9 Prostorová grafika a modelování těles

Rozměr: px
Začít zobrazení ze stránky:

Download "9 Prostorová grafika a modelování těles"

Transkript

1 9 Prostorová grafika a modelování těles Studijní cíl Tento blok je věnován základům 3D grafiky. Jedná se především o vysvětlení principů vytváření modelů 3D objektů, jejich reprezentace v paměti počítače. Doba nutná k nastudování 3-4 hodiny Průvodce studiem Při studiu tohoto bloku se předpokládá, že student je seznámen se základy analytické geometrie a ovládá základní operace pro práci s maticemi a jejich vyjádření D grafika a modelování 3D vektorová grafika je ve svém základu postavena na obdobných principech jako rovinná vektorová grafika. Jediný rozdíl je přidání třetího rozměru, který je realizován třetí osou (označovanou jako osa z). Každý bod je popsán trojicí reálných souřadnic, to znamená, že definice bodu P v prostoru má tvar P[x, y, z]. Každou rovinnou vektorovou grafiku je možno obecně převést do prostoru, přičemž definice každého bodu je doplněna o třetí souřadnici z, která je nastavena na hodnotu Modelování a modely Modelování v 3D grafice je proces, pomocí něhož vytváříme trojrozměrný model prostorového tělesa (případně skupiny těles) z reálného světa. Tento model popisuje tvar a polohu prostorových objektů za pomoci datových struktur a algoritmů pro vytváření a následnou manipulaci s 3D objekty. Model je uložen jako data v paměti počítače a na základě příslušných algoritmů je možno s ním provádět příslušné operace (např. změna polohy, změna tvaru, zobrazení na dvourozměrném zobrazovacím zařízení, atd.). KST/IPOGR 9-1 Petr Veselý

2 Každý 3D objekt vyplňuje jistou prostorovou oblast, která může nebo nemusí být souvislá. K popisu modelu zle použít několik různých způsobů (typů modelů), přičemž každý způsob má své výhody a nevýhody. Některé způsoby jsou např. vhodnější na definování modelů, u kterých budou často probíhat objemové výpočty, jiné jsou úspornější z hlediska paměťové náročnosti. Některé z často využívaných modelů budou stručně popsány v následujících kapitolách Hranový model Hmota tělesa je ohraničena stěnami, které jsou vymezeny hranami, přičemž každá hrana začíná a končí ve vrcholu. Hrany jsou uspořádány do smyček, které vymezují danou stěnu. Obrázek 1: Modelování kvádru pomocí hranového modelu Tento model je často označován jako drátěný model (Wireframe Model). Ve své nejjednodušší podobě je popsán pomocí vrcholů a hran. Mezi hlavní nevýhody tohoto modelu patří např. absence definování hmoty tělesa, problematický výpočet objemu a nejednoznačnosti při některých operacích, např. při dělení tělesa. Prakticky tento model nestačí na úplný popis tělesa, nicméně jsou aplikace 3D grafiky, kde je tento jednoduchý způsob postačující. Na následujícím obrázku je prakticky ukázáno, jak může dojít ke zmíněné nejednoznačnosti. Model kvádru je rozdělen naznačenou rovinou. V hranovém modelu není problém určit, kterých hran se operace dělení týká. V místě, kde jednotlivé hrany protíná dělící rovina vzniknou nové vrcholy modelu. Ovšem jejich korektní propojení nově vytvořenými hranami již nemusí být jednoznačné, vzhledem k tomu, že model nedefinoval objem (vnitřní oblast) tělesa. KST/IPOGR 9-2 Petr Veselý

3 Varianta A Varianta B Obrázek 2: Nejednoznačnost při editaci hranového modelu Objemový model Objemový model (Volume Model, Solid Model) je zaměřen na definování vnitřní oblasti (objemu) tělesa. Algoritmy pracující s tímto typem modelu podporují přímé určení objemu, operace slučování a dělení, ale naopak neposkytují přímo definici povrchu tělesa. Povrch tělesa je nutno v tomto modelu určovat (aproximovat) relativně složitými algoritmy Model je založen na elementární objemové jednotce, tzv. voxelu (Volume Element). Je to prostorový ekvivalent pixelu, který je používán v rastrové rovinné grafice. Obdobně jako je 2D rastrový obraz složen z pixelů, jejichž počet určuje velikost obrázku, je celý popisovaný 3D prostor složen z jednotlivých voxelů, které mají tvar krychle. Pixel ve 2D grafice nese informaci o barvě, voxel může rovněž obsahovat barvovou informaci, ale především definuje, zda prostor jím ohraničený je nebo není součástí modelovaného tělesa. KST/IPOGR 9-3 Petr Veselý

