8. přednáška z předmětu GIS1 Rastrový datový model a mapová algebra

Rozměr: px
Začít zobrazení ze stránky:

Download "8. přednáška z předmětu GIS1 Rastrový datový model a mapová algebra"

Transkript

1 8. přednáška z předmětu GIS1 Rastrový datový model a mapová algebra Vyučující: Ing. Jan Pacina, Ph.D. Pro přednášku byly použity texty a obrázky z Předmět KMA/UGI, autor Ing. K. Jedlička

2 Rastrová reprezentace Zaměřuje se na lokalitu jako na celek Používá se pro reprezentaci jevů, které plošně pokrývají celou oblast, případně se i spojitě mění. Používá se i pro rasterizované vektorové vrstvy, pokud je následná analýza jednodušší nad rastrem.

3 Rastrová reprezentace Základním stavebním prvkem je u rastrové struktury tzv. buňka (cell, pixel). Buňky jsou organizovány do mozaiky. Jednotlivé buňky obsahují hodnoty (values). Typy tvarů buněk: čtvercová buňka, trojúhelníková buňka, hexagonální buňka.

4 Rastrová reprezentace Nejčastěji se používá čtvercová mřížka: je kompatibilní s datovými strukturami programovacích jazyků používaných pro tvorbu GIS software, je kompatibilní s mnoha zařízeními pro vstup a výstup dat (monitory, scannery, plottery), je kompatibilní s kartézským (pravoúhlým) souřadnicovým systémem.

5 Rastrová reprezentace Trojúhelníková mozaika jednotlivé buňky nemají stejnou orientaci výhoda při reprezentování digitálního modelu reliéfu (terénu), kde je každému vrcholu o souřadnicích x,y přiřazena funkční hodnota z (výška z = f (x,y)). Jednotlivé trojúhelníky pak implicitně obsahují údaje o svém sklonu a směru tohoto sklonu. Daní za tuto vlastnost mnohem větší složitost algoritmů pracujících s tímto modelem.

6 Rastrová reprezentace Hexagonální mozaika středy všech sousedních buněk jsou ekvidistantní (stejně od sebe vzdálené), což je výhodné pro některé analytické funkce (např.: paprskové vyhledávání). Ve čtvercové mřížce je toto nemožné a tato vlastnost se musí kompenzovat nebo se prostě zanedbává. Hexagonální tvar buňky se používá jen velmi zřídka.

7 Rastrová reprezentace Rastrovou reprezentaci můžeme rozlišit podle způsobu dělení prostoru na: pravidelné (regular) - všechny buňky mají stejnou velikost a tvar. jednodušší pro ukládání a zpracování údajů, zabírají ovšem na disku mnoho místa. nepravidelné (irregular) - velikost i tvar jednotlivých buněk se liší. mohou mnohem lépe reprezentovat danou lokalitu (příklad roviny + zvlněná krajina), zpracovávání je algoritmicky i výpočetně náročné. hlavně pro DMR

8 Rastrová reprezentace Topologie je v rastrovém modelu definována implicitně (je jasné kdo je čí soused), tudíž není nutné ji explicitně ukládat jako pro vektorový model!

9 Stejně jako vektorový model, rastrová datová struktura může nést informace o bodech, liniích a plochách.

10 Vliv velikosti buňky (~ rozlišení) na tvar objektů

11

12 Při využívání rastru pro reprezentaci povrchu je třetí rozměr reprezentován jako hodnota tohoto rastru. Ta je pak funkcí dvourozměrných souřadnic z = f (x,y).

13 Obrazová data Snímek dálkového průzkumu Země (DPZ) Ortofoto Scannované plány Dokumentace

14

15

16

17 Klasické rastry jednopásmová data znázorňují rozložení vždy jen jednoho geografického jevu (nadmořská výška-dmt nebo vodstvo nebo lesy, ). mohou být získána např. převodem z vektorů nebo vyhodnocením obrazových dat.

18

19

20

21 Čtvercová mřížka Umístění v souřadnicovém systému

22 Čtvercová mřížka V geometrii nastává problém metriky

23 + - Čtvercová mřížka dobře definovatelná matematickým aparátem, jednoduše implementovatelná jako základní datový typ většinou programovacích jazyků (2D pole), obecně použitelná, jelikož na každý pixel může být použita jakákoli definovaná operace. detail - celý obraz je reprezentován stejným způsobem, tudíž uložení velké oblasti, skládající se z pixelů stejného typu, není nijak optimalizováno, abstrakce - k získání méně detailního obrazu je nutné použít všechna data, náročnost na úložný prostor plýtvání pamětí - celý datový soubor musí být v paměti, což může být rozhodující u velkých obrazů.

24 Mapová algebra U rastrových reprezentací se místo topologického překrytí používá nástroj zvaný mapová algebra. Ten je určen výhradně pro ně a umožňuje kombinovat rastrové vrstvy pomocí různých matematických operací. Tyto matematické operace se vykonávají buď na jedné nebo na dvou (i více) vrstvách a jejich výstupem je vždy nová vrstva, kterou je samozřejmě možné používat v dalších analýzách. Řetězení vytváří z mapové algebry mocný prostředek pro prostorové modelování a analyzování.

25 Jazyk mapové algebry Nástrojů mapové algebry je možné využívat pomocí speciálního jazyka (jazyka mapové algebry). Jedná se o jednoduchý programovací jazyk navržený speciálně pro popis analýz prostorového modelování nad rastrovou reprezentací. Jeho syntaxe se produkt od produktu liší, ale princip zůstává stejný.

