Principy počítačů I ZVYŠOVÁNÍ VÝKONU PROCESORŮ. Sériové zpracování. Pipeline. Úspora při použití pipeline. Problém 1: přístup k datům.

Rozměr: px
Začít zobrazení ze stránky:

Download "Principy počítačů I ZVYŠOVÁNÍ VÝKONU PROCESORŮ. Sériové zpracování. Pipeline. Úspora při použití pipeline. Problém 1: přístup k datům."

Transkript

1 Principy počítačů I Sériové zpracování ZVYŠOVÁNÍ VÝKONU PROCESORŮ Copak je po jméně? Co růží zvou i zváno jinak vonělo by stejně. William Shakespeare Pipeline Úspora při použití pipeline Pipeline s k kroky, zpracování n instrukcí. Zrychlení: Pro n>>k: nk S = k + ( n 1) S k Zásadní problém Pipeline zavádí paralelismus Problém 1: přístup k datům čtení dat z externí paměti způsobí zpoždění ve fázi fetch Bez ohledu na to, co se děje uvnitř, musí se procesor navenek tvářit striktně sekvenčně 1

2 Problém 2: datová závislost add $r3, $r2, $r1 r3 r2 + r1 sub $r5, $r4, $r3 r5 r4 r load i1 i2 decode i1 i2 load op1 i1(r2) i2(r4) load op2 i1(r1) i2(r3) execute i1 i2 store i1(r3) i2(r5) Problém 3: závislost skoků Loop: add $r3, $r2, $r1 sub $r6, $r5, $r4 beq $r3, $r6, Loop Problém 4: skoky skok si vynutí vyprázdnění pipeline Řešení: multiple streams look ahead look behind buffer delayed branch branch prediction paměť skoku Motorola MC88110: cyklická paměť instrukcí při skoku se uloží 2 instrukce z větve asociativní vyhledávání dle adresy zpoždění skoku odložení skutečného skoku, dokud není zjištěna přesná adresa. Mezitím jsou vykonávány neškodné instrukce nutná spolupráce kompilátoru! RISC 2, SPARC 1 instrukce Mips X, Accel, CDC GaAs 2 instrukce predikce skoku v instrukci uložena nápověda. Podle toho se instrukce načítají. Je-li nápověda správně, nedojde ke ztrátě. Je-li nápověda špatně, vyprázdní se pipeline, načte se správný obsah. statická predikce rozhodnutí bez znalosti skutečné historie průběhu může dělat jak překladač, tak hardware: cykly obvykle skáčí na začátek, jen 1x neskočí 2

3 dynamická predikce predikce skoku Superpipelining Vývoj pipeline rozdělení kroků pipeline na menší jednodušší rychlejší (v singulárním případě: procesor s pipeline délky 5 je 5x rychlejší než procesor bez pipeline (pipeline délky 1)): MIPS R4000: 8 kroků: 1. Fetch (1 st half) 2. Fetch (2 nd half) 3. Register Fetch 4. Data Cache Access (1 st half) 5. Data Cache Access (2 nd half) 6. Tag Check 7. Write Back Vývoj pipeline Superscalar pipelining více paralelních částí pipeline: RISC System6000: větvení (fork) po dekódování: různé cesty v pipeline pro integer a floating-point dnes někdy i více celých pipeline Vývoj pipeline Dynamic pipeline přeplánování problematických částí: fetch and decode unit functional units (5-10) commit unit Další zrychlování Simultánní multithreading do pipeline se zavádějí instrukce různých vláken, které na sobě jistě nebudou závislé Predikce hodnoty Pozorování ukazuje, že instrukce Load zavede ve více než ½ případů stejnou hodnotu budeme to předpokládat Statistika užívání instrukcí skupina zastoupení přesuny dat 45,28% řízení 28,73% aritmetika 10,75% porovnávání 5,92% logické operace 3,91% posuny, rotace 2,93% bitové operace 2,05% IO a ostatní 0,43% 3

4 Další pozorování 56% konstant je v rozsahu ±15 (5 bitů) 98% konstant je v rozsahu ±511 (10 bitů) 95% podprogramů potřebuje pro předání parametrů méně než 24 bytů Výzkum DEC V typickém programu bylo použito 58% instrukční sady pro 98% instrukcí stačilo pouhých 15% firmware Změna priorit Důraz na to, co je nejvíce potřeba a co trvá nejdéle Implementace méně používaných instrukcí může zhoršit celkový návrh Spolehnout se na vyšší jazyky a optimalizující kompilátory Paměť je dnes rychlejší a levnější MIPS 80. léta, John Hennessy Stanford University Stanford silný v kompilátorech vývoj procesoru, jehož architektura by vyjadřovala snížení kompilátoru na úroveň HW (místo obvyklého povyšování HW na úroveň SW) CISC vs RISC CISC Coplex Set Computer (zpětné označení) RISC Reduced Set Computer Strategie návrhu RISCu zjištění nejpoužívanějších instrukcí (simulace a analýza programů) optimalizace datových cest pro tyto instrukce přidání dalších instrukcí, pokud jsou rozumně využitelné a nezpomalí procesor přesunutí komplexních činností do kompilátoru 4

5 CISC Proč se tedy vlastně vyvinuly? (První stroje měly jednoduchou architekturu) Cena HW klesla, cena SW stoupla Přesun složitosti do HW usnadní programování Méně instrukcí pro daný úkol znamená méně přístupů do (pomalé a drahé) paměti Implementace pomocí mikrokódu se dá snadno změnit Pokus o definici RISC N.J.Davis: omezená a jednoduchá instrukční sada velké množství obecných registrů důraz na optimalizaci pipeline Colwell: provádění instrukcí v 1 taktu architektura loadstore hardwired design relativně málo instrukcí a způsobů adresování pevný formát instrukcí větší význam kompilátoru Charakteristické rysy pro RISC jedna instrukce na cyklus operace registr registr architektura load store malý počet a jednoduché adresovací režimy pevný formát instrukce malý počet a jednoduché instrukce velké množství registrů použití linky proudového zpracování (pipeline) zvláštní zpracování skoků hardwired návrh obvodového řešení silná závislost na kompilátoru První procesory typu RISC Výzkumné systémy: MIPS (Stanford) RISC 1, RISC 2 (Berkeley) IBM-801 RISC typičtí představitelé DesktopServer: Alpha (Digital) PA-RISC (Hewlett-Packard) PowerPC(IBM + Motorola) MIPS (Silicon Graphics) SPARC (Sun Microsystems) 5