4 Obrázek 3: Ukázka modelování těles pomocí objemového modelu Základní datovou strukturou pro popis voxelů v modelu může být trojrozměrné pole. Tato primitivní reprezentace dat a tím pádem celý model je paměťově velmi náročný, neboť je nutno (stejně jako u pixelů ve 2D) uchovávat informace i o prostoru, který je prázdný. Řešením této nevýhody je nalezení vhodného způsobu, který umožnuje popisovat pouze ty voxely, které jsou součástí modelovaného tělesa. Jedna z vhodných reprezentací je oktalový strom Oktalový strom Oktalový strom je založen na principu hierarchického uspořádání různě velkých podprostorů ve tvaru krychle, pomocí nichž je možno úsporným způsobem popsat modelované těleso. Následující příklad názorně ukáže princip a tvorbu oktalového stromu pro těleso, které je znázorněno na obrázku 4. Obrázek 4: Reálné zobrazení modelovaného tělesa KST/IPOGR 9-4 Petr Veselý

5 Předpokládejme, že velikost strany voxelu je 1/8 strany modelované krychle s odříznutým vrcholem. Pokud by bylo k popisu objemového modelu použito trojrozměrné pole voxelů, bylo by potřeba pro popis všech voxelů použít pole o rozměrech 8 x 8 x 8, tj. 12 prvků s informací, zda daný voxel tvoří nebo netvoří objem modelovaného tělesa. Obrázek 5: Popis tělesa jednotlivými voxely Celé těleso je možno ohraničit krychlí o velikosti strany 8 voxelů. Tuto krychli je možno popsat pomocí 8 podprostorů o tvaru krychle a velikosti strany 4 voxely. Každou z těchto krychlí je možno popsat opět pomocí 8 podprostorů o tvaru krychle a velikosti strany 2 voxely. A takto je možno rekurzivně pokračovat až se dostaneme k podrpostorům o velikosti jednoho voxelu. Obrázek 6: Dělení na podprostory Princip vytváření voxelového stromu spočívá v tom, že pokud daný podprostor (na libovolné úrovni) je celý vyplněn modelovaným objektem, případně je celý prázdný, nebude tento podprostor již dále dělen na podprostory nižší úrovně a ve struktuře bude popsán jako celek. KST/IPOGR 9-5 Petr Veselý

6 Obrázek 7: Oktalový strom Předchozí obrázek naznačuje vytvoření části stromu pro daný model. Červený prvek představuje podprostor (krychli) na nejvyšší úrovni o délce strany 8 voxelů, zelené představují 2 úroveň podprostorů o délce strany 4 voxely, modré jsou prvky pro krychle o délce strany 2 voxely a žluté prvky představují podprostory na úrovni jednotlivých voxelů. Každý prvek stromu nese informaci, zda: je celý vyplněn tělesem (plné zabarvení čtverce), je vyplněn tělesem pouze částečně (barevný trojúhelník) a bude se dále dělit, těleso do něj nezasahuje vůbec (prázdný čtverec) CSG modely Modelování pomocí konstruktivní geometrie těles CSG (Constructive Solid Geometry) je vhodné pro vytváření modelů těles, které v reálném světě vznikají pomocí reálných technologických operací jako je lepení, sváření, vrtání, řezání atd. Tento model snadno napodobuje obráběcí operace. Model je postaven na třech pilířích, pomocí nichž je těleso modelováno. Jedná se o strom složený z CSG primitiv (kvádr, koule, válec, kužel, poloprostor, toroid), množinových operací (sjednocení, rozdíl, průnik), transformací (otočení, posunutí, změna měřítka, ad.). KST/IPOGR 9-6 Petr Veselý

7 Na následujícím obrázku je uveden příklad, kde je výsledné těleso modelováno pomocí čtyř primitiv (tří kvádrů a válce), u nižch je pomocí transformací příslušně upravena velikost a poloha. Následně jsou tyto primitivy postupně spojeny (např. operace +, představující např. lepení). Záverečná operace (označená jako -) představuje vrtání otvoru. Obrázek 8: Ukázka stromu CSG modelování Šablonování Konstrukce některých modelů by byla předchozími způsoby velmi pracná, případně by došlo při modelování k velkým nepřesnostem. Šablonu v tomto případě tvoří určitý liniový nebo plošný útvar, který při použití transformace posunutí nebo otočení opíše (definuje) povrch modelovaného tělesa. Používá se tam, kde např. konstrukce množinovými operacemi není vhodná. Jedná se především o tělesa, která jsou symetrická okolo vlastní osy, případně mohou být modelována pomocí Rotační šablonování: Jedná se především o tělesa, která jsou symetrická okolo vlastní osy a šablonu tvoří liniový útvar (křivka) Přímkové (křivkové) šablonování: je realizováno pomocí tažení (Sweep) plošného útvaru po definované trajektorii (křivka) KST/IPOGR 9-7 Petr Veselý