26 Struktura jazyka MA Mapová algebra používá objekty, činnosti a kvalifikátory činnosti. Ty mají obdobné funkce jako podstatná jména, slovesa a příslovce. Objekty slouží k uložení informací, nebo jsou to vstupní hodnoty. Jako objekty se používají rastry, tabulky, konstanty, Činnosti jsou příkazy jazyka (operátory a funkce) - vykonávají operace na objektech Operátory jsou obvyklé matematické, statistické, relační a logické operátory (+, -, *, /, >, <, >=, <=, <>, mod, div, and, or, not, ). Funkce mapové algebry se dělí na lokální, fokální, zonální a globální.

27 Kvalifikátory řídí jak a kde se vykonává činnost (pomocné konstrukce jazyka, podmínky, cykly, ). Ačkoli je z výkladu jasné, že primární prostředí pro mapovou algebru je příkazová řádka, produkty jako např. ArcGIS nebo MGE (Grid Analyst) poskytují příjemné grafické uživatelské prostředí umožňující tvorbu maker, která alespoň zčásti suplují programy v mapové algebře.

28

29 Z hlediska počtu zpracovávaných vrstev lze operace mapové algebry dělit na operace s jednou nebo více vrstvami. Na jedné vrstvě jsou to nejčastěji skalární operace jako je připočítávání konstanty, násobení, atp. Jako příklad může posloužit tvorba 2x převýšeného DMR pro vizualizaci ve 3D. Na více vrstvách jsou to operace jako sčítání vrstev, které se vykonávají s prostorově odpovídajícími si buňkami.

30 Z hlediska oblasti ze které je počítána hodnota výsledné buňky dělíme funkce mapové algebry na již zmiňované: Lokální - na individuální buňce, nová hodnota vzniká z individuální buňky jedné nebo více vrstev. Fokální - v definovaném okolí, nová hodnota vzniká z definovaného okolí buňky. Zonální - na specifické oblasti, nová hodnota vzniká ze zóny definované v jiné vrstvě. Globální - používají se všechny buňky informační vrstvy.

31 Lokální funkce se obvykle dělí na matematické, trigonometrické, exponenciální, logaritmické, reklasifikační, selekční a statistické.

32 Fokální funkce se dělí na statistické funkce a na analýzy proudění. Většinou se provádějí na okolí 3x3 sousedních buněk, ale systémy často umožňují definovat sousedské okolí podle uživatele (kružnice, čtverec, ). Ze statistických funkcí jde o stanovení např. aritmetického průměru v okolí, sumy, odchylky, min, max, rozpětí a další. U analýz proudění se počítá směr proudění (maximální gradient z hodnot dané buňky do okolních), rychlost proudění a další. Analýzy proudění jsou základem většího počtu dalších pokročilých analýz, jako jsou hydrologické analýzy, modelování eroze.

33 Zonální funkce je možné rozdělit na statistické a geometrické. U statistických funkcí jde o statistické zpracování hodnot analyzované informační vrstvy, které patří do zóny definované v druhé informační vrstvě. Statistické funkce mohou být opět průměry, sumy, min, max. Mezi geometrické funkce patří např. stanovení plochy, obvodu a dalších charakteristik každé zóny.

34 Globální funkce mapové algebry se zaměřují na vzdálenostní analýzy. Proto se často zařazují spíše ke vzdálenostním analýzám Hodnota každé buňky výsledného rastru je počítána ze všech buněk zdrojového rastru.

35 Princip Rasterizace Provádí se jako překryt vektorové vrstvy na rastrovou mřížku (o určené velikosti buňky) a přiřazení hodnoty této buňky z vybraného atributu. Při rasterizaci je nejdůležitější určit správnou velikost buňky výsledného rastru (která bude dostatečně velká pro požadované účely, ale přitom nebude příliš velká pro možnosti hardware, které zpracovává rastr).

36 Metody řešení konfliktu Problémy však mohou vznikat v případech, kdy jedna výsledná buňka obsahuje více různých objektů. Pro řešení této se používají 3 základní metody, z čehož první dvě se používají pro převod bodů, linií i polygonů a zbývající jen pro převod polygonů: Metoda dominantního typu vychází z principu, že u buňky, do které zasahuje více objektů, se vyjádří podíl její plochy, zabíraný každým z objektů a hodnota objektu s největším podílem je pak buňce přiřazena (u bodů a linií se podíl plochy nahrazuje počtem a příp. délkou objektů, které buňka obsahuje). Metoda nejdůležitějšího typu buňce přiřadí hodnotu, která je považovaná za nejdůležitější z hlediska aplikace. Centroidová metoda, buňka má přiřazenou hodnotu definovanou polohou jejího středu při průmětu do vektorové reprezentace.

37 Dominantní typ Nejdůležitější typ Centroidy

38 Řešení konfliktů pro polygony

Úvod do GIS. Karel Jedlička. Analýza a syntéza I. Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium.