6 RISC typičtí představitelé Embedded systems: ARM (Advanced RISC Machines) Thumb (Advanced RISC Machines) SuperH(Hitachi) MR (Mitsubishi) MIPS16 (Silicon Graphics) Web Extension I: Survey of RISC Architectures Alpha MIPS I PA-RISC 1.1 PowerPC SPARC V8 Date announced size (bits) Address space 48 bits, 64 bits, flat bits, flat (size, model) segmented bits, flat bits, flat Data alignment Aligned Aligned Aligned Unaligned Aligned Data addressing 1 modes Protection Page Page Page Page Page Minimum page 8 KB size 4 KB 4 KB 4 KB 8 KB IO Memory mapped Memory mapped Memory mapped Memory mapped Memory mapped Integer registers 31 GPR 31 GPR 31 GPR GPR 31 GPR (number, model, x 64 bits x bits x bits x bits x bits size) Separate floating-point registers Floating-point format 31 x or 31 x 64 bits IEEE 754 single, double 16 x or 16 x 64 bits IEEE 754 single, double 56 x or 28 x 64 bits IEEE 754 single, double x or x 64 bits IEEE 754 single, double x or x 64 bits IEEE 754 single, double Návrh procesoru pevnáproměnná délka instrukcí? pevnýproměnný počet a typ operandů? počet adresovacích režimů? mikrokódhardwired řadič? stupeň paralelismu? důraz na vyšší programovací jazyky? schopnosti kompilátoru? zvolit RISC nebo CISC? Neexistuje jednoznačná odpověď! Kvantitativní přístup: porovnat velikosti programů a rychlost provádění Kvalitativní přístup: vyhodnotit podporu vyšších programovacích jazyků a schopnosti technologií Problémy: žádné dva procesory RISC a CISC nejsou přímo porovnatelné není konečná sada testovacích programů obtížné odlišit vliv HW a vliv kompilátoru (většina dnešních návrhů bere z obou kategorií) Konvergence CISC a RISC od 80-let se technologie i znalosti změnily mnohé techniky jsou používány procesory z obou táborů: CISC schopné vykonávat v 1 taktu více instrukcí, RISC se zlepšením technologií zbývá místo, vyplnění komplikovanějšími instrukcemi vznikají post-risc návrhy, kombinující oba přístupy s metodami, které nejsou použity v žádné z těchto kategorií (přesto si RISC zachovává charakteristické vlastnosti) Ideální RISC Dekódování micro+ nano micro hw Hloubka linky 4 Kiviatův graf Adresovací mody 7 var fix Délka instrukce ¼ spec. jednotka 64 ½ zpožděný skok 64 Větvení registrů CPI instrukcí The RISC Concept A Survey of Implementations (1991) 6

7 Procesor SPARC (1) původní návrh z procesorů RISC-I a RISC-II z university v Berkeley, trojice čipů, propojení s koprocesorem pro pohyblivou řádovou čárku, rozdělení registrů do oken tagované instrukce Procesor SPARC (2) Dekódování micro+ nano micro hw Hloubka linky 4 Adresovací mody 7 var fix Délka instrukce ¼ spec. jednotka 64 ½ zpožděný skok 64 Větvení registrů CPI instrukcí Procesor IBM RS6000 (1) harwardská architektura šířka vyrovnávací paměti instrukcí 128 bitů datová sběrnice 64 bitů vícenásobné jednotky dekódování některých operací mikrokódem!! speciální jednotka predikce větvení programu používá metodu přejmenování registrů Procesor IBM RS6000 (2) Dekódování micro+ nano micro hw Hloubka linky 4 Adresovací mody 7 var fix Délka instrukce ¼ spec. jednotka 64 ½ zpožděný skok 64 Větvení registrů CPI instrukcí Procesor Intel (1) šířka slova bitů šířka sběrnice s vyrovnávací pamětí 128 bitů hardwarové přejmenovávání registrů vícenásobné funkční jednotky speciální grafická jednotka Procesor Intel (2) Dekódování micro+ nano micro hw Hloubka linky 4 Adresovací mody 7 var fix Délka instrukce ¼ spec. jednotka 64 ½ zpožděný skok 64 Větvení registrů CPI instrukcí 7

8 post-risc Přechod RISC Post-RISC Rozdíl od superskalárních RISCů: přidání ne-riscových instrukcí (pro zvýšení výkonu) architektura FISC (Fast Set Computer) agresivní přerovnávání instrukcí v průběhu zpracování out-of-order execution, speculative execution (odklon od závislosti na kompilátoru) nové uspořádání, nové jednotky větší míra paralelismu Beyond RISC The Post-RISC Architecture (1996) Nové komponenty: predecode unit renaming registers reorder buffer retire unit Predecode unit, I-cache instrukce načítány po blocích částečné dekódování zjistí vlastnosti instrukcí a uloží je do vyrovnávací paměti instrukcí dodatečné příznaky určují: identifikaci skoků typ potřebné exekuční jednotky zda bude instrukce potřebovat paměť generic post-risc záznam v I-cache ve vyrovnávací paměti uloženo: blok instrukcí historie skoků predekódované příznaky historie vykonávání bloku fetch flow načítání z I-cache musí být chytré záznam v I-cache ukazuje na další blok instrukcí ukáže-li se odkaz jako špatný, je změněn 8

9 decode branch Barvení instrukcí vlastní dekódování instrukce rozdělení na dva proudy do doby, než je znám skutečný cíl skoku barvení instrukcí Výsledky z Branch FetchFlow aktualizace flow history načtení správných instrukcí BranchDecode aktualizace branch history Dispatch and Reorder Buffer Completed Buffer zahození instrukcí, které se nemají (neměly) vykonat Dispatch and Reorder Buffer dekódované instrukce čekají na provedení k provedení dojde, jsou-li k dispozici vstupní hodnoty výstup exekuční jednotka přednost mají starší instrukce instrukce load Datové závislosti připřerovnání Eliminace WAW True data dependency RAW (Read after Write) výstup instrukce je použit jako vstup následující Output dependency WAW (Write after Write) dvě instrukce zapisují na stejné místo Anti-dependency WAR (Write after Read) zatímco jedna instrukce zpracovává data, další instrukce tato data změní (WAW a WAR lze vyřešit přeznačením) MOVE r3, r7 ADD r3, r4, r5 MOVE r1, r3 MOVE r3, r7 ADD r8, r4, r5 MOVE r1, r8 9

10 out-of-order execution execution units podobně jako u RISC jednotky, které nepočítají v 1 cyklu, použijí pipeline jednotky loadstore obvykle umožňují rozpracovat více přístupů najednou Completed Buffer, Retire ukládání vykonaných instrukcí, spolu s: příznakem vygenerované výjimky mapováním (přejmenováním) použitých registrů Retire unit odebírá instrukce z bufferu: v takovém pořadí, v jakém by byly sekvenčně zpracovány může uvolnit v 1 taktu více instrukcí Problém výjimky při výskytu výjimky musí procesor zastavit činnost na tomto místě instrukce, které jsou po této instrukci, nesmí ovlivnit stav stroje nesmí existovat nezpracované instrukce ležící před touto instrukcí všechny výjimky způsobené předchozími instrukcemi jsou vyřízeny precizní přerušenívýjimka RISC vs post-risc Proudová linka (u post-risc) RISC: výkon je dán stupněm paralelismu post-risc: výkon je dán počtem najednou odkládaných instrukcí Fetch Decode Vyrovnávací paměť jednotky přidělování instrukcí Instrukce Execute Vyrovnávací paměť odkládací jednotky Retire 10