8 Obrázek 9: Těleso vzniklé rotací Obrázek 10: Tělesa vzniklé tažením po křivce a po přímce Obrázek 11: Tělesa vzniklé tažením kružnice po křivce Povrchový model Tento model je založen na definici povrchu tělesa. Povrch je obecně definován pomocí množiny jednoduchých rovinných útvarů, které je snadné popsat KST/IPOGR 9-8 Petr Veselý

9 analyticky (analyticky definované plochy a především B-spline a Bezierovy plochy). Prakticky jsou výhradně používány trojúhelníky. Nevýhodou tohoto způsobu modelování jsou problémy při výpočtu objemu, těžiště, momentů, atd. Výhodou je možnost precizního popsání těles se složitým povrchem. Jemnost modelu (zachycení požadovaných detailů) je možno řešit lokálně v požadovaných částech modelu dalším přidáváním dalších definičních bodů. Obrázek 12: Ukázka povrchových modelů Obrázek 13: Srovnání tělesa, modelovaného pomocí různých modelů Pojmy k zapamatování Prostorová grafika, modelování, model, hranový model, objemový model, voxel, povrchový model, CSG modelování, oktalový strom KST/IPOGR 9-9 Petr Veselý

10 Otázky na procvičení 1. Na jakých principech je založena prostorová grafika? 2. Co je to modelování? 3. Jaké jsou základní způsoby modelování? 4. Jak je popsáno těleso v hranovém modelu? 5. Jaké jsou výhody a nevýhody objemového modelování? 6. Co je to voxel? 7. Jaké znáte způsoby reprezentace voxelů při objemovém modelování? 8. Která tělesa je vhodné modelovat pomocí šablonování? 9. Co je CSG modelování? 10. Jaké jsou základní prvky CSG modelování? 11. Jaké jsou výhody povrchového modelování? Odkazy a další studijní prameny Žára, J., Beneš, B., Felkel, P. Moderní počítačová grafika. Computer Press, Brno, ISBN Pelikán, J. PC-prostorové modelování. Grada, Praha, ISBN Beneš, B., Felkel, P., Sochor, J., Žára, J. Skripta Vizualizace. Foley, Van D. Computer Graphics. Principles and Practice. Addison-Wesley,1991. Cenek, P.,. Univerzita Pardubice, ISBN KST/IPOGR 9-10 Petr Veselý

Jana Dannhoferová Ústav informatiky, PEF MZLU

Jana Dannhoferová Ústav informatiky, PEF MZLU Počítačová grafika 1. Definice oblasti souvisí: a) s definováním množiny všech bodů, které náleží do hranice a zároveň do jejího vnitřku b) s popisem její hranice c) s definováním množiny všech bodů, které

Více

11 Zobrazování objektů 3D grafiky

11 Zobrazování objektů 3D grafiky 11 Zobrazování objektů 3D grafiky Studijní cíl Tento blok je věnován základním algoritmům zobrazení 3D grafiky. Postupně budou probrány základní metody projekce kolmé promítání, rovnoběžné promítání a

Více

13 Barvy a úpravy rastrového

13 Barvy a úpravy rastrového 13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody

Více

Multimediální systémy. 11 3d grafika

Multimediální systémy. 11 3d grafika Multimediální systémy 11 3d grafika Michal Kačmařík Institut geoinformatiky, VŠB-TUO Osnova přednášky Princip 3d objekty a jejich reprezentace Scéna a její osvětlení Promítání Renderování Oblasti využití

Více

12 Metody snižování barevného prostoru

12 Metody snižování barevného prostoru 12 Metody snižování barevného prostoru Studijní cíl Tento blok je věnován základním metodám pro snižování barevného rozsahu pro rastrové obrázky. Postupně zde jsou vysvětleny důvody k použití těchto algoritmů

Více

Modely prostorových těles

Modely prostorových těles 1 3 úrovně pohledu na modely 2 Modely prostorových těles 1997 Josef Pelikán, MFF UK Praha 2007 Jiří Sochor, FI MU Brno svět - fyzikální objekty nemůžeme postihnout jejich složitost a mikroskopické detaily

Více

Počítačová grafika RHINOCEROS

Počítačová grafika RHINOCEROS Počítačová grafika RHINOCEROS Ing. Zuzana Benáková Základní otázkou grafických programů je způsob zobrazení určitého tvaru. Existují dva základní způsoby prezentace 3D modelů v počítači. První využívá

Více

Základy 3D modelování a animace v CGI systémech Cinema 4D C4D

Základy 3D modelování a animace v CGI systémech Cinema 4D C4D EVROPSKÝ SOCIÁLNÍ FOND Základy 3D modelování a animace v CGI systémech Cinema 4D C4D PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Mgr. David Frýbert 2013 CGI systémy Computer - generated imagery - aplikace

Více

Text úlohy. Která barva nepatří do základních barev prostoru RGB? Vyberte jednu z nabízených možností: a. Černá b. Červená c. Modrá d.