Úvod do GIS. Karel Jedlička. Analýza a syntéza I. Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium. Úvod do GIS Analýza a syntéza I Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium. Karel Jedlička Analýzy a syntézy v GIS Co je analýza a syntéza Měřící funkce

Více

GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 6

GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 6 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 6 Lubomír Vašek Zlín 2013 Obsah... 3 1. Základní pojmy... 3 2. Princip rastrové reprezentace... 3 2.1 Užívané

Více

4. Provedení analýz a syntéz

4. Provedení analýz a syntéz 4. Provedení analýz a syntéz Analytické možnosti GIS tvoří jádro systému GIS. Mezi otázky, na které nám GIS umožňuje patří: co se nachází na? kde se nachází? jaký je počet? statistické otázky co se změnilo

Více

Činnosti v rámci projektů

Činnosti v rámci projektů Činnosti v rámci projektů Postup řešení 1. Stanovení cílů projektu 2. Budování datové databáze navržení databáze naplnění databáze vstup údajů kontrola údajů a odstraňování chyb 3. Restrukturalizace nebo

Více

7. Geografické informační systémy.

7. Geografické informační systémy. 7. Geografické informační systémy. 154GEY2 Geodézie 2 7.1 Definice 7.2 Komponenty GIS 7.3 Možnosti GIS 7.4 Datové modely GIS 7.5 Přístup k prostorovým datům 7.6 Topologie 7.7 Vektorové datové modely 7.8

Více

3. přednáška z předmětu GIS1 atributové a prostorové dotazy

3. přednáška z předmětu GIS1 atributové a prostorové dotazy 3. přednáška z předmětu GIS1 atributové a prostorové dotazy Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky z www.gis.zcu.cz Předmět KMA/UGI, autor

Více

9. přednáška z předmětu GIS1 Digitální model reliéfu a odvozené povrchy. Vyučující: Ing. Jan Pacina, Ph.D.

9. přednáška z předmětu GIS1 Digitální model reliéfu a odvozené povrchy. Vyučující: Ing. Jan Pacina, Ph.D. 9. přednáška z předmětu GIS1 Digitální model reliéfu a odvozené povrchy Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Lehký úvod Digitální modely terénu jsou dnes v geoinformačních systémech

Více

GIS Geografické informační systémy

GIS Geografické informační systémy GIS Geografické informační systémy GIS Prostorové modely Rastrový model Pravidelné, nepravidelné buňky Způsoby uložení Komprese dat Rastrový model Intuitivně chápání množina elementů (obecně různého tvaru

Více

GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 10

GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 10 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 10 Lubomír Vašek Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního fondu (ESF)

Více

GIS Geografické informační systémy

GIS Geografické informační systémy GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu

Více

2. přednáška z předmětu GIS1 Data a datové modely

2. přednáška z předmětu GIS1 Data a datové modely 2. přednáška z předmětu GIS1 Data a datové modely Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky z www.gis.zcu.cz Předmět KMA/UGI, autor Ing. K.

Více

Funkce Cell, Neighborhood and Zonal Statistic

Funkce Cell, Neighborhood and Zonal Statistic Funkce Cell, Neighborhood and Zonal Statistic Do oblasti mapové algebry principiálně patří i funkce v ArcGIS označované jako Cell, Neighborhood and Zonal Statistic. Umožňují z hodnot buněk jednoho či více

Více

Geografické informační systémy GIS

Geografické informační systémy GIS Geografické informační systémy GIS Prohloubení nabídky dalšího vzdělávání v oblasti zeměměřictví a katastru nemovitostí ve Středočeském kraji CZ.1.07/3.2.11/03.0115 Projekt je finančně podpořen Evropským

Více

INFORMAČNÍ SYSTÉMY PRO KRIZOVÉ ŘÍZENÍ GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY A JEJICH VYUŽITÍ V KRIZOVÉM ŘÍZENÍ ING. JIŘÍ BARTA, RNDR. ING.

INFORMAČNÍ SYSTÉMY PRO KRIZOVÉ ŘÍZENÍ GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY A JEJICH VYUŽITÍ V KRIZOVÉM ŘÍZENÍ ING. JIŘÍ BARTA, RNDR. ING. INFORMAČNÍ SYSTÉMY PRO KRIZOVÉ ŘÍZENÍ GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY A JEJICH VYUŽITÍ V KRIZOVÉM ŘÍZENÍ ING. JIŘÍ BARTA, RNDR. ING. TOMÁŠ LUDÍK Operační program Vzdělávání pro konkurenceschopnost Projekt:

Více

GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 8

GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 8 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 8 Lubomír Vašek Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního fondu (ESF)

Více

Geoinformační technologie

Geoinformační technologie Geoinformační technologie Geografické informační systémy (GIS) Výukový materiál l pro gymnázia a ostatní středn ední školy Gymnázium, Praha 6, Nad Alejí 1952 Vytvořeno v rámci projektu SIPVZ 1357P2006

Více

Lekce 4 - Vektorové a rastrové systémy

Lekce 4 - Vektorové a rastrové systémy Lekce 4 - Vektorové a rastrové systémy 1. Cíle lekce... 1 2. Vlastnosti rastrových systémů... 1 2.1 Zobrazování vrstev... 1 2.1.1 Základní zobrazování... 1 2.1.2 Další typy zobrazení... 2 2.2 Lokální operace...

Více

Digitální kartografie 7

Digitální kartografie 7 Digitální kartografie 7 digitální modely terénu základní analýzy a vizualizace strana 2 ArcGIS 3D Analyst je zaměřen na tvorbu, analýzu a zobrazení dat ve 3D. Poskytuje jak nástroje pro interpolaci rastrových

Více

GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY

GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY KGI/APGPS RNDr. Vilém Pechanec, Ph.D. Univerzita Palackého v Olomouci Univerzita Palackého v Olomouci INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Environmentální vzdělávání rozvíjející

Více

Rastrové digitální modely terénu

Rastrové digitální modely terénu Rastrové digitální modely terénu Rastr je tvořen maticí buněk (pixelů), které obsahují určitou informaci. Stejně, jako mohou touto informací být typ vegetace, poloha sídel nebo kvalita ovzduší, může každá

Více

Zdroj: http://geoportal.cuzk.cz/dokumenty/technicka_zprava_dmr_4g_15012012.pdf

Zdroj: http://geoportal.cuzk.cz/dokumenty/technicka_zprava_dmr_4g_15012012.pdf Zpracování digitálního modelu terénu Zdrojová data Pro účely vytvoření digitálního modelu terénu byla použita data z Digitálního modelu reliéfu 4. Generace DMR 4G, který je jedním z realizačních výstupů

Více

3.Restrukturalizace nebo manipulace s údaji

3.Restrukturalizace nebo manipulace s údaji 3.Restrukturalizace nebo manipulace s údaji Uchování dat Konverze datových formátů geodat konverze datových formátů převod datových reprezentací převod typu geometrie Generalizace dat Topologické překrytí

Více

Úvod do GIS. Karel Jedlička. Zpracování dat I. Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium.

Úvod do GIS. Karel Jedlička. Zpracování dat I. Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium. Úvod do GIS Zpracování dat I Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium. Karel Jedlička Zpracování dat Geometrické transformace Zpracování obrazu Převody

Více

Kartografické modelování. VIII Modelování vzdálenosti

Kartografické modelování. VIII Modelování vzdálenosti VIII Modelování vzdálenosti jaro 2015 Petr Kubíček kubicek@geogr.muni.cz Laboratory on Geoinformatics and Cartography (LGC) Institute of Geography Masaryk University Czech Republic Vzdálenostní funkce

Více

Geoinformační technologie

Geoinformační technologie Geoinformační technologie JDKEY1 1 GEOINFORMATIKA nový vítr v do plachet geografie obor zabývající se informacemi o prostorových objektech, procesech a vazbách mezi nimi geoinformační technologie = konkrétn

Více

GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 12

GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 12 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 12 Lubomír Vašek Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního fondu (ESF)

Více

1 Obsah přípravné fáze projektu Poohří

1 Obsah přípravné fáze projektu Poohří 1 Obsah přípravné fáze projektu Poohří V rámci projektu Poohří budou pro účely zatápění povrchových hnědouhelných dolů modelovány a predikovány pohyby nadzemních i podzemních vod a jejich předpokládané

Více

Realita versus data GIS

Realita versus data GIS http://www.indiana.edu/ Realita versus data GIS Data v GIS Typy dat prostorová (poloha a vzájemné vztahy) popisná (atributy) Reprezentace prostorových dat (formát) rastrová Spojitý konceptuální model vektorová

Více

Profilová část maturitní zkoušky 2013/2014

Profilová část maturitní zkoušky 2013/2014 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2013/2014 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA

Více

16.3.2015. Ing. Pavel Hánek, Ph.D. hanek00@zf.jcu.cz

16.3.2015. Ing. Pavel Hánek, Ph.D. hanek00@zf.jcu.cz Ing. Pavel Hánek, Ph.D. hanek00@zf.jcu.cz Přednáška byla zpracována s využitím dat a informací uveřejněných na http://geoportal.cuzk.cz/ k 16.3. 2015. Státní mapová díla jsou stanovena nařízením vlády

Více

Topografické mapování KMA/TOMA

Topografické mapování KMA/TOMA Topografické mapování KMA/TOMA ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta aplikovaných věd - KMA oddělení geomatiky Ing. Martina Vichrová, Ph.D. vichrova@kma.zcu.cz Vytvoření materiálů bylo podpořeno prostředky

Více

5. GRAFICKÉ VÝSTUPY. Zásady územního rozvoje Olomouckého kraje. Koncepce ochrany přírody Olomouckého kraje

5. GRAFICKÉ VÝSTUPY. Zásady územního rozvoje Olomouckého kraje. Koncepce ochrany přírody Olomouckého kraje 5. GRAFICKÉ VÝSTUPY Grafickými výstupy této studie jsou uvedené čtyři mapové přílohy a dále následující popis použitých algoritmů při tvorbě těchto příloh. Vlastní mapové výstupy jsou označeny jako grafické

Více

Digitální modely terénu (9-10) DMT v ArcGIS Desktop

Digitální modely terénu (9-10) DMT v ArcGIS Desktop Digitální modely terénu (9-10) DMT v Desktop Ing. Martin KLIMÁNEK, Ph.D. 411 Ústav geoinformačních technologií Lesnická a dřevařská fakulta, Mendelova zemědělská a lesnická univerzita v Brně 1 Digitální

Více

Praktické využití mapových služeb v rámci tvorby projektových dokumentací

Praktické využití mapových služeb v rámci tvorby projektových dokumentací Praktické využití mapových služeb v rámci tvorby projektových dokumentací Informační systémy v ochraně životního prostředí N240001 Ing. Radek Škarohlíd budova A, místnost F06 Radek.Skarohlid@vscht.cz Vysoká

Více

Digitální model reliéfu (terénu) a analýzy modelů terénu

Digitální model reliéfu (terénu) a analýzy modelů terénu Digitální model reliéfu (terénu) a analýzy modelů terénu Digitální modely terénu jsou dnes v geoinformačních systémech hojně využívány pro různé účely. Naměřená terénní data jsou často zpracována do podoby

Více

Matematika PRŮŘEZOVÁ TÉMATA

Matematika PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí

Více

GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 4

GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 4 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 4 Lubomír Vašek Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního fondu (ESF)

Více

GIS. Cvičení 7. Interakční modelování v ArcGIS

GIS. Cvičení 7. Interakční modelování v ArcGIS GIS Cvičení 7. Interakční modelování v ArcGIS Interakční modelování Najděte vhodné místo pro založení nové lesní školky na zpracovaném mapovém listu ZM 10 24-32-05 1. Které podmínky musí být při p i tom

Více

Geografické informační systémy

Geografické informační systémy Geografické informační systémy Rastrová data Digitální modely terénu (DTM) Závěrečné srovnání rastrů a vektorů Rastry Jeden ze dvou význačných fenoménů GIS Některé GIS nástroje pracují výhradně pouze v

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Kartografické stupnice. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita

Kartografické stupnice. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Kartografické stupnice Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Datum vytvoření dokumentu: 20. 9. 2004 Datum poslední aktualizace: 16. 10. 2012 Stupnice

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh Algoritmizace prostorových úloh Vektorová data Daniela Szturcová Prostorová data Geoobjekt entita definovaná v prostoru. Znalost jeho identifikace, lokalizace umístění v prostoru, vlastností vlastních

Více

5. přednáška z předmětu GIS1 Princip tvorby dat

5. přednáška z předmětu GIS1 Princip tvorby dat 5. přednáška z předmětu GIS1 Princip tvorby dat Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky z www.gis.zcu.cz Předmět KMA/UGI, autor Ing. K. Jedlička

Více

Grafika na počítači. Bc. Veronika Tomsová

Grafika na počítači. Bc. Veronika Tomsová Grafika na počítači Bc. Veronika Tomsová Proces zpracování obrazu Proces zpracování obrazu 1. Snímání obrazu 2. Digitalizace obrazu převod spojitého signálu na matici čísel reprezentující obraz 3. Předzpracování

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Úlohy nad rastrovými daty Daniela

Více

DIPLOMOVÁ PRÁCE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. Obor geoinformatika Katedra mapování a kartografie. Mapová algebra v GIS. Map algebra in GIS

DIPLOMOVÁ PRÁCE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. Obor geoinformatika Katedra mapování a kartografie. Mapová algebra v GIS. Map algebra in GIS ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta Stavební Obor geoinformatika Katedra mapování a kartografie DIPLOMOVÁ PRÁCE Mapová algebra v GIS Map algebra in GIS Anna MACUROVÁ Vedoucí bakalářské práce:

Více

4. Digitální model terénu.

4. Digitální model terénu. 4. Digitální model terénu. 154GEY2 Geodézie 2 4.1 Úvod - Digitální model terénu. 4.2 Tvorba digitálního modelu terénu. 4.3 Druhy DMT podle typu ploch. 4.4 Polyedrický model terénu (TIN model). 4.5 Rastrový

Více

9 Prostorová grafika a modelování těles

9 Prostorová grafika a modelování těles 9 Prostorová grafika a modelování těles Studijní cíl Tento blok je věnován základům 3D grafiky. Jedná se především o vysvětlení principů vytváření modelů 3D objektů, jejich reprezentace v paměti počítače.

Více

Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace. Maturitní otázky z předmětu INFORMATIKA A VÝPOČETNÍ TECHNIKA

Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace. Maturitní otázky z předmětu INFORMATIKA A VÝPOČETNÍ TECHNIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu INFORMATIKA A VÝPOČETNÍ TECHNIKA 1. Algoritmus a jeho vlastnosti algoritmus a jeho vlastnosti, formy zápisu algoritmu

Více

VÝUKA SYSTÉMU IDRISI NA KATEDŘE GEOINFORMATIKY PŘÍRODOVĚDECKÉ FAKULTY UNIVERZITY PALACKÉHO V OLOMOUCI

VÝUKA SYSTÉMU IDRISI NA KATEDŘE GEOINFORMATIKY PŘÍRODOVĚDECKÉ FAKULTY UNIVERZITY PALACKÉHO V OLOMOUCI VÝUKA SYSTÉMU IDRISI NA KATEDŘE GEOINFORMATIKY PŘÍRODOVĚDECKÉ FAKULTY UNIVERZITY PALACKÉHO V OLOMOUCI Vilém Pechanec, Pavel SEDLÁK http://www.geoinformatics.upol.cz Geoinformatika v Olomouci ECO-GIS Centrum

Více

Využití letecké fotogrammetrie pro sledování historického vývoje krajiny

Využití letecké fotogrammetrie pro sledování historického vývoje krajiny Využití letecké fotogrammetrie pro sledování historického vývoje krajiny Jitka Elznicová Katedra informatiky a geoinformatiky Fakulta životního prostředí Univerzita J.E.Purkyně v Ústí nad Labem Letecké

Více

Terestrické 3D skenování

Terestrické 3D skenování Jan Říha, SPŠ zeměměřická www.leica-geosystems.us Laserové skenování Technologie, která zprostředkovává nové možnosti v pořizování geodetických dat a výrazně rozšiřuje jejich využitelnost. Metoda bezkontaktního

Více

VY_32_INOVACE_INF.10. Grafika v IT

VY_32_INOVACE_INF.10. Grafika v IT VY_32_INOVACE_INF.10 Grafika v IT Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 GRAFIKA Grafika ve smyslu umělecké grafiky

Více

Metodický pokyn. k zadávání fotogrammetrických činností pro potřeby vymezování záplavových území

Metodický pokyn. k zadávání fotogrammetrických činností pro potřeby vymezování záplavových území Ministerstvo zemědělství ČR Č.j.: 28181/2005-16000 Metodický pokyn k zadávání fotogrammetrických činností pro potřeby vymezování záplavových území Určeno: K využití: státním podnikům Povodí Zemědělské

Více

GIS a DPZ v geologii. Geoinformační systémy. Dálkový průzkum Země. Ondrej Lexa. Karel Martínek

GIS a DPZ v geologii. Geoinformační systémy. Dálkový průzkum Země. Ondrej Lexa. Karel Martínek GIS a DPZ v geologii Geoinformační systémy Ondrej Lexa Dálkový průzkum Země Karel Martínek Cíle získat nejzákladnější teoretické znalosti terminologie a principů GIS a DPZ žijeme v informačním věku postindustriální

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

Vyučovací hodina. 1vyučovací hodina: 2vyučovací hodiny: Opakování z minulé hodiny. Procvičení nové látky

Vyučovací hodina. 1vyučovací hodina: 2vyučovací hodiny: Opakování z minulé hodiny. Procvičení nové látky Vyučovací hodina 1vyučovací hodina: Opakování z minulé hodiny Nová látka Procvičení nové látky Shrnutí 5 min 20 min 15 min 5 min 2vyučovací hodiny: Opakování z minulé hodiny Nová látka Procvičení nové

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Laserové skenování (1)

Laserové skenování (1) (1) Prohloubení nabídky dalšího vzdělávání v oblasti zeměměřictví a katastru nemovitostí ve Středočeském kraji CZ.1.07/3.2.11/03.0115 Projekt je finančně podpořen Evropským sociálním fondem astátním rozpočtem

Více

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace

Více

Úvod do GIS. Karel Jedlička. Analýza a syntéza II. Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium.

Úvod do GIS. Karel Jedlička. Analýza a syntéza II. Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium. Úvod do GIS Analýza a syntéza II Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium. Karel Jedlička Analýzy a syntézy v GIS Co je analýza a syntéza Měřící funkce

Více

3D modelování. Výška objektů

3D modelování. Výška objektů terénu a objektů na něm bude předvedeno v produktu ESRI ArcGIS 3D Analyst, který zahrnuje i aplikace ArcGlobe a ArcScene. Pomocí nich lze na své zájmové území podívat z ptačí perspektivy. Na plasticky

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Výrazy Operátory Výrazy Verze pro akademický rok 2012/2013 1 Operace, operátory Unární jeden operand, operátor se zapisuje ve většině případů před operand, v některých případech

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

ROZVOJ SLUŽEB GEOPORTÁLU ČÚZK

ROZVOJ SLUŽEB GEOPORTÁLU ČÚZK Zeměměřický úřad ROZVOJ SLUŽEB GEOPORTÁLU ČÚZK Ing. Petr Dvořáček Zeměměřický úřad 9. dubna 2013, Hradec Králové http://geoportal.cuzk.cz ČÚZK - jaké geografické informace poskytuje Informace z katastru

Více

Předpokládané znalosti žáka 1. stupeň:

Předpokládané znalosti žáka 1. stupeň: Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje

Více

Mapový server Marushka. Technický profil

Mapový server Marushka. Technický profil Technický profil Úvodní informace Mapový aplikační server Marushka představuje novou generaci prostředků pro publikaci a využívání dat GIS v prostředí Internetu a intranetu. Je postaven na komponentové

Více

GIS Idrisi na Fakultě stavební ČVUT v Praze

GIS Idrisi na Fakultě stavební ČVUT v Praze GIS Idrisi na Fakultě stavební Josef Krása Katedra hydromeliorací a krajinného inženýrství Stavební fakulta Josef.krasa@fsv.cvut.cz Katedra hydromeliorací a krajinného inženýrství výuka - obory Životní

Více

Maturitní otázky z předmětu PROGRAMOVÁNÍ

Maturitní otázky z předmětu PROGRAMOVÁNÍ Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu PROGRAMOVÁNÍ 1. Algoritmus a jeho vlastnosti algoritmus a jeho vlastnosti, formy zápisu algoritmu ověřování správnosti

Více

Datové modely v GIS pro uložení prostorových dat. Uložení atributových dat

Datové modely v GIS pro uložení prostorových dat. Uložení atributových dat Datové modely v GIS pro uložení prostorových dat Uložení atributových dat Datové modely v GIS pro ukládání prostorových dat Minule - reprezentace prostoru v GIS Dnes ukládání prostorových dat: Špagetový

Více

KMA/PDB. Karel Janečka. Tvorba materiálů byla podpořena z prostředků projektu FRVŠ č. F0584/2011/F1d

KMA/PDB. Karel Janečka. Tvorba materiálů byla podpořena z prostředků projektu FRVŠ č. F0584/2011/F1d KMA/PDB Prostorové databáze Karel Janečka Tvorba materiálů byla podpořena z prostředků projektu FRVŠ č. F0584/2011/F1d Sylabus předmětu KMA/PDB Úvodní přednáška Základní terminologie Motivace rozdíl klasické

Více

LabView jako programovací jazyk II

LabView jako programovací jazyk II LabView jako programovací jazyk II - Popis jednotlivých funkcí palety Function II.část - Funkce Numeric, Array, Cluster Ing. Martin Bušek, Ph.D. Práce s daty typu NUMERIC Numerické funkce obsahuje funkce

Více

Úvod do GIS. Karel Jedlička. Zpracování dat II. Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium.

Úvod do GIS. Karel Jedlička. Zpracování dat II. Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium. Úvod do GIS Zpracování dat II Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium. Karel Jedlička Zpracování dat Převody mezi reprezentacemi... Vektorizace Rasterizace

Více

PROSTOROVÁ DATA. verze 1.0. autoři listu: Lukáš Holman, video Jan Kříž

PROSTOROVÁ DATA. verze 1.0. autoři listu: Lukáš Holman, video Jan Kříž PROSTOROVÁ DATA verze 1.0 autoři listu: Lukáš Holman, video Jan Kříž Cíle V tomto pracovním listu se student: seznámí se základními druhy prostorových dat používaných v geoinformatice, jmenuje jejich výhody

Více

Geografické informační systémy

Geografické informační systémy Geografické informační systémy Co je to GIS? Tato zkratka se používá pro Geografické Informační Systémy. V současné literatuře se objevuje velké množství definic GIS. Jednu z nejvýstižnějších definic uvádí

Více

3D v datových specifikacích INSPIRE. Lukáš HERMAN Geografický ústav PřF MU Brno

3D v datových specifikacích INSPIRE. Lukáš HERMAN Geografický ústav PřF MU Brno 3D v datových specifikacích INSPIRE Lukáš HERMAN Geografický ústav PřF MU Brno Obsah 3D a referenční systémy 3D v datových specifikacích Téma Nadmořská výška (Elevation) Terminologie Reprezentace dat Kvalita

Více

Modernizace technologií správy a aktualizace ZABAGED. Martin Sovadina

Modernizace technologií správy a aktualizace ZABAGED. Martin Sovadina Modernizace technologií správy a aktualizace ZABAGED Martin Sovadina ZABAGED Základní báze geografických dat Digitální geografický model území České republiky Úroveň přesnosti a podrobnosti Základní mapy

Více

STRUKTURA RASTROVÝCH DAT

STRUKTURA RASTROVÝCH DAT STRUKTURA RASTROVÝCH DAT dva typy rastrové vrstvy v GIS 1) Digitální obraz TV, počítač, mobil - obrazovka obraz z bodů mapa - mřížka s barevnými plochami 2) Rastrová data data pro analýzu a) binární -

Více

Katedra geoinformatiky Univerzita Palackého v Olomouci

Katedra geoinformatiky Univerzita Palackého v Olomouci Katedra geoinformatiky Univerzita Palackého v Olomouci Jaroslav Burian 18. 11. 2014, Brno Palacký University Katedra geologie Katedra ekologie Katedra rozvojových studií Katedra geografie Katedra geoinformatiky

Více

Inovace výuky prostřednictvím šablon pro SŠ

Inovace výuky prostřednictvím šablon pro SŠ Název projektu Číslo projektu Název školy Autor Název šablony Název DUMu Stupeň a typ vzdělávání Vzdělávací oblast Vzdělávací obor Tematický okruh Inovace výuky prostřednictvím šablon pro SŠ CZ.1.07/1.5.00/34.0748

Více

6.1 I.stupeň. Vzdělávací oblast: Matematika a její aplikace 6.1.3. Vyučovací předmět: MATEMATIKA. Charakteristika vyučovacího předmětu 1.

6.1 I.stupeň. Vzdělávací oblast: Matematika a její aplikace 6.1.3. Vyučovací předmět: MATEMATIKA. Charakteristika vyučovacího předmětu 1. 6.1 I.stupeň Vzdělávací oblast: Matematika a její aplikace 6.1.3. Vyučovací předmět: MATEMATIKA Charakteristika vyučovacího předmětu 1. stupeň Vzdělávací obsah je rozdělen na čtyři tematické okruhy : čísla

Více

VÝPOČETNÍ TECHNIKA OBOR: EKONOMIKA A PODNIKÁNÍ ZAMĚŘENÍ: PODNIKÁNÍ FORMA: DENNÍ STUDIUM

VÝPOČETNÍ TECHNIKA OBOR: EKONOMIKA A PODNIKÁNÍ ZAMĚŘENÍ: PODNIKÁNÍ FORMA: DENNÍ STUDIUM VÝPOČETNÍ TECHNIKA OBOR: EKONOMIKA A PODNIKÁNÍ ZAMĚŘENÍ: PODNIKÁNÍ FORMA: DENNÍ STUDIUM 1. Historie a vývoj VT. Dnešní parametry PC. Von Neumannovo schéma. a. historie a vznik počítačů b. využití počítačů

Více

Dostupné zdroje geodat v ČR - nekomerční, státní správa, privátní sféra

Dostupné zdroje geodat v ČR - nekomerční, státní správa, privátní sféra Dostupné zdroje geodat v ČR - nekomerční, státní správa, privátní sféra Geografická data nekomerční nebo volně dostupná komerční státní správa privátní sféra všeobecná specializovaná pokrývají celé území

Více

ZEMĚMĚŘICKÝ ÚŘAD. Představení produktů Českého úřadu zeměměřického a katastrálního. Petr Dvořáček

ZEMĚMĚŘICKÝ ÚŘAD. Představení produktů Českého úřadu zeměměřického a katastrálního. Petr Dvořáček ZEMĚMĚŘICKÝ ÚŘAD Představení produktů Českého úřadu zeměměřického a katastrálního Petr Dvořáček Odborný seminář pracovníků stavebních úřadů Královéhradeckého kraje Hradec Králové 30. 6. 2016 Přehled základních

Více

2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence

2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence 2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence Přednáška č.7 Vytyčování, souřadnicové výpočty, podélné a příčné profily Vytyčování Geodetická činnost uskutečněná odborně a nestranně na

Více

Maturitní témata pro 1.KŠPA Kladno, s.r.o. Výpočetní technika

Maturitní témata pro 1.KŠPA Kladno, s.r.o. Výpočetní technika Maturitní témata pro 1.KŠPA Kladno, s.r.o. Předmět Typ zkoušky Obor Forma Zkoušející Období Výpočetní technika Profilová ústní Ekonomika a podnikání zaměření Podnikání Denní / Distanční Ing. Horová / K.

Více

Hodnocení obtížnosti cyklotras pomocí fuzzy modelů na území Jihomoravského kraje

Hodnocení obtížnosti cyklotras pomocí fuzzy modelů na území Jihomoravského kraje Hodnocení obtížnosti cyklotras pomocí fuzzy modelů na území Jihomoravského kraje Rastrová analýza pomocí Mamdaniho metody RNDr. Pavel Kolisko Úvod aktualizace obtížnosti sítě cyklotras je vyžadována zastaralostí,

Více

3D MAPY V ČEM JSOU FAJN A PROČ OBČAS NEFUNGUJÍ. Mgr. Radim Štampach, Ph.D. Geografický ústav Přírodovědecká fakulta Masarykova univerzita

3D MAPY V ČEM JSOU FAJN A PROČ OBČAS NEFUNGUJÍ. Mgr. Radim Štampach, Ph.D. Geografický ústav Přírodovědecká fakulta Masarykova univerzita 3D MAPY V ČEM JSOU FAJN A PROČ OBČAS NEFUNGUJÍ Mgr. Radim Štampach, Ph.D. Geografický ústav Přírodovědecká fakulta Masarykova univerzita Co znamená 3D? Co znamená 3D? Dimenze Topologické dimenze (EN: Coordinate

Více

Moderní systémy pro získávání znalostí z informací a dat

Moderní systémy pro získávání znalostí z informací a dat Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:

Více

Prostorová data pro INSPIRE, pro veřejnou správu i pro veškerou veřejnost

Prostorová data pro INSPIRE, pro veřejnou správu i pro veškerou veřejnost Prostorová data pro INSPIRE, pro veřejnou správu i pro veškerou veřejnost Ing. Petr Dvořáček Zeměměřický úřad Geoinformace ve veřejné správě 27. 28. 5. 2013, Praha http://geoportal.cuzk.cz Přehled prezentace

Více

Ing. Jiří Fejfar, Ph.D. Geo-informační systémy

Ing. Jiří Fejfar, Ph.D. Geo-informační systémy Ing. Jiří Fejfar, Ph.D. Geo-informační systémy Definice, budování a život GIS Kapitola 1: Vztahy strana 2 Data, informace, IS, GIS Kapitola 1: Vztahy strana 3 Rozhodnutí Znalosti Znalostní systémy. Informace

Více

IVT. Rastrová grafika. 8. ročník

IVT. Rastrová grafika. 8. ročník IVT Rastrová grafika 8. ročník listopad, prosinec 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443

Více

Kartogramy. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita

Kartogramy. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Kartogramy Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Datum vytvoření dokumentu: 20. 9. 2004 Datum poslední aktualizace: 17. 10. 2011 Definice Kartogram je

Více

Přednáška 4. 1GIS2 Pokročilé aplikace digitálních modelů terénu, rastrová algebra, rastrové modelování FŽP UJEP

Přednáška 4. 1GIS2 Pokročilé aplikace digitálních modelů terénu, rastrová algebra, rastrové modelování FŽP UJEP Přednáška 4 1GIS2 Pokročilé aplikace digitálních modelů terénu, rastrová algebra, rastrové modelování FŽP UJEP Rastrové analýzy Analýzy spojitosti (konektivity) zajímají nás funkční vztahy na rozhraních

Více

Digitální kartografie 10

Digitální kartografie 10 Digitální kartografie 10 Možnosti vizualizace geodat v ESRI ArcGIS Digitální kartografie 10 Digitální model terénu v geodatabázi Tvorba příčných profilů 3D vizualizace DMT v geodatabázi strana 2 Založte

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu V.9.3. Vzdělávací obsah vyučovacího předmětu Vzdělávací oblast: Inormatika a informační a komunikační technologie Vyučovací předmět: Informatika Ročník: 1. ročník + kvinta chápe a používá základní termíny

Více

Osobní počítač. Zpracoval: ict Aktualizace: 10. 11. 2011

Osobní počítač. Zpracoval: ict Aktualizace: 10. 11. 2011 Osobní počítač Zpracoval: ict Aktualizace: 10. 11. 2011 Charakteristika PC Osobní počítač (personal computer - PC) je nástroj člověka pro zpracovávání informací Vyznačuje se schopností samostatně pracovat

Více

Vícerozměrné statistické metody

Vícerozměrné statistické metody Vícerozměrné statistické metody Vícerozměrné statistické rozdělení a testy, operace s vektory a maticemi Jiří Jarkovský, Simona Littnerová FSTA: Pokročilé statistické metody Vícerozměrné statistické rozdělení

Více

Katedra informatiky, Univerzita Palackého v Olomouci. 27. listopadu 2013

Katedra informatiky, Univerzita Palackého v Olomouci. 27. listopadu 2013 Katedra informatiky, Univerzita Palackého v Olomouci 27. listopadu 2013 Rekonstrukce 3D těles Reprezentace trojrozměrných dat. Hledání povrchu tělesa v těchto datech. Představení několika algoritmů. Reprezentace

Více

Hospodářská informatika

Hospodářská informatika Hospodářská informatika HINFL, HINFK Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu reg.

Více