11 Příklady procesorů post-risc procesory s ojedinělými znaky post-risc DEC Alpha 21164, SUN UltraSPARC procesory s typickou organizací post-risc IBM PowerPC 604, MIPS R10000, HP PA-8000 smíšené organizace Intel Pentium P6 ( interesting blend of architectures ) DEC Alpha používá pouze minimum z návrhu post-risc vysoký základní hodinový kmitočet predikce skoku tabulka historie skoků obecně nepoužívá spekulativního provádění instrukcí (pouze některé mimo pořadí) nemá možnost precizního přerušení DEC Alpha SUN UltraSPARC Cache Fetch Decode Branch Integer Integer FP FP Slučovací logika Vyrovnávací paměť dat Paměť Cache 98 kb Bus Interface 40-bit adresa Vnější vyrovnávcí paměť 128-bit data více RISC než Post-RISC instrukce v balíku po 4 v I-cache 2 záznamy pro branch history mezi fetch a dispatch je fronta 12 instrukcí některé instrukce odkládány out-of-order 2xINT ALU, 5xFP ALU 9 Load, 8 Store buffer fast context switch, traps, motion estimation SUN UltraSPARC MIPS R10000 exceptionally Post-RISC zaměřený na grafiku a floating-point plně 4cestně superskalární architektura 64k dvoucestná cache on chip tři plánovací fronty (pro 5 pipeline) nemá flow prediction, branch prediction klasické shadow map ukládání mapy registrů před skokem branch resume cache ukládání instrukcí 11

12 MIPS R10000 HP PA-8000 (PA-7000 typický RISC, PA-8000 zcela jinak) IRB pro 56 instrukcí (28 aritm memory) velká SRAM cache off chip plně asociativní BTAC (Branch Target Address Cache) pro predikci toku instrukcí () inside CPU možnost vypnout dynamic branch prediction HP PA-8000 Procesor PowerPC 604 čtyřcestný superskalární návrh predikční mechanismus vyrovnávací paměť cílových adres (BTAC) tabulka historie větvení (BHT, dvoubitová) přejmenovávané registry, registry podmínkových kódů rezervační stanice pro exekuční jednotky speciální jednotka pro "branch-on-counter" PowerPC 604 Reservation Station (2 Entry) Multiple Cycle Integer + - * COMPLETION UNIT 16 Entry Reorder Buffer Time Base Clock JTAG Multiplier Reservation Station (2 Entry) Single Cycle Integer + - * -bit Address Bus GPR File Rename Buffers (8) Finish Load Queue Fetcher Queue (8 words) INSTRUCTION UNIT 64 Branch Processing BTAC CTR Rename Buffers Reservation Station (2 Entry) LoadStore EA Calculation DMMU Dispatch BHT FPR File Rename Buffers (8) Tags 16 kbyte Cache Reservation Station (2 Entry) Floating Point + - * IMMU Tags Bus Interface 16 kbyte Cache Procesor Intel Pentium P6 instrukční sada CISC interpretována mikrooperacemi na jádře post-risc implementován jako dva čipy na jedné podložce stejný hodinový kmitočet zvláštní sběrnice mezi procesorem a vyrovnávací pamětí třícestný superskalární návrh 64-bit Data Bus 12

13 Třícestný model procesoru P6 Bloková struktura procesoru P6 System Bus (External) L2 Cache Bus Interface Bus Interface Fetch Cache Decoder Simple Simple Complex Next IP Branch Target Buffer Memory Reorder Buffer L1 I-Cache L1 D-Cache Decoder Decoder Decoder Microcode Sequencer Register Alias Table FetchDecode Dispatch Execute Retire Retirement Reorder ( Pool) Reservation Station Retirement Register File (IA Registers) Data Cache Pool FP FP Integer Integer Memory Interface Internal Buses Proudová linka v P6 Vyrovnávací paměť cílů větvení Jednotka vyzvednutí instrukcí Dekódování instrukcí BTB0 BTB1 IFU0 IFU1 IFU2 ID0 ID1 RAT ROB RS Členění proudové linky u procesoru P6 Dvě paralelní linky proudového zpracování PF D1 D2 EX WB Přejmenování registrů a změna uspořádání X1 X2 WBF Reservační stanice a exekuční jednotky Port0 Port1 Port2 Port3 Port4 Pevná řádová čárka MRW Mex MWM M WBM Odkládací jednotka ROB RRF Pohyblivá řádová čárka MMX Dekódování makroinstrukcí maximálně tři makroinstrukcejeden cyklus maximálně šest mikrooperacíjeden cyklus makroinstrukce může být max. 7 bytů a dekóduje se : operace registrregistr 1 µop operace load 1 µop operace store 2 µop operace readmodifywrite 4 µop složitější µop mají více než 4 µop a potřebují více cyklů na dekódování Dataflow CPU vs Post-RISC 13

2010/2011 ZS. operačních systémů. Copak je po jméně? Co růži zvou, i zváno jinak vonělo by stejně. William Shakespeare

2010/2011 ZS. operačních systémů. Copak je po jméně? Co růži zvou, i zváno jinak vonělo by stejně. William Shakespeare Principy počítačů a operačních systémů ZVYŠOVÁNÍ VÝKONU Copak je po jméně? Co růži zvou, i zváno jinak vonělo by stejně. William Shakespeare Mikroarchitektura Zřetězené zpracování pipelining, pp deep ppp

Více

Techniky zvýšení výkonnosti procesoru, RISC a CISC procesory

Techniky zvýšení výkonnosti procesoru, RISC a CISC procesory Techniky zvýšení výkonnosti procesoru, RISC a CISC procesory Kategorizace architektur počítačů Co popisuje architektura počítačů: (CPU = ALU + řadič + paměť + Vstupy/Výstupy) Subskalární architektura (von

Více

Architektury CISC a RISC, uplatnění v personálních počítačích

Architektury CISC a RISC, uplatnění v personálních počítačích Architektury CISC a RISC, uplatnění v personálních počítačích 1 Cíl přednášky Vysvětlit, jak pracují architektury CISC a RISC, upozornit na rozdíly. Zdůraznit, jak se typické rysy obou typů architektur

Více

Procesor. Procesor FPU ALU. Řadič mikrokód

Procesor. Procesor FPU ALU. Řadič mikrokód Procesor Procesor Integrovaný obvod zajišťující funkce CPU Tvoří srdce a mozek celého počítače a do značné míry ovlivňuje výkon celého počítače (čím rychlejší procesor, tím rychlejší počítač) Provádí jednotlivé