Text úlohy. Která barva nepatří do základních barev prostoru RGB? Vyberte jednu z nabízených možností: a. Černá b. Červená c. Modrá d. Úloha 1 Která barva nepatří do základních barev prostoru RGB? a. Černá b. Červená c. Modrá d. Zelená Úloha 2 V rovině je dán NEKONVEXNÍ n-úhelník a bod A. Pokud paprsek (polopřímka) vedený z tohoto bodu

Více

Geometrické transformace pomocí matic

Geometrické transformace pomocí matic Geometrické transformace pomocí matic Pavel Strachota FJFI ČVUT v Praze 2. dubna 2010 Obsah 1 Úvod 2 Geometrické transformace ve 2D 3 Geometrické transformace ve 3D Obsah 1 Úvod 2 Geometrické transformace

Více

5 Algoritmy vyplňování 2D oblastí

5 Algoritmy vyplňování 2D oblastí 5 Algoritmy vyplňování 2D oblastí Studijní cíl Tento blok je věnován základním algoritmům pro vyplňování plošných objektů. V textu bude vysvětlen rozdíl mezi vyplňováním oblastí, které jsou definovány

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

VY_32_INOVACE_INF.10. Grafika v IT

VY_32_INOVACE_INF.10. Grafika v IT VY_32_INOVACE_INF.10 Grafika v IT Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 GRAFIKA Grafika ve smyslu umělecké grafiky

Více

Reprezentace 3D scény

Reprezentace 3D scény Reprezentace 3D scény 1995-2016 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 36 Metody reprezentace 3D scén objemové reprezentace přímé informace o vnitřních

Více

GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 6

GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 6 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 6 Lubomír Vašek Zlín 2013 Obsah... 3 1. Základní pojmy... 3 2. Princip rastrové reprezentace... 3 2.1 Užívané

Více

1.8. Úprava uživatelského prostředí AutoCADu 25 Přednostní klávesy 25 Pracovní prostory 25

1.8. Úprava uživatelského prostředí AutoCADu 25 Přednostní klávesy 25 Pracovní prostory 25 Obsah 1 Novinky v AutoCADu 2006 11 1.1. Kreslení 11 Dynamické zadávání 11 Zvýraznění objektu po najetí kurzorem 12 Zvýraznění výběrové oblasti 13 Nový příkaz Spoj 14 Zkosení a zaoblení 15 Vytvoření kopie

Více

Počítačová geometrie I

Počítačová geometrie I 0 I RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info Osnova předmětu Pojem výpočetní geometrie, oblasti

Více

Obecný princip 3D numerického modelování výrubu

Obecný princip 3D numerického modelování výrubu Obecný princip 3D numerického modelování výrubu Modelovaná situace Svislé zatížení nadloží se přenáší horninovým masivem na bok tunelu Soustava lineárních rovnic Soustavou lineárních rovnic popíšeme určované

Více

Katedra informatiky, Univerzita Palackého v Olomouci. 27. listopadu 2013

Katedra informatiky, Univerzita Palackého v Olomouci. 27. listopadu 2013 Katedra informatiky, Univerzita Palackého v Olomouci 27. listopadu 2013 Rekonstrukce 3D těles Reprezentace trojrozměrných dat. Hledání povrchu tělesa v těchto datech. Představení několika algoritmů. Reprezentace

Více

REPREZENTACE 3D SCÉNY

REPREZENTACE 3D SCÉNY REPREZENTACE 3D SCÉNY JANA ŠTANCLOVÁ jana.stanclova@ruk.cuni.cz Obrázky (popř. slajdy) převzaty od RNDr. Josef Pelikán, CSc., KSVI MFF UK Obsah reprezentace 3D scény objemové reprezentace výčtové reprezentace

Více

Počítačová grafika 1 (POGR 1)

Počítačová grafika 1 (POGR 1) Počítačová grafika 1 (POGR 1) Pavel Strachota FJFI ČVUT v Praze 8. října 2015 Kontakt Ing. Pavel Strachota, Ph.D. Katedra matematiky Trