak zvýšit výkon procesoru 1970 u IBM výzkum, výsledky: o velký počet instrukcí = složité optimalizace o programátor ani překladače nejsou schopni využít všechny instrukce z ISA u CISC CPU o až 50% instrukcí nelze využít optimálně o v průměrných programech: charakteristika: většina výkonných instrukcí (aritmetika, cykly obvodově nejsložitější) velmi malé zastoupení nejčastější instrukce přesuny, skoky, porovnání o malý počet jednoduchých instrukcí (10ky až cca 130) o krátka doba provedení instrukce (1 takt f CLK ) o pipelining (viz. dále) 1

2 o velký počet GPR (všeobecné registry) > 32 RISC = malý počet tranzistorů na čipu CPU, oproti CISC lze: o menší spotřeba CPU o více registrů, vyrovnávací paměť (cache) o integrace více periférií o základní filozofie všechny operace se provádějí v registrech ( load-store architektura data je nutné do registrů nahrát a pak vyzvednout) komunikace s pamětí pouze přesuny do a z registrů dnes nejrozšířenější architektura CPU o 8b uc Atmel AVR, Michrochip PIC o 32b uc ARM (Acorn RISC Machine, až 75% trhu PALM, PDA, MP3, Smart Phones ), Motorola Freescale o stolní PCU x86 od Intel Pentium výše, IBM Power PC o DSP Analog Devices, Texas Instruments umožňuje pokročilejší metody zpracování instrukcí (moderní CPU Intel Pentium apod.) Dynamic Execution o paralelní zpracování instrukcí (Paralel processing) o předpovídání větvení (branch prediction) o zpřeházené zpracování instrukcí (out-of-order execution) o Příklad Intel Pentium III Pipelining = překrývání instrukcí, zřetězené zpracování instrukcí základní princip zrychlení práce CPU typu RISC v případě jednoduchého ISA lze zpracování instrukce paralelizovat zpracování jedné instrukce o každá jednotka řadiče provede část operace o jednotky procují současně (paralelně) cykly IF ID OF IE WB 1 A 2 B A 3 C B A 4 D C B A 5 E D C B A triviální případ: jedna instrukce = čtení, druhá dekódování ideální případ jeden takt f CLK vykonána (dokončena) jedna instrukce konflikty: o datový potřebná data dosud nejsou uložena 2

3 o skokový adresu skoku zatím nelze určit o řešení: počkat (nejednodušší) nutno zahodit obsah pipeline delayed branch ( předběžné zpožděné) skoky viz DSP později různý počet stupňů pipeline o MCU, DSP obvykle 3 o Pentium 4 20 až 31 Mikrokontroléry Atmel AVR nejmodernější architektura 8bit MCU vznik kolem r dnes cca 50 typů MCU různá pouzdra, periferie, výkon o rodina ATtiny malé MCU o rodina ATmega velké MCU podpora ladění přímo na čipu (On-Chip Debugging, přes rozhraní JTAG) Device Flash (Kbytes) EEPROM (Kbytes) SRAM (Bytes) Max I/O Pins F.max (MHz) AT90CAN128 Automotive AT90PWM AT90PWM ATmega ATmega ATmega ATmega ATmega ATmega ATmega165P ATmega ATmega168 Automotive ATmega ATmega169P ATmega ATmega ATmega ATmega ATmega ATmega ATmega ATmega ATmega ATmega48 Automotive ATmega ATmega ATmega ATmega ATmega

4 ATmega ATmega ATmega ATmega ATmega ATmega ATmega88 Automotive ATtiny ATtiny ATtiny B + 32 reg 6 20 ATtiny15L VI ATtiny ATtiny ATtiny ATtiny25 Automotive ATtiny ATtiny28L ATtiny ATtiny ATtiny45 Automotive ATtiny ATtiny ATtiny85 Automotive Jádro (AVR Core) Harvardská architektura, RISC optimalizováno pro běh programů v jazyce C blokové schéma 4

5 časování CPU 3-stupňová pipeline (Tx = 1/f CLK ) o většina instrukcí 1 takt (12x výkonnější než 8051 na stejném f CLK, výkon zhruba jako 80386) Zpracování operandů v aritmetických instrukcích jednocyklová instrukce 5

6 o čtení obou zdrojových operandů z pracovních registrů o provedení potřebné operace o výsledek zpět do registrů. instrukce 16 bitů o Zrychlení načtení instrukcí (většina instrukcí načtena během 1 strojového cyklu) - výhoda o Zvětšení požadavků na paměť - nevýhoda Paměťový prostor paměť programu paměť dat o GPR namapován do RAM 0x00 0xFh (32 adres) o IO registry odpovídá SFR u x20h 0x5F (64 adres) SREG (PSW) SP datové registry I/O zařízení (porty) řídící registry periférií AVR o zbytek (od adresy 96) = dostupná paměť RAM 0x60? (dle typu, 1 8kB) přístup 2 instrukční cykly Pracovní registry 6

7 Téměř všechny instrukce pracující s registry jednocyklový přístup (existují vyjímky). Některé instrukce přístup jen k R16 až R31. Posledních 6 registrů lze použít ve dvojici jako ukazatele adresy pro nepřímé adresování paměti dat (potom páry X, Y a Z) o příklad registr X Všechny registry = ACC šetří přesuny do RAM (usnadňuje implementaci C kompilátoru) jsou zdrojem i cílem při ALU operacích Paměť programu typu FLASH, In-System Programmable Memory - přeprogramovatelná v cílovém zařízení (pomocí SPI nebo JTAG rozhraní), velikost dle typu (1 až 256 kb) organizovaná jako N x 16b, N je závislé na typu uc šířka PC závisí na velikosti paměti u daného typu uc (ATmega32 16kB, PC = 14b) velikost interní FLASH dle typu AVR (1 až 256 kb) nelze připojit externí paměť programu Prostor I/O registrů Všechny I/O porty a registry periferií jsou umístěny v oblasti 64 I/O registrů Přístup: o jako do paměti SRAM pomocí instrukcí LD a ST o prvních 32 instrukce IN (čtení) a OUT (zápis), které spolupracují s 32 pracovními registry. 7

8 rozsah adres 0x0000 až 0x001F bitově adresovatelná (využití instrukcí SBI, CBI, SBIS, SBIC). Příklad konkrétního uspořádání I/O registrů u ATmega32 ALU o pro typy, které mají méně periferií, je tabulka příslušně zredukována o každá AVR jiné registry!!!!! pracuje v přímém spojení s 32 univerzálními registry podporuje aritmetické a logické operace mezi registry, registrem a konstantou nebo pracuje se samotným registrem ALU operace jsou rozděleny na tři druhy o aritmetické o logické o bitové Výsledek operace v ALU ovlivňuje bity ve stavovém registru SREG (jako PSW u 8051) AVR typu ATmega obsahují hardwarovou násobičku (násobení pak trvá pouze 2 takty) Stavový registr 8-bitový registr SREG = PSW u 8051 bity lze testovat a využít např. pro podmíněné větvení programu, skoky (instrukce BREQ, BRNE, BRTS, BRTC atd.) 8

9 instrukce SEx a CLx pro nastavování jednotlivých bitů do 1 či do 0 (např. SEI, CLI, SET, CLT atd.) BIT7 - I Global Interrupt Enable o Globální povolení všech přeušení (I = 1). Globální zákaz všeh přerušení (I = 0) o Podrobněji později BIT6 T Bit Copy Storage o Uživatelsky nastavitelný bit pomocí instrukcí BST a BLD. BIT5 H Half Carry Flag o přenos mezi 3. a 4. bitem (BCD aritmetika). BIT4 S Sign Bit, S = N V o = XOR, určuje znaménko výsledku. BIT3 V Two s Complement Overflow Flag o Příznak přetečení dvojkového doplňku. BIT2 N Negative Flag o Příznak záporného výsledku aritmetických nebo logických operací. BIT1 Z Zero Flag o Příznak Z indikuje nulový výsledek aritmetických nebo logických operací. BIT0 C Carry Flag o Indikuje přenos při aritmetických a logických operacích. Zásobník, Stack Pointer Zásobník o velikost omezena pouze velikostí SRAM. o roste směrem k nižším adresám o musí být nastaven do volné RAM (nad 0x60) obvykle až na konec SP 16b (SPH, SPL) o musí být vždy inicializován na začátku programu 9

Činnost CPU. IMTEE Přednáška č. 2. Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus

Činnost CPU. IMTEE Přednáška č. 2. Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus Činnost CPU Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus Hodinový cyklus CPU je synchronní obvod nutné hodiny (f CLK ) Instrukční cyklus IF = doba potřebná

Více

Pohled do nitra mikroprocesoru Josef Horálek

Pohled do nitra mikroprocesoru Josef Horálek Pohled do nitra mikroprocesoru Josef Horálek Z čeho vycházíme = Vycházíme z Von Neumannovy architektury = Celý počítač se tak skládá z pěti koncepčních bloků: = Operační paměť = Programový řadič = Aritmeticko-logická

Více

Struktura a architektura počítačů (BI-SAP) 7

Struktura a architektura počítačů (BI-SAP) 7 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 7 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii

Více

PROCESOR. Typy procesorů

PROCESOR. Typy procesorů PROCESOR Procesor je ústřední výkonnou jednotkou počítače, která čte z paměti instrukce a na jejich základě vykonává program. Primárním úkolem procesoru je řídit činnost ostatních částí počítače včetně

Více

Kubatova 19.4.2007 Y36SAP - 13. procesor - control unit obvodový a mikroprogramový řadič RISC. 19.4.2007 Y36SAP-control unit 1

Kubatova 19.4.2007 Y36SAP - 13. procesor - control unit obvodový a mikroprogramový řadič RISC. 19.4.2007 Y36SAP-control unit 1 Y36SAP - 13 procesor - control unit obvodový a mikroprogramový řadič RISC 19.4.2007 Y36SAP-control unit 1 Von Neumannova architektura (UPS1) Instrukce a data jsou uloženy v téže paměti. Paměť je organizována

Více

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC Informační systémy 2 Obsah: Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC ROM RAM Paměti typu CACHE IS2-4 1 Dnešní info: Informační systémy 2 03 Informační systémy

Více

Procesor z pohledu programátora

Procesor z pohledu programátora Procesor z pohledu programátora Terminologie Procesor (CPU) = řadič + ALU. Mikroprocesor = procesor vyrobený monolitickou technologií na čipu. Mikropočítač = počítač postavený na bázi mikroprocesoru. Mikrokontrolér

Více

Semestrální práce z předmětu Speciální číslicové systémy X31SCS

Semestrální práce z předmětu Speciální číslicové systémy X31SCS Semestrální práce z předmětu Speciální číslicové systémy X31SCS Katedra obvodů DSP16411 ZPRACOVAL: Roman Holubec Školní rok: 2006/2007 Úvod DSP16411 patří do rodiny DSP16411 rozšiřuje DSP16410 o vyšší

Více

Strojový kód k d a asembler procesoru MIPS SPIM. MIPS - prostředí NMS NMS. 32 ks 32bitových registrů ( adresa registru = 5 bitů).

Strojový kód k d a asembler procesoru MIPS SPIM. MIPS - prostředí NMS NMS. 32 ks 32bitových registrů ( adresa registru = 5 bitů). Strojový kód k d a asembler procesoru MIPS Použit ití simulátoru SPIM K.D. - cvičení ÚPA 1 MIPS - prostředí 32 ks 32bitových registrů ( adresa registru = 5 bitů). Registr $0 je zero čte se jako 0x0, zápis

Více

Procesory, mikroprocesory, procesory na FPGA. 30.1.2013 O. Novák, CIE 11 1

Procesory, mikroprocesory, procesory na FPGA. 30.1.2013 O. Novák, CIE 11 1 Procesory, mikroprocesory, procesory na FPGA 30.1.2013 O. Novák, CIE 11 1 Od sekvenčních automatů k mikroprocesorům 30.1.2013 O. Novák, CIE 11 2 30.1.2013 O. Novák, CIE 11 3 Architektura počítačů Von Neumannovská,

Více

Procesor. Procesor FPU ALU. Řadič mikrokód

Procesor. Procesor FPU ALU. Řadič mikrokód Procesor Procesor Integrovaný obvod zajišťující funkce CPU Tvoří srdce a mozek celého počítače a do značné míry ovlivňuje výkon celého počítače (čím rychlejší procesor, tím rychlejší počítač) Provádí jednotlivé

Více

Architektury CISC a RISC, uplatnění v personálních počítačích

Architektury CISC a RISC, uplatnění v personálních počítačích Architektury CISC a RISC, uplatnění v personálních počítačích 1 Cíl přednášky Vysvětlit, jak pracují architektury CISC a RISC, upozornit na rozdíly. Zdůraznit, jak se typické rysy obou typů architektur

Více

Architekura mikroprocesoru AVR ATMega ( Pokročilé architektury počítačů )

Architekura mikroprocesoru AVR ATMega ( Pokročilé architektury počítačů ) Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Architekura mikroprocesoru AVR ATMega ( Pokročilé architektury počítačů ) Führer Ondřej, FUH002 1. AVR procesory obecně

Více

Architektura procesoru ARM

Architektura procesoru ARM Architektura procesoru ARM Bc. Jan Grygerek GRY095 Obsah ARM...3 Historie...3 Charakteristika procesoru ARM...4 Architektura procesoru ARM...5 Specifikace procesoru...6 Instrukční soubor procesoru...6

Více

Kubatova 19.4.2007 Y36SAP 8. Strojový kód Jazyk symbolických instrukcí asembler JSA pro ADOP a AVR. 2007-Kubátová Y36SAP-strojový kód 1

Kubatova 19.4.2007 Y36SAP 8. Strojový kód Jazyk symbolických instrukcí asembler JSA pro ADOP a AVR. 2007-Kubátová Y36SAP-strojový kód 1 Y36SAP 8 Strojový kód Jazyk symbolických instrukcí asembler JSA pro ADOP a AVR 2007-Kubátová Y36SAP-strojový kód 1 Architektura souboru instrukcí, ISA - Instruction Set Architecture Vysoká Architektura

Více

MSP 430F1611. Jiří Kašpar. Charakteristika

MSP 430F1611. Jiří Kašpar. Charakteristika MSP 430F1611 Charakteristika Mikroprocesor MSP430F1611 je 16 bitový, RISC struktura s von-neumannovou architekturou. Na mikroprocesor má neuvěřitelně velkou RAM paměť 10KB, 48KB + 256B FLASH paměť. Takže

Více

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC Informatika 2 Technické prostředky počítačové techniky - 2 Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Přednášky: středa 14 20 15 55 Spojení: e-mail: jan.skrbek@tul.cz 16 10 17 45 tel.: 48 535 2442 Obsah:

Více

Seznámení s mikropočítačem. Architektura mikropočítače. Instrukce. Paměť. Čítače. Porovnání s AT89C2051

Seznámení s mikropočítačem. Architektura mikropočítače. Instrukce. Paměť. Čítače. Porovnání s AT89C2051 051 Seznámení s mikropočítačem Architektura mikropočítače Instrukce Paměť Čítače Porovnání s AT89C2051 Seznámení s mikropočítačem řady 8051 Mikroprocesor řady 8051 pochází z roku 1980 a je vytvořené firmou

Více

Mikrokontroléry. Doplňující text pro POS K. D. 2001

Mikrokontroléry. Doplňující text pro POS K. D. 2001 Mikrokontroléry Doplňující text pro POS K. D. 2001 Úvod Mikrokontroléry, jinak též označované jako jednočipové mikropočítače, obsahují v jediném pouzdře všechny podstatné části mikropočítače: Řadič a aritmetickou

Více

Assembler RISC RISC MIPS. T.Mainzer, kiv.zcu.cz

Assembler RISC RISC MIPS. T.Mainzer, kiv.zcu.cz Assembler RISC T.Mainzer, kiv.zcu.cz RISC RISC, neboli Reduced Instruction Set Computer - koncepce procesorů s redukovaným souborem instrukcí (vs. CISC, neboli Complex Instruction Set Computer, "bohatý"

Více

Princip funkce počítače

Princip funkce počítače Princip funkce počítače Princip funkce počítače prvotní úlohou počítačů bylo zrychlit provádění matematických výpočtů první počítače kopírovaly obvyklý postup manuálního provádění výpočtů pokyny pro zpracování

Více

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC Informatika 2 Technické prostředky počítačové techniky - 2 Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Přednášky: středa 14 20 15 55 Spojení: e-mail: jan.skrbek@tul.cz 16 10 17 45 tel.: 48 535 2442 Obsah:

Více

Architektura Intel Atom

Architektura Intel Atom Architektura Intel Atom Štěpán Sojka 5. prosince 2008 1 Úvod Hlavní rysem Atomu je podpora platformy x86, která umožňuje spouštět a běžně používat řadu let vyvíjené aplikace, na které jsou uživatelé zvyklí

Více

Základy informatiky. 2. Přednáška HW. Lenka Carr Motyčková. February 22, 2011 Základy informatiky 2

Základy informatiky. 2. Přednáška HW. Lenka Carr Motyčková. February 22, 2011 Základy informatiky 2 Základy informatiky 2. Přednáška HW Lenka Carr Motyčková February 22, 2011 Základy informatiky 1 February 22, 2011 Základy informatiky 2 February 22, 2011 Základy informatiky 3 February 22, 2011 Základy

Více

4-1 4. Přednáška. Strojový kód a data. 4. Přednáška ISA. 2004-2007 J. Buček, R. Lórencz

4-1 4. Přednáška. Strojový kód a data. 4. Přednáška ISA. 2004-2007 J. Buček, R. Lórencz 4-4. Přednáška 4. Přednáška ISA J. Buček, R. Lórencz 24-27 J. Buček, R. Lórencz 4-2 4. Přednáška Obsah přednášky Násobení a dělení v počítači Základní cyklus počítače Charakteristika třech základní typů

Více

Architektura počítače

Architektura počítače Architektura počítače Výpočetní systém HIERARCHICKÁ STRUKTURA Úroveň aplikačních programů Úroveň obecných funkčních programů Úroveň vyšších programovacích jazyků a prostředí Úroveň základních programovacích

Více

Technické prostředky počítačové techniky

Technické prostředky počítačové techniky Počítač - stroj, který podle předem připravených instrukcí zpracovává data Základní části: centrální procesorová jednotka (schopná řídit se posloupností instrukcí a ovládat další části počítače) zařízení

Více

Základní deska (1) Parametry procesoru (2) Parametry procesoru (1) Označována také jako mainboard, motherboard

Základní deska (1) Parametry procesoru (2) Parametry procesoru (1) Označována také jako mainboard, motherboard Základní deska (1) Označována také jako mainboard, motherboard Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje: procesor (mikroprocesor) patici pro numerický koprocesor (resp. osazený

Více

Představení a vývoj architektur vektorových procesorů

Představení a vývoj architektur vektorových procesorů Představení a vývoj architektur vektorových procesorů Drong Lukáš Dro098 1 Obsah Úvod 3 Historie, současnost 3 Architektura 4 - pipelining 4 - Operace scatter a gather 4 - vektorové registry 4 - Řetězení

Více

Architektury počítačů a procesorů

Architektury počítačů a procesorů Kapitola 3 Architektury počítačů a procesorů 3.1 Von Neumannova (a harvardská) architektura Von Neumann 1. počítač se skládá z funkčních jednotek - paměť, řadič, aritmetická jednotka, vstupní a výstupní

Více

Procesory z řady 8051

Procesory z řady 8051 Procesory z řady 8051 A/D a D/A převodníky, komparátory Nízký příkon napájení 3,3V Malá pouzdra pro plošnou montáž Programová Flash OTP-EPROM Redukované nebo rozšířené I/O vývody Jádro 80C51 Kapacita programu

Více

Profilová část maturitní zkoušky 2014/2015

Profilová část maturitní zkoušky 2014/2015 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2014/2015 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: technika

Více

Přednáška - A3B38MMP Procesory s jádrem ARM. A3B38MMP 2015, J. Fischer, kat. měření, ČVUT-FEL Praha 1

Přednáška - A3B38MMP Procesory s jádrem ARM. A3B38MMP 2015, J. Fischer, kat. měření, ČVUT-FEL Praha 1 Přednáška - A3B38MMP Procesory s jádrem ARM. A3B38MMP 2015, J. Fischer, kat. měření, ČVUT-FEL Praha 1 ARM - historie ARM - RISC procesory (původ britská firma Acorn, procesory - stolní počítače později

Více

V PRAZE Fakulta elektrotechnická Katedra teorie obvodů. Úvod do mikrokontrolérů ATMEL AVR Konkrétn. ATmega. Martin Pokorný 31SCS 2004

V PRAZE Fakulta elektrotechnická Katedra teorie obvodů. Úvod do mikrokontrolérů ATMEL AVR Konkrétn. ATmega. Martin Pokorný 31SCS 2004 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Katedra teorie obvodů Úvod do mikrokontrolérů ATMEL AVR Konkrétn tně klonů řady ATmega Martin Pokorný 31SCS 2004 ÚVOD Rodina mikrokontrolérů

Více

Architektura počítačů

Architektura počítačů Architektura počítačů Studijní materiál pro předmět Architektury počítačů Ing. Petr Olivka katedra informatiky FEI VŠB-TU Ostrava email: petr.olivka@vsb.cz Ostrava, 2010 1 1 Architektura počítačů Pojem

Více

Procesor. Základní prvky procesoru Instrukční sada Metody zvýšení výkonu procesoru

Procesor. Základní prvky procesoru Instrukční sada Metody zvýšení výkonu procesoru Počítačové systémy Procesor Miroslav Flídr Počítačové systémy LS 2006-1/17- Západočeská univerzita v Plzni Víceúrovňová organizace počítače Digital logic level Microarchitecture level Processor Instruction

Více

Sběrnicová architektura POT POT. Jednotlivé subsystémy počítače jsou propojeny sběrnicí, po které se přenáší data oběma směry.

Sběrnicová architektura POT POT. Jednotlivé subsystémy počítače jsou propojeny sběrnicí, po které se přenáší data oběma směry. Systémov mová sběrnice 1 Sběrnicová architektura Jednotlivé subsystémy počítače jsou propojeny sběrnicí, po které se přenáší data oběma směry. Single master jeden procesor na sběrnici, Multi master více

Více

Struktura a architektura počítačů

Struktura a architektura počítačů Struktura a architektura počítačů Alfanumerické kódy Řadič procesoru CISC, RISC Pipelining České vysoké učení technické Fakulta elektrotechnická Ver 1.20 J. Zděnek 2014 Alfanumerické kódy Kódování zobrazitelných

Více

Základní uspořádání pamětí MCU

Základní uspořádání pamětí MCU Základní uspořádání pamětí MCU Harwardská architektura. Oddělený adresní prostor kódové a datové. Používané u malých MCU a signálových procesorů. Von Neumannova architektura (Princetonská). Kódová i jsou

Více

Procesor Intel Pentium (1) Procesor Intel Pentium (3) Procesor Intel Pentium Pro (1) Procesor Intel Pentium (2)

Procesor Intel Pentium (1) Procesor Intel Pentium (3) Procesor Intel Pentium Pro (1) Procesor Intel Pentium (2) Procesor Intel Pentium (1) 32-bitová vnitřní architektura s 64-bitovou datovou sběrnicí Superskalární procesor: obsahuje více než jednu (dvě) frontu pro zřetězené zpracování instrukcí (značeny u, v) poskytuje

Více

2.8 Procesory. Střední průmyslová škola strojnická Vsetín. Ing. Martin Baričák. Název šablony Název DUMu. Předmět Druh učebního materiálu

2.8 Procesory. Střední průmyslová škola strojnická Vsetín. Ing. Martin Baričák. Název šablony Název DUMu. Předmět Druh učebního materiálu Název školy Číslo projektu Autor Název šablony Název DUMu Tematická oblast Předmět Druh učebního materiálu Anotace Vybavení, pomůcky Ověřeno ve výuce dne, třída Střední průmyslová škola strojnická Vsetín

Více

Struktura a architektura počítačů (BI-SAP) 9

Struktura a architektura počítačů (BI-SAP) 9 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 9 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii

Více

Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

Akademický rok: 2004/05 Datum: Příjmení: Křestní jméno: Osobní číslo: Obor:

Akademický rok: 2004/05 Datum: Příjmení: Křestní jméno: Osobní číslo: Obor: Západočeská univerzita v Plzni Písemná zkouška z předmětu: Zkoušející: Katedra informatiky a výpočetní techniky Počítačová technika KIV/POT Dr. Ing. Karel Dudáček Akademický rok: 2004/05 Datum: Příjmení:

Více

Intel 80486 (2) Intel 80486 (1) Intel 80486 (3) Intel 80486 (4) Intel 80486 (6) Intel 80486 (5) Nezřetězené zpracování instrukcí:

Intel 80486 (2) Intel 80486 (1) Intel 80486 (3) Intel 80486 (4) Intel 80486 (6) Intel 80486 (5) Nezřetězené zpracování instrukcí: Intel 80486 (1) Vyroben v roce 1989 Prodáván pod oficiálním názvem 80486DX Plně 32bitový procesor Na svém čipu má integrován: - zmodernizovaný procesor 80386 - numerický koprocesor 80387 - L1 (interní)

Více

Pohled do nitra mikroprocesoru

Pohled do nitra mikroprocesoru Pohled do nitra mikroprocesoru Obsah 1. Pohled do nitra mikroprocesoru 2. Architektury mikroprocesorů 3. Organizace cvičného mikroprocesoru 4. Registry v mikroprocesoru 5. Aritmeticko-logická jednotka

Více

CHARAKTERISTIKA MODERNÍCH PENTIÍ. Flynnova klasifikace paralelních systémů

CHARAKTERISTIKA MODERNÍCH PENTIÍ. Flynnova klasifikace paralelních systémů Úvod: CHARAKTERISTIKA MODERNÍCH PENTIÍ Flynnova klasifikace paralelních systémů Paralelní systémy lze třídit z hlediska počtu toků instrukcí a počtu toků dat: SI systém s jedním tokem instrukcí (Single

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Petr

Více

Profilová část maturitní zkoušky 2015/2016

Profilová část maturitní zkoušky 2015/2016 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: technika

Více

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14 ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 14 0:40 1.3. Vliv hardware počítače na programování Vliv

Více

Bloková struktura mikrokontrolérů Mikroprocesorová technika a embedded systémy

Bloková struktura mikrokontrolérů Mikroprocesorová technika a embedded systémy Ústav radioelektroniky Vysoké učení technické v Brně Bloková struktura mikrokontrolérů Mikroprocesorová technika a embedded systémy Přednáška 1 doc. Ing. Tomáš Frýza, Ph.D. Obsah přednášky Popis a použití

Více

CHARAKTERISTIKA PROCESORU PENTIUM První verze:

CHARAKTERISTIKA PROCESORU PENTIUM První verze: CHARAKTERISTIKA PROCESORU PENTIUM První verze: Verze Pentia 200 Mhz uvádělo se 330 MIPS (srovnávalo se s 54 MIPS procesoru 486DX2-66). Struktura Pentia Rozhraní 64 bitů datová sběrnice, 32 bitů adresová

Více

CISC A RISC PROCESORY Jak pracují procesory CISC:

CISC A RISC PROCESORY Jak pracují procesory CISC: Cíl přednášky Seznámit se s charakteristickými rysy architektur CISC a RISC. Ukázat, jak tyto rysy postupně pronikaly do architektur procesorů Intel. Ukázat, jak se vyvíjely principy zřetězeného zpracování.

Více

ČEMU ROZUMÍ MIKROPROCESOR?

ČEMU ROZUMÍ MIKROPROCESOR? ČEMU ROZUMÍ MIKROPROCESOR? Čemu rozumí mikroprocesor? Číslo DUM v digitálním archivu školy VY_32_INOVACE_10_01_01 Materiál poskytuje pohled na mikroprocesor, jako na číslicový obvod. Seznamuje se základními

Více

Mikrokontroléry I. Mikrokontroléry od Atmel (Attiny, Atmega, AVR)

Mikrokontroléry I. Mikrokontroléry od Atmel (Attiny, Atmega, AVR) Mikrokontroléry I. Mikrokontroléry od Atmel (Attiny, Atmega, AVR) Mikrokontroléry ATMEL Vývojové prostředí AVR Studio Vývojové prostředí Win. AVR Vývojové prostředí BASCOM AVR Universalne vývojové prostředí

Více

Struktura a architektura počítačů (BI-SAP) 8

Struktura a architektura počítačů (BI-SAP) 8 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 8 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii

Více

Jednočipové mikropočítače (mikrokontroléry)

Jednočipové mikropočítače (mikrokontroléry) Počítačové systémy Jednočipové mikropočítače (mikrokontroléry) Miroslav Flídr Počítačové systémy LS 2006-1/17- Západočeská univerzita v Plzni Co je mikrokontrolér integrovaný obvod, který je často součástí

Více

Další aspekty architektur CISC a RISC Aktuálnost obsahu registru

Další aspekty architektur CISC a RISC Aktuálnost obsahu registru Cíl přednášky: Vysvětlit principy práce s registry v architekturách RISC a CISC, upozornit na rozdíly. Vysvětlit možnosti využívání sad registrů. Zabývat se principy využívanými v procesorech Intel. Zabývat

Více

Maturitní témata - PRT 4M

Maturitní témata - PRT 4M Maturitní témata - PRT 4M ústní zkouška profilové části Maturita - školní rok 2015/2016 1. Architektura mikrořadičů a PC 2. Popis mikrořadičů řady 51 3. Zobrazovací jednotky 4. Řadiče Atmel 5. Hradlová

Více

Řízení IO přenosů DMA řadičem

Řízení IO přenosů DMA řadičem Řízení IO přenosů DMA řadičem Doplňující text pro POT K. D. 2001 DMA řadič Při přímém řízení IO operací procesorem i při použití přerušovacího systému je rychlost přenosu dat mezi IO řadičem a pamětí limitována

Více

Kubatova Y36SAP 9. Strojový kód ISA architektura souboru instrukcí střadačově, zásobníkově orientovaná, GPR Kubátová Y36SAP-ISA 1

Kubatova Y36SAP 9. Strojový kód ISA architektura souboru instrukcí střadačově, zásobníkově orientovaná, GPR Kubátová Y36SAP-ISA 1 Y36SAP 9 Strojový kód ISA architektura souboru instrukcí střadačově, zásobníkově orientovaná, GPR 2007-Kubátová Y36SAP-ISA 1 Architektura souboru instrukcí, ISA - Instruction Set Architecture Vysoká Architektura

Více

Architektury VLIW M. Skrbek a I. Šimeček

Architektury VLIW M. Skrbek a I. Šimeček Architektury VLIW M. Skrbek a I. Šimeček xsimecek@fit.cvut.cz Katedra počítačových systémů FIT České vysoké učení technické v Praze Ivan Šimeček, 2011 MI-PAP, LS2010/11, Predn.3 Příprava studijního programu

Více

Počítače Didaktik. Jan Lorenz. Semestrální projekt z X31SCS

Počítače Didaktik. Jan Lorenz. Semestrální projekt z X31SCS Počítače Didaktik Jan Lorenz Semestrální projekt z X31SCS Obsah Obsah...1 Úvod...2 Konstrukce počítače...3 Architektura Z80...4 Závěr...6 1 Úvod Jako celá řada kluků mé generace jsem si i já očekávání

Více

Úvod do architektur personálních počítačů

Úvod do architektur personálních počítačů Úvod do architektur personálních počítačů 1 Cíl přednášky Popsat principy proudového zpracování informace. Popsat principy zřetězeného zpracování instrukcí. Zabývat se způsoby uplatnění tohoto principu

Více

FREESCALE KOMUNIKAČNÍ PROCESORY

FREESCALE KOMUNIKAČNÍ PROCESORY FREESCALE KOMUNIKAČNÍ PROCESORY 1 Trocha historie: Freescale Semiconductor, Inc. byla založena v roce 2004 v Austinu v Texasu jako samostatná společnost, jelikož po více jak 50 byla součástí Motoroly.

Více

Struktura a architektura počítačů (BI-SAP) 11

Struktura a architektura počítačů (BI-SAP) 11 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 11 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii

Více

2 Hardware a operační systémy

2 Hardware a operační systémy Operační systémy 2 Hardware a operační systémy Obsah: 2.1 Procesor CPU, 2.1.1 Zpracování instrukcí, 2.1.2 Zvyšování výkonu CPU, 2.1.3 Režimy CPU, 2.2 Paměť, 2.2.1 Cache, 2.3 Vstupně výstupní zařízení,

Více

Paměťový podsystém počítače

Paměťový podsystém počítače Paměťový podsystém počítače typy pamětových systémů počítače virtuální paměť stránkování segmentace rychlá vyrovnávací paměť 30.1.2013 O. Novák: CIE6 1 Organizace paměťového systému počítače Paměťová hierarchie...

Více

Architektura procesorů PC shrnutí pojmů

Architektura procesorů PC shrnutí pojmů Architektura procesorů PC shrnutí pojmů 1 Co je to superskalární architektura? Minimálně dvě fronty instrukcí. Provádění instrukcí je možné iniciovat současně, instrukce se pak provádějí paralelně. Realizovatelné

Více

Techniky zvýšení výkonnosti procesoru, RISC a CISC procesory

Techniky zvýšení výkonnosti procesoru, RISC a CISC procesory Techniky zvýšení výkonnosti procesoru, RISC a CISC procesory Kategorizace architektur počítačů Co popisuje architektura počítačů: (CPU = ALU + řadič + paměť + Vstupy/Výstupy) Subskalární architektura (von

Více

Mikrokontrolery. Úvod do obvodů Atmega 328 a PIC16F88

Mikrokontrolery. Úvod do obvodů Atmega 328 a PIC16F88 Mikrokontrolery Úvod do obvodů Atmega 328 a PIC16F88 Texty sestavili Petr Nejedlý a Lukáš Čížek, 4EA, 2013 Vlastnosti a funkce: Atmega 328 Flash 32Kbyte Max. Frequence 20Mhz SRAM 2Kbyte EEPROM 1024 byte

Více

Základní deska (1) Označována také jako mainboard, motherboard. Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje:

Základní deska (1) Označována také jako mainboard, motherboard. Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje: Základní deska (1) Označována také jako mainboard, motherboard Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje: procesor (mikroprocesor) patici pro numerický koprocesor (resp. osazený

Více

Struktura a architektura počítačů (BI-SAP) 10

Struktura a architektura počítačů (BI-SAP) 10 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 10 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii

Více

Petr Krajča. Katedra informatiky Univerzita Palackého v Olomouci. Petr Krajča (UP) KMI/YOS: Přednáška I. 10. 10. 2014 1 / 21

Petr Krajča. Katedra informatiky Univerzita Palackého v Olomouci. Petr Krajča (UP) KMI/YOS: Přednáška I. 10. 10. 2014 1 / 21 Operační systémy Úvod do Operačních Systémů Petr Krajča Katedra informatiky Univerzita Palackého v Olomouci Petr Krajča (UP) KMI/YOS: Přednáška I. 10. 10. 2014 1 / 21 Organizační informace email: petr.krajca@upol.cz

Více

Intel 80286. Procesor a jeho konstrukce. Vývojové typy, činnost procesoru

Intel 80286. Procesor a jeho konstrukce. Vývojové typy, činnost procesoru Procesor a jeho konstrukce. Vývojové typy, činnost procesoru První obvod nazvaný mikroprocesor uvedla na trh firma Intel v roce 1970. Šlo o 4bitový procesor Intel 4004. V roce 1972 byl MCS8 prvním 8bitovým

Více

Provádění instrukcí. procesorem. Základní model

Provádění instrukcí. procesorem. Základní model procesorem 1 Základní model Kód programu (instrukce) a data jsou uloženy ve vnější paměti. Procesor musí nejprve z paměti přečíst instrukci. Při provedení instrukce podle potřeby čte nebo zapisuje data

Více

Náplň přednášky 1. Vestavěný systém Výrobci technických řešení Mikrokontroléry ARM NXP Kinetis KL25Z Rapid prototyping Laboratorní vývojová platforma

Náplň přednášky 1. Vestavěný systém Výrobci technických řešení Mikrokontroléry ARM NXP Kinetis KL25Z Rapid prototyping Laboratorní vývojová platforma 4 Přednáška 1 Náplň přednášky 1 Vestavěný systém Výrobci technických řešení Mikrokontroléry ARM NXP Kinetis KL25Z Rapid prototyping Laboratorní vývojová platforma 5 www.vsb.cz Vestavěný řídicí systém Anglicky:

Více

8. Laboratoř: Aritmetika a řídicí struktury programu

8. Laboratoř: Aritmetika a řídicí struktury programu 8. Laboratoř: Aritmetika a řídicí struktury programu Programy v JSA aritmetika, posuvy, využití příznaků Navrhněte a simulujte v AVR studiu prográmky pro 24 bitovou (32 bitovou) aritmetiku: sčítání, odčítání,

Více

MIKROPROCESOR. (c) Ing. Josef Varačka. Title: XI 28 11:40 (1 of 8)

MIKROPROCESOR. (c) Ing. Josef Varačka. Title: XI 28 11:40 (1 of 8) MIKROPROCESOR 1/ Účel: Vzhledem k pokračující digitalizaci (používání zpracování dvojkového signálu) je žádoucí provozovat univerzální zařízení, které podle programu instrukcí informace zpracuje. Mikroprocesor

Více

Vestavné systémy BI-VES Přednáška 10

Vestavné systémy BI-VES Přednáška 10 Vestavné systémy BI-VES Přednáška 10 Ing. Miroslav Skrbek, Ph.D. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze Miroslav Skrbek 2010,2011 ZS2010/11 Evropský

Více

PROCESOR. Rozdělení procesorů

PROCESOR. Rozdělení procesorů PROCESOR Procesor je ústřední výkonnou jednotkou počítače, která čte z operační paměti (resp. CACHE paměti) instrukce a na jejich základě vykonává program. Primárním úkolem procesoru je řídit činnost ostatních

Více

Strojový kód. Instrukce počítače

Strojový kód. Instrukce počítače Strojový kód Strojový kód (Machine code) je program vyjádřený v počítači jako posloupnost instrukcí procesoru (posloupnost bajtů, resp. bitů). Z hlediska uživatele je strojový kód nesrozumitelný, z hlediska

Více

Paměti. Paměť je zařízení, které slouží k ukládání programů a dat, s nimiž počítač pracuje

Paměti. Paměť je zařízení, které slouží k ukládání programů a dat, s nimiž počítač pracuje Paměti Paměť je zařízení, které slouží k ukládání programů a dat, s nimiž počítač pracuje Paměti počítače lze rozdělit do tří základních skupin: registry paměťová místa na čipu procesoru jsou používány

Více

Metody připojování periferií BI-MPP Přednáška 2

Metody připojování periferií BI-MPP Přednáška 2 Metody připojování periferií BI-MPP Přednáška 2 Ing. Miroslav Skrbek, Ph.D. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze Miroslav Skrbek 2010,2011

Více

Principy komunikace s adaptéry periferních zařízení (PZ)

Principy komunikace s adaptéry periferních zařízení (PZ) Principy komunikace s adaptéry periferních zařízení (PZ) Několik možností kategorizace principů komunikace s externími adaptéry, např.: 1. Podle způsobu adresace registrů, které jsou součástí adaptérů.

Více

Pojem architektura je převzat z jiného oboru lidské činnosti, než počítače.

Pojem architektura je převzat z jiného oboru lidské činnosti, než počítače. 1 Architektura počítačů Pojem architektura je převzat z jiného oboru lidské činnosti, než počítače. Neurčuje jednoznačné definice, schémata či principy. Hovoří o tom, že počítač se skládá z měnších částí

Více

Vícejádrový procesor. Dvě nebo více nezávislých jader Pro plné využití. podporovat multihreading

Vícejádrový procesor. Dvě nebo více nezávislých jader Pro plné využití. podporovat multihreading Vývoj Jan Smuda, Petr Zajíc Procesor ALU (aritmeticko logická jednotka) Registry Řadič Jednotky pro práci s plovoucí čárkou Cache Vývoj procesorů Predikce skoku Plánování instrukcí Naráží na fyzická omezení

Více

IMTEE Přednáška č. 8. interrupt vector table CPU při vzniku přerušení skáče na pevně dané místo v paměti (obvykle začátek CODE seg.

IMTEE Přednáška č. 8. interrupt vector table CPU při vzniku přerušení skáče na pevně dané místo v paměti (obvykle začátek CODE seg. Přerušení Důvod obsluha asynchronních událostí (CPU mnohem rychlejší než pomalé periferie má klávesnice nějaké znaky? ) Zdroje přerušení interrupt source o HW periferie (UART, Disk, časovače apod.) o SW

Více

VINCULUM VNC1L-A. Semestrální práce z 31SCS Josef Kubiš

VINCULUM VNC1L-A. Semestrální práce z 31SCS Josef Kubiš VINCULUM VNC1L-A Semestrální práce z 31SCS Josef Kubiš Osnova Úvod Základní specifikace obvodu Blokové schéma Firmware Aplikace Příklady příkazů firmwaru Moduly s VNC1L-A Co to je? Vinculum je nová rodina

Více

Vývoj výpočetní techniky. Rozdělení počítačů. Blokové schéma počítače

Vývoj výpočetní techniky. Rozdělení počítačů. Blokové schéma počítače Vývoj výpočetní techniky Jednotlivé etapy ve vývoji počítačů se nazývaly generace jsou charakterizovány dobou vzniku, součástkami. 0. generace MARK 1 na bázi relé (1944). 1. generace postavené z elektronek

Více

7. Monolitické počítače, vlastnosti a použití.

7. Monolitické počítače, vlastnosti a použití. 7. Monolitické počítače, vlastnosti a použití. Obsah 7. Monolitické počítače, vlastnosti a použití.... 1 7.1 Jednočipové mikropočítače řady 8048... 2 7.2 Jednočipový mikropočítač 8051... 2 7.3 Architektura

Více

Miroslav Tichý, tic136

Miroslav Tichý, tic136 Miroslav Tichý, tic136 32bitová mikroprocesorová architektura typu RISC(Reduced Instruction Set Computer) mobilním odvětví - smartphony, PDA, přenosné herní konzole, kalkulačky apod. Důvod: nízké vyzařované

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: Číslo šablony: 3 CZ.1.07/1.5.00/34.0410 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek:

Více

Architektury CISC a RISC, uplatnění v personálních počítačích - pokračování

Architektury CISC a RISC, uplatnění v personálních počítačích - pokračování Architektury CISC a RISC, uplatnění v personálních počítačích - pokračování 1 Cíl přednášky Vysvětlit, jak pracují architektury CISC a RISC, upozornit na rozdíly. Upozornit, jak se typické rysy obou typů

Více

V 70. letech výzkumy četnosti výskytu instrukcí ukázaly, že programátoři a

V 70. letech výzkumy četnosti výskytu instrukcí ukázaly, že programátoři a 1 Počítače CISC a RISC V dnešní době se ustálilo dělení počítačů do dvou základních kategorií podle typu použitého procesoru: CISC - počítač se složitým souborem instrukcí (Complex Instruction Set Computer)

Více

Zkouška z předmětu Počítačové systémy

Zkouška z předmětu Počítačové systémy Zkouška z předmětu Počítačové systémy Jméno a příjmení: Datum zkoušky: Celkový počet bodů: Výsledná známka: Poznámka: Pokud není uvedeno jinak, uvažujte v následujících příkladech procesor Z80. Odpovědi

Více

Vstupně - výstupní moduly

Vstupně - výstupní moduly Vstupně - výstupní moduly Přídavná zařízení sloužící ke vstupu a výstupu dat bo k uchovávání a archivaci dat Nejsou připojována ke sběrnici přímo, ale prostřednictvím vstupně-výstupních modulů ( ů ). Hlavní

Více

Jednočipové mikropočítače

Jednočipové mikropočítače Jednočipové mikropočítače Atmel AVR 90S8515 činnost procesoru si budeme demonstrovat na jednočipovém mikropočítači AVR 90S8515 firmy Atmel jednočipové mikropočítače mikropočítače, obsahující na jednom

Více

Charakteristika dalších verzí procesorů v PC

Charakteristika dalších verzí procesorů v PC Charakteristika dalších verzí procesorů v PC 1 Cíl přednášky Poukázat na principy tvorby architektur nových verzí personálních počítačů. Prezentovat aktuální pojmy. 2 Úvod Zvyšování výkonu cestou paralelizace

Více