Více

Principy počítačů a operačních systémů

Principy počítačů a operačních systémů Principy počítačů a operačních systémů Zvyšování výkonnosti procesorů Zimní semestr 2/22 Co nám omezuje výkonnost procesoru? Jednocyklové zpracování insn.fetch, dec, exec Vícecyklové zpracování insn.fetch

Více

Procesor Intel Pentium (1) Procesor Intel Pentium (3) Procesor Intel Pentium Pro (1) Procesor Intel Pentium (2)

Procesor Intel Pentium (1) Procesor Intel Pentium (3) Procesor Intel Pentium Pro (1) Procesor Intel Pentium (2) Procesor Intel Pentium (1) 32-bitová vnitřní architektura s 64-bitovou datovou sběrnicí Superskalární procesor: obsahuje více než jednu (dvě) frontu pro zřetězené zpracování instrukcí (značeny u, v) poskytuje

Více

CHARAKTERISTIKA MODERNÍCH PENTIÍ. Flynnova klasifikace paralelních systémů

CHARAKTERISTIKA MODERNÍCH PENTIÍ. Flynnova klasifikace paralelních systémů Úvod: CHARAKTERISTIKA MODERNÍCH PENTIÍ Flynnova klasifikace paralelních systémů Paralelní systémy lze třídit z hlediska počtu toků instrukcí a počtu toků dat: SI systém s jedním tokem instrukcí (Single

Více

Charakteristika dalších verzí procesorů v PC

Charakteristika dalších verzí procesorů v PC Charakteristika dalších verzí procesorů v PC 1 Cíl přednášky Poukázat na principy tvorby architektur nových verzí personálních počítačů. Prezentovat aktuální pojmy. 2 Úvod Zvyšování výkonu cestou paralelizace

Více

Intel 80486 (2) Intel 80486 (1) Intel 80486 (3) Intel 80486 (4) Intel 80486 (6) Intel 80486 (5) Nezřetězené zpracování instrukcí:

Intel 80486 (2) Intel 80486 (1) Intel 80486 (3) Intel 80486 (4) Intel 80486 (6) Intel 80486 (5) Nezřetězené zpracování instrukcí: Intel 80486 (1) Vyroben v roce 1989 Prodáván pod oficiálním názvem 80486DX Plně 32bitový procesor Na svém čipu má integrován: - zmodernizovaný procesor 80386 - numerický koprocesor 80387 - L1 (interní)

Více

Pohled do nitra mikroprocesoru Josef Horálek

Pohled do nitra mikroprocesoru Josef Horálek Pohled do nitra mikroprocesoru Josef Horálek Z čeho vycházíme = Vycházíme z Von Neumannovy architektury = Celý počítač se tak skládá z pěti koncepčních bloků: = Operační paměť = Programový řadič = Aritmeticko-logická

Více

Strojový kód k d a asembler procesoru MIPS SPIM. MIPS - prostředí NMS NMS. 32 ks 32bitových registrů ( adresa registru = 5 bitů).

Strojový kód k d a asembler procesoru MIPS SPIM. MIPS - prostředí NMS NMS. 32 ks 32bitových registrů ( adresa registru = 5 bitů). Strojový kód k d a asembler procesoru MIPS Použit ití simulátoru SPIM K.D. - cvičení ÚPA 1 MIPS - prostředí 32 ks 32bitových registrů ( adresa registru = 5 bitů). Registr $0 je zero čte se jako 0x0, zápis

Více

Struktura a architektura počítačů

Struktura a architektura počítačů Struktura a architektura počítačů Alfanumerické kódy Řadič procesoru CISC, RISC Pipelining České vysoké učení technické Fakulta elektrotechnická Ver 1.20 J. Zděnek 2014 Alfanumerické kódy Kódování zobrazitelných

Více

Procesory, mikroprocesory, procesory na FPGA. 30.1.2013 O. Novák, CIE 11 1

Procesory, mikroprocesory, procesory na FPGA. 30.1.2013 O. Novák, CIE 11 1 Procesory, mikroprocesory, procesory na FPGA 30.1.2013 O. Novák, CIE 11 1 Od sekvenčních automatů k mikroprocesorům 30.1.2013 O. Novák, CIE 11 2 30.1.2013 O. Novák, CIE 11 3 Architektura počítačů Von Neumannovská,

Více

Další aspekty architektur CISC a RISC Aktuálnost obsahu registru

Další aspekty architektur CISC a RISC Aktuálnost obsahu registru Cíl přednášky: Vysvětlit principy práce s registry v architekturách RISC a CISC, upozornit na rozdíly. Vysvětlit možnosti využívání sad registrů. Zabývat se principy využívanými v procesorech Intel. Zabývat

Více

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC Informační systémy 2 Obsah: Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC ROM RAM Paměti typu CACHE IS2-4 1 Dnešní info: Informační systémy 2 03 Informační systémy

Více

RISC a CISC architektura

RISC a CISC architektura RISC a CISC architektura = dva rozdílné přístupy ke konstrukci CPU CISC (Complex Instruction Set Computer) vývojově starší přístup: pomoci konstrukci překladače z VPP co nejpodobnějšími instrukcemi s příkazy

Více

Charakteristika dalších verzí procesorů Pentium

Charakteristika dalších verzí procesorů Pentium Charakteristika dalších verzí procesorů Pentium 1 Cíl přednášky Poukázat na principy architektur nových verzí typů Pentií. Prezentovat aktuální pojmy. 2 Úvod Paralelní systémy lze třídit z hlediska počtu

Více

Procesor. Základní prvky procesoru Instrukční sada Metody zvýšení výkonu procesoru

Procesor. Základní prvky procesoru Instrukční sada Metody zvýšení výkonu procesoru Počítačové systémy Procesor Miroslav Flídr Počítačové systémy LS 2006-1/17- Západočeská univerzita v Plzni Víceúrovňová organizace počítače Digital logic level Microarchitecture level Processor Instruction

Více

Činnost CPU. IMTEE Přednáška č. 2. Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus

Činnost CPU. IMTEE Přednáška č. 2. Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus Činnost CPU Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus Hodinový cyklus CPU je synchronní obvod nutné hodiny (f CLK ) Instrukční cyklus IF = doba potřebná

Více

Architektury VLIW M. Skrbek a I. Šimeček

Architektury VLIW M. Skrbek a I. Šimeček Architektury VLIW M. Skrbek a I. Šimeček xsimecek@fit.cvut.cz Katedra počítačových systémů FIT České vysoké učení technické v Praze Ivan Šimeček, 2011 MI-PAP, LS2010/11, Predn.3 Příprava studijního programu

Více

Provádění instrukcí. procesorem. Základní model

Provádění instrukcí. procesorem. Základní model procesorem 1 Základní model Kód programu (instrukce) a data jsou uloženy ve vnější paměti. Procesor musí nejprve z paměti přečíst instrukci. Při provedení instrukce podle potřeby čte nebo zapisuje data

Více

Assembler RISC RISC MIPS. T.Mainzer, kiv.zcu.cz

Assembler RISC RISC MIPS. T.Mainzer, kiv.zcu.cz Assembler RISC T.Mainzer, kiv.zcu.cz RISC RISC, neboli Reduced Instruction Set Computer - koncepce procesorů s redukovaným souborem instrukcí (vs. CISC, neboli Complex Instruction Set Computer, "bohatý"

Více

Kubatova 19.4.2007 Y36SAP - 13. procesor - control unit obvodový a mikroprogramový řadič RISC. 19.4.2007 Y36SAP-control unit 1

Kubatova 19.4.2007 Y36SAP - 13. procesor - control unit obvodový a mikroprogramový řadič RISC. 19.4.2007 Y36SAP-control unit 1 Y36SAP - 13 procesor - control unit obvodový a mikroprogramový řadič RISC 19.4.2007 Y36SAP-control unit 1 Von Neumannova architektura (UPS1) Instrukce a data jsou uloženy v téže paměti. Paměť je organizována

Více

Vývoj architektur PC 1

Vývoj architektur PC 1 Vývoj architektur PC 1 Cíl přednášky Prezentovat vývoj architektury PC. Prezentovat aktuální pojmy. 2 První verze Pentia První verze Pentia: kmitočet procesoru - 200 MHz (dnes vyšší jak 3 GHz) uvádělo

Více

V 70. letech výzkumy četnosti výskytu instrukcí ukázaly, že programátoři a

V 70. letech výzkumy četnosti výskytu instrukcí ukázaly, že programátoři a 1 Počítače CISC a RISC V dnešní době se ustálilo dělení počítačů do dvou základních kategorií podle typu použitého procesoru: CISC - počítač se složitým souborem instrukcí (Complex Instruction Set Computer)

Více

Architektura Pentia 1

Architektura Pentia 1 Architektura Pentia 1 Cíl přednášky Prezentovat vývoj architektury Pentia. Prezentovat aktuální pojmy. 2 První verze Pentia První verze Pentia: kmitočet procesoru - 200 MHz uvádělo se 330 MIPS, srovnání

Více

Luděk Matyska. Jaro 2015

Luděk Matyska. Jaro 2015 PA039: Architektura superpočítačů a náročné výpočty Luděk Matyska Fakulta informatiky MU Jaro 2015 Luděk Matyska (FI MU) Úvod Jaro 2015 1 / 67 Pravidla hry Účast na přednáškách není povinná Zkouška Pouze

Více

PROCESOR. Typy procesorů

PROCESOR. Typy procesorů PROCESOR Procesor je ústřední výkonnou jednotkou počítače, která čte z paměti instrukce a na jejich základě vykonává program. Primárním úkolem procesoru je řídit činnost ostatních částí počítače včetně

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Petr

Více

Základy informatiky. 2. Přednáška HW. Lenka Carr Motyčková. February 22, 2011 Základy informatiky 2

Základy informatiky. 2. Přednáška HW. Lenka Carr Motyčková. February 22, 2011 Základy informatiky 2 Základy informatiky 2. Přednáška HW Lenka Carr Motyčková February 22, 2011 Základy informatiky 1 February 22, 2011 Základy informatiky 2 February 22, 2011 Základy informatiky 3 February 22, 2011 Základy

Více

Technické prostředky počítačové techniky

Technické prostředky počítačové techniky Počítač - stroj, který podle předem připravených instrukcí zpracovává data Základní části: centrální procesorová jednotka (schopná řídit se posloupností instrukcí a ovládat další části počítače) zařízení

Více

Řetězené zpracování. INP 2008 FIT VUT v Brně

Řetězené zpracování. INP 2008 FIT VUT v Brně Řetězené zpracování INP 2008 FIT VUT v Brně 1 Techniky urychlování výpočtu v HW Lze realizovat speciální kódování dle potřeby dané úlohy Příklad: aritmetické operace v kódu zbytkových tříd jsou extrémně

Více

Paměťový podsystém počítače

Paměťový podsystém počítače Paměťový podsystém počítače typy pamětových systémů počítače virtuální paměť stránkování segmentace rychlá vyrovnávací paměť 30.1.2013 O. Novák: CIE6 1 Organizace paměťového systému počítače Paměťová hierarchie...

Více

NSWI /2011 ZS. Principy cpypočítačůčů aoperačních systémů ARCHITEKTURA

NSWI /2011 ZS. Principy cpypočítačůčů aoperačních systémů ARCHITEKTURA Principy cpypočítačůčů aoperačních systémů ARCHITEKTURA Literatura W.Stallings: Computer Organization & Architecture J.L.Hennessy, P.A.Patterson: Patterson: Computer Architecture: a Quantitative Approach

Více

Princip funkce počítače

Princip funkce počítače Princip funkce počítače Princip funkce počítače prvotní úlohou počítačů bylo zrychlit provádění matematických výpočtů první počítače kopírovaly obvyklý postup manuálního provádění výpočtů pokyny pro zpracování

Více

Cache paměť - mezipaměť

Cache paměť - mezipaměť Cache paměť - mezipaměť 10.přednáška Urychlení přenosu mezi procesorem a hlavní pamětí Hlavní paměť procesoru je typu DRAM a je pomalá. Proto se mezi pomalou hlavní paměť a procesor vkládá menší, ale rychlá

Více

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC Informatika 2 Technické prostředky počítačové techniky - 2 Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Přednášky: středa 14 20 15 55 Spojení: e-mail: jan.skrbek@tul.cz 16 10 17 45 tel.: 48 535 2442 Obsah:

Více

CISC A RISC PROCESORY Jak pracují procesory CISC:

CISC A RISC PROCESORY Jak pracují procesory CISC: Cíl přednášky Seznámit se s charakteristickými rysy architektur CISC a RISC. Ukázat, jak tyto rysy postupně pronikaly do architektur procesorů Intel. Ukázat, jak se vyvíjely principy zřetězeného zpracování.

Více

Představení a vývoj architektur vektorových procesorů

Představení a vývoj architektur vektorových procesorů Představení a vývoj architektur vektorových procesorů Drong Lukáš Dro098 1 Obsah Úvod 3 Historie, současnost 3 Architektura 4 - pipelining 4 - Operace scatter a gather 4 - vektorové registry 4 - Řetězení

Více

Úvod do architektur personálních počítačů

Úvod do architektur personálních počítačů Úvod do architektur personálních počítačů 1 Cíl přednášky Popsat principy proudového zpracování informace. Popsat principy zřetězeného zpracování instrukcí. Zabývat se způsoby uplatnění tohoto principu

Více

CHARAKTERISTIKA PROCESORU PENTIUM První verze:

CHARAKTERISTIKA PROCESORU PENTIUM První verze: CHARAKTERISTIKA PROCESORU PENTIUM První verze: Verze Pentia 200 Mhz uvádělo se 330 MIPS (srovnávalo se s 54 MIPS procesoru 486DX2-66). Struktura Pentia Rozhraní 64 bitů datová sběrnice, 32 bitů adresová

Více

Architektura počítače

Architektura počítače Architektura počítače Výpočetní systém HIERARCHICKÁ STRUKTURA Úroveň aplikačních programů Úroveň obecných funkčních programů Úroveň vyšších programovacích jazyků a prostředí Úroveň základních programovacích

Více

Struktura a architektura počítačů (BI-SAP) 7

Struktura a architektura počítačů (BI-SAP) 7 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 7 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii

Více

4-1 4. Přednáška. Strojový kód a data. 4. Přednáška ISA. 2004-2007 J. Buček, R. Lórencz

4-1 4. Přednáška. Strojový kód a data. 4. Přednáška ISA. 2004-2007 J. Buček, R. Lórencz 4-4. Přednáška 4. Přednáška ISA J. Buček, R. Lórencz 24-27 J. Buček, R. Lórencz 4-2 4. Přednáška Obsah přednášky Násobení a dělení v počítači Základní cyklus počítače Charakteristika třech základní typů

Více

MIKROPROCESOR. (c) Ing. Josef Varačka. Title: XI 28 11:40 (1 of 8)

MIKROPROCESOR. (c) Ing. Josef Varačka. Title: XI 28 11:40 (1 of 8) MIKROPROCESOR 1/ Účel: Vzhledem k pokračující digitalizaci (používání zpracování dvojkového signálu) je žádoucí provozovat univerzální zařízení, které podle programu instrukcí informace zpracuje. Mikroprocesor

Více

Architektura procesoru ARM

Architektura procesoru ARM Architektura procesoru ARM Bc. Jan Grygerek GRY095 Obsah ARM...3 Historie...3 Charakteristika procesoru ARM...4 Architektura procesoru ARM...5 Specifikace procesoru...6 Instrukční soubor procesoru...6

Více

Architektury CISC a RISC, uplatnění rysů architektur RISC v personálních počítačích - pokračování

Architektury CISC a RISC, uplatnění rysů architektur RISC v personálních počítačích - pokračování Architektury CISC a RISC, uplatnění rysů architektur RISC v personálních počítačích - pokračování 1 Cíl přednášky Vysvětlit další rysy architektur CISC a RISC, upozornit na rozdíly. Upozornit, jak se typické

Více

Struktura a architektura počítačů (BI-SAP) 11

Struktura a architektura počítačů (BI-SAP) 11 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 11 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii

Více

Architektura Intel Atom

Architektura Intel Atom Architektura Intel Atom Štěpán Sojka 5. prosince 2008 1 Úvod Hlavní rysem Atomu je podpora platformy x86, která umožňuje spouštět a běžně používat řadu let vyvíjené aplikace, na které jsou uživatelé zvyklí

Více

Architektura počítačů Zvyšování výkonnosti

Architektura počítačů Zvyšování výkonnosti Architektura počítačů Zvyšování výkonnosti http://d3s.mff.cuni.cz http://d3s.mff.cuni.cz/teaching/nswi143 Lubomír Bulej bulej@d3s.mff.cuni.cz CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics

Více

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC Informatika 2 Technické prostředky počítačové techniky - 2 Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Přednášky: středa 14 20 15 55 Spojení: e-mail: jan.skrbek@tul.cz 16 10 17 45 tel.: 48 535 2442 Obsah:

Více

2.8 Procesory. Střední průmyslová škola strojnická Vsetín. Ing. Martin Baričák. Název šablony Název DUMu. Předmět Druh učebního materiálu

2.8 Procesory. Střední průmyslová škola strojnická Vsetín. Ing. Martin Baričák. Název šablony Název DUMu. Předmět Druh učebního materiálu Název školy Číslo projektu Autor Název šablony Název DUMu Tematická oblast Předmět Druh učebního materiálu Anotace Vybavení, pomůcky Ověřeno ve výuce dne, třída Střední průmyslová škola strojnická Vsetín

Více

Architektury CISC a RISC, uplatnění v personálních počítačích - pokračování

Architektury CISC a RISC, uplatnění v personálních počítačích - pokračování Architektury CISC a RISC, uplatnění v personálních počítačích - pokračování 1 Cíl přednášky Vysvětlit, jak pracují architektury CISC a RISC, upozornit na rozdíly. Upozornit, jak se typické rysy obou typů

Více

Základní deska (1) Parametry procesoru (2) Parametry procesoru (1) Označována také jako mainboard, motherboard

Základní deska (1) Parametry procesoru (2) Parametry procesoru (1) Označována také jako mainboard, motherboard Základní deska (1) Označována také jako mainboard, motherboard Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje: procesor (mikroprocesor) patici pro numerický koprocesor (resp. osazený

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: Číslo šablony: 3 CZ.1.07/1.5.00/34.0410 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek:

Více

Architektury CISC a RISC, uplatnění rysů architektur RISC v personálních počítačích - pokračování

Architektury CISC a RISC, uplatnění rysů architektur RISC v personálních počítačích - pokračování Architektury CISC a RISC, uplatnění rysů architektur RISC v personálních počítačích - pokračování 1 Cíl přednášky Vysvětlit další rysy architektur CISC a RISC, upozornit na rozdíly. Upozornit, jak se typické

Více

Počítač jako prostředek řízení. Struktura a organizace počítače

Počítač jako prostředek řízení. Struktura a organizace počítače Řídicí počítače - pro řízení technologických procesů. Specielní přídavná zařízení - I/O, přerušovací systém, reálný čas, Č/A a A/Č převodníky a j. s obsluhou - operátorské periferie bez obsluhy - operátorský

Více

Pokročilé architektury počítačů

Pokročilé architektury počítačů Pokročilé architektury počítačů Přednáška 2 Instrukční paralelizmus a jeho limity Martin Milata Obsah Instrukční hazardy a datové závislosti (připomenutí) Tomasulo algoritmus a dynamické plánování Základní

Více

Základní deska (1) Označována také jako mainboard, motherboard. Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje:

Základní deska (1) Označována také jako mainboard, motherboard. Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje: Základní deska (1) Označována také jako mainboard, motherboard Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje: procesor (mikroprocesor) patici pro numerický koprocesor (resp. osazený

Více

Architektura procesorů PC shrnutí pojmů

Architektura procesorů PC shrnutí pojmů Architektura procesorů PC shrnutí pojmů 1 Co je to superskalární architektura? Minimálně dvě fronty instrukcí. Provádění instrukcí je možné iniciovat současně, instrukce se pak provádějí paralelně. Realizovatelné

Více

Architektura Pentia úvod

Architektura Pentia úvod Architektura Pentia úvod 1 Co je to superskalární architektura? Minimálně dvě fronty instrukcí. Provádění instrukcí je možné iniciovat současně, instrukce se pak provádějí paralelně. Realizovatelné jak

Více

Principy počítačů I - Procesory

Principy počítačů I - Procesory Principy počítačů I - Procesory snímek 1 VJJ Principy počítačů Část V Procesory 1 snímek 2 Struktura procesoru musí umožnit změnu stavu stroje v libovolném kroku uvolnění nebo znemožnění pohybu dat po

Více

Přednášky o výpočetní technice. Hardware teoreticky. Adam Dominec 2010

Přednášky o výpočetní technice. Hardware teoreticky. Adam Dominec 2010 Přednášky o výpočetní technice Hardware teoreticky Adam Dominec 2010 Rozvržení Historie Procesor Paměť Základní deska přednášky o výpočetní technice Počítací stroje Mechanické počítačky se rozvíjely už

Více

Struktura a architektura počítačů (BI-SAP) 1

Struktura a architektura počítačů (BI-SAP) 1 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 1 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii

Více

Pokročilé architektury počítačů

Pokročilé architektury počítačů Pokročilé architektury počítačů Přednáška 5 GPU - CUDA Martin Milata Obsah Obecné výpočty a GPU Grafické procesory NVIDIA Tesla Výpočetní model Paměťový model GT200 Zpracování instrukcí Vydávání instrukcí

Více

Úvod do problematiky návrhu počítačových systémů. INP 2008 FIT VUT v Brně

Úvod do problematiky návrhu počítačových systémů. INP 2008 FIT VUT v Brně Úvod do problematiky návrhu počítačových systémů INP 2008 FIT VUT v Brně Čím se budeme zabývat Budou nás zejména zajímat jednoprocesorové číslicové počítače: Funkce počítače Struktura propojení funkčních

Více

Proudové zpracování instrukcí II. Hazardy v proudovém zpracování Proudové zpracování FP instrukcí

Proudové zpracování instrukcí II. Hazardy v proudovém zpracování Proudové zpracování FP instrukcí Proudové zpracování instrukcí II. Hazardy v proudovém zpracování Proudové zpracování FP instrukcí Ing. Miloš Bečvář Osnova přednášky Implementace pozastavení v pipeline Datové hazardy a jejich řešení (pozastavení,

Více

2 Hardware a operační systémy

2 Hardware a operační systémy Operační systémy 2 Hardware a operační systémy Obsah: 2.1 Procesor CPU, 2.1.1 Zpracování instrukcí, 2.1.2 Zvyšování výkonu CPU, 2.1.3 Režimy CPU, 2.2 Paměť, 2.2.1 Cache, 2.3 Vstupně výstupní zařízení,

Více

Semestrální práce z předmětu Speciální číslicové systémy X31SCS

Semestrální práce z předmětu Speciální číslicové systémy X31SCS Semestrální práce z předmětu Speciální číslicové systémy X31SCS Katedra obvodů DSP16411 ZPRACOVAL: Roman Holubec Školní rok: 2006/2007 Úvod DSP16411 patří do rodiny DSP16411 rozšiřuje DSP16410 o vyšší

Více

Proudové zpracování instrukcí I. Celočíselná pipeline RISC

Proudové zpracování instrukcí I. Celočíselná pipeline RISC Proudové zpracování instrukcí I. Celočíselná pipeline RISC Ing. Miloš Bečvář s využitím slajdů prof. Davida Pattersona CS152, University California at Berkeley, 1996 Osnova přednášky Návrh jednoduché datové

Více

Pokročilé architektury počítačů

Pokročilé architektury počítačů Pokročilé architektury počítačů 05 Superskalární techniky Tok dat z/do paměti (Memory Data Flow) a Procesory VLIW a EPIC České vysoké učení technické, Fakulta elektrotechnická A4M36PAP Pokročilé architektury

Více

Strojový kód. Instrukce počítače

Strojový kód. Instrukce počítače Strojový kód Strojový kód (Machine code) je program vyjádřený v počítači jako posloupnost instrukcí procesoru (posloupnost bajtů, resp. bitů). Z hlediska uživatele je strojový kód nesrozumitelný, z hlediska

Více

Y36SAP http://service.felk.cvut.cz/courses/y36sap/

Y36SAP http://service.felk.cvut.cz/courses/y36sap/ Y36SAP http://service.felk.cvut.cz/courses/y36sap/ Úvod Návrhový proces Architektura počítače 2007-Kubátová Y36SAP-Úvod 1 Struktura předmětu Číslicový počítač, struktura, jednotky a jejich propojení. Logické

Více

PROCESOR. Rozdělení procesorů

PROCESOR. Rozdělení procesorů PROCESOR Procesor je ústřední výkonnou jednotkou počítače, která čte z operační paměti (resp. CACHE paměti) instrukce a na jejich základě vykonává program. Primárním úkolem procesoru je řídit činnost ostatních

Více

Operační systémy. Jednoduché stránkování. Virtuální paměť. Příklad: jednoduché stránkování. Virtuální paměť se stránkování. Memory Management Unit

Operační systémy. Jednoduché stránkování. Virtuální paměť. Příklad: jednoduché stránkování. Virtuální paměť se stránkování. Memory Management Unit Jednoduché stránkování Operační systémy Přednáška 8: Správa paměti II Hlavní paměť rozdělená na malé úseky stejné velikosti (např. 4kB) nazývané rámce (frames). Program rozdělen na malé úseky stejné velikosti

Více

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14 ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 14 0:40 1.3. Vliv hardware počítače na programování Vliv

Více

Řízení IO přenosů DMA řadičem

Řízení IO přenosů DMA řadičem Řízení IO přenosů DMA řadičem Doplňující text pro POT K. D. 2001 DMA řadič Při přímém řízení IO operací procesorem i při použití přerušovacího systému je rychlost přenosu dat mezi IO řadičem a pamětí limitována

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Struktura počítače - pokračování České vysoké učení technické Fakulta elektrotechnická Ver.1.10 J. Zděnek 2015 Systémová struktura počítače pokrač. Systém přerušení A8B14ADP

Více

ARCHITEKTURA PROCESORŮ

ARCHITEKTURA PROCESORŮ ARCHITEKTURA PROCESORŮ Základními jednotkami, které tvoří vnitřní strukturu procesorů, jsou: řadič, který má za úkol číst operandy (data, čísla) a instrukce z operační paměti, dekódovat je a na základě

Více

4. Procesory CISC a RISC: Základní rysy a podněty pro vznik, zřetězení, predikce skoku, základní zástupci.

4. Procesory CISC a RISC: Základní rysy a podněty pro vznik, zřetězení, predikce skoku, základní zástupci. 4. Procesory CISC a RISC: Základní rysy a podněty pro vznik, zřetězení, predikce skoku, základní zástupci. Obsah 4. Procesory CISC a RISC: Základní rysy a podněty pro vznik, zřetězení, predikce skoku,

Více

Principy počítačů. Optimalizace. Martin Urza

Principy počítačů. Optimalizace. Martin Urza Principy počítačů Optimalizace Martin Urza Opakování z minulé přednášky Z minulé přednášky by mělo být jasné, jak přibližně v hrubých obrysech funguje podle von Neumannovy architektury paměť, procesor,

Více

6. Procesory jiných firem... 1

6. Procesory jiných firem... 1 6. Procesory jiných firem. Obsah 6. Procesory jiných firem.... 1 6.1. Acron RISC Machine (ARM)... 1 6.1.1. Charakteristika procesoru ARM... 2 6.1.2. Architektura procesoru ARM... 3 6.1.3. Specifika procesoru

Více

Mikrokontroléry. Doplňující text pro POS K. D. 2001

Mikrokontroléry. Doplňující text pro POS K. D. 2001 Mikrokontroléry Doplňující text pro POS K. D. 2001 Úvod Mikrokontroléry, jinak též označované jako jednočipové mikropočítače, obsahují v jediném pouzdře všechny podstatné části mikropočítače: Řadič a aritmetickou

Více

Procesory CISC- historie procesorů Intel x86

Procesory CISC- historie procesorů Intel x86 Procesory CISC- historie procesorů Intel x86 Studijní materiál pro předmět Architektury počítačů Ing. Petr Olivka katedra informatiky FEI VŠB-TU Ostrava email: petr.olivka@vsb.cz Ostrava, 2010 1 1 Procesory

Více

Procesor z pohledu programátora

Procesor z pohledu programátora Procesor z pohledu programátora Terminologie Procesor (CPU) = řadič + ALU. Mikroprocesor = procesor vyrobený monolitickou technologií na čipu. Mikropočítač = počítač postavený na bázi mikroprocesoru. Mikrokontrolér

Více

Architektury počítačů a procesorů

Architektury počítačů a procesorů Kapitola 3 Architektury počítačů a procesorů 3.1 Von Neumannova (a harvardská) architektura Von Neumann 1. počítač se skládá z funkčních jednotek - paměť, řadič, aritmetická jednotka, vstupní a výstupní

Více

Kubatova Y36SAP 9. Strojový kód ISA architektura souboru instrukcí střadačově, zásobníkově orientovaná, GPR Kubátová Y36SAP-ISA 1

Kubatova Y36SAP 9. Strojový kód ISA architektura souboru instrukcí střadačově, zásobníkově orientovaná, GPR Kubátová Y36SAP-ISA 1 Y36SAP 9 Strojový kód ISA architektura souboru instrukcí střadačově, zásobníkově orientovaná, GPR 2007-Kubátová Y36SAP-ISA 1 Architektura souboru instrukcí, ISA - Instruction Set Architecture Vysoká Architektura

Více

Mezipaměti počítače. L2 cache. L3 cache

Mezipaměti počítače. L2 cache. L3 cache Mezipaměti počítače Cache paměť - mezipaměť Hlavní paměť procesoru je typu DRAM a je pomalá. Proto se mezi pomalou hlavní paměť a procesor vkládá menší, ale rychlá vyrovnávací (cache) paměť SRAM. Rychlost

Více

Profilová část maturitní zkoušky 2014/2015

Profilová část maturitní zkoušky 2014/2015 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2014/2015 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: technika

Více

Pokročilé architektury počítačů

Pokročilé architektury počítačů Pokročilé architektury počítačů 04 Superskalární techniky Předvýběr instrukcí (Predikce větvení aj.) České vysoké učení technické, Fakulta elektrotechnická A4M36PAP Pokročilé architektury počítačů Ver.1.00

Více

HelenOS ARM port. Pavel Jančík Michal Kebrt Petr Štěpán

HelenOS ARM port. Pavel Jančík Michal Kebrt Petr Štěpán HelenOS ARM port Pavel Jančík Michal Kebrt Petr Štěpán HelenOS experimentální operační systém (MFF) multiplatformní microkernel amd64, ia32, ia32xen, ia64, mips32, ppc32, ppc64, sparc64 plánování správa

Více

Management procesu I Mgr. Josef Horálek

Management procesu I Mgr. Josef Horálek Management procesu I Mgr. Josef Horálek Procesy = Starší počítače umožňovaly spouštět pouze jeden program. Tento program plně využíval OS i všechny systémové zdroje. Současné počítače umožňují běh více

Více

Systém adresace paměti

Systém adresace paměti Systém adresace paměti Základní pojmy Adresa fyzická - adresa, která je přenesena na adresní sběrnici a fyzicky adresuje hlavní paměť logická - adresa, kterou má k dispozici proces k adresaci přiděleného

Více

ORGANIZAČNÍ A VÝPOČETNÍ TECHNIKA

ORGANIZAČNÍ A VÝPOČETNÍ TECHNIKA Střední škola, Havířov Šumbark, Sýkorova 1/613, příspěvková organizace ORGANIZAČNÍ A VÝPOČETNÍ TECHNIKA PROCESORY Ing. Bouchala Petr 2010 Vytištěno pro vnitřní potřebu školy PROCESORY 1.Úvod základní pojmy

Více

FREESCALE KOMUNIKAČNÍ PROCESORY

FREESCALE KOMUNIKAČNÍ PROCESORY FREESCALE KOMUNIKAČNÍ PROCESORY 1 Trocha historie: Freescale Semiconductor, Inc. byla založena v roce 2004 v Austinu v Texasu jako samostatná společnost, jelikož po více jak 50 byla součástí Motoroly.

Více

Miroslav Tichý, tic136

Miroslav Tichý, tic136 Miroslav Tichý, tic136 32bitová mikroprocesorová architektura typu RISC(Reduced Instruction Set Computer) mobilním odvětví - smartphony, PDA, přenosné herní konzole, kalkulačky apod. Důvod: nízké vyzařované

Více

Základní uspořádání pamětí MCU

Základní uspořádání pamětí MCU Základní uspořádání pamětí MCU Harwardská architektura. Oddělený adresní prostor kódové a datové. Používané u malých MCU a signálových procesorů. Von Neumannova architektura (Princetonská). Kódová i jsou

Více

OPS Paralelní systémy, seznam pojmů, klasifikace

OPS Paralelní systémy, seznam pojmů, klasifikace Moorův zákon (polovina 60. let) : Výpočetní výkon a počet tranzistorů na jeden CPU chip integrovaného obvodu mikroprocesoru se každý jeden až dva roky zdvojnásobí; cena se zmenší na polovinu. Paralelismus

Více

Operační systémy. Přednáška 1: Úvod

Operační systémy. Přednáška 1: Úvod Operační systémy Přednáška 1: Úvod 1 Organizace předmětu Přednášky každé úterý 18:00-19:30 v K1 Přednášející Jan Trdlička email: trdlicka@fel.cvut.z kancelář: K324 Cvičení pondělí, úterý, středa Informace

Více

Jan Nekvapil ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická

Jan Nekvapil ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Jan Nekvapil jan.nekvapil@tiscali.cz ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Motivace MMX, EMMX, MMX+ 3DNow!, 3DNow!+ SSE SSE2 SSE3 SSSE3 SSE4.2 Závěr 2 Efektivní práce s vektory

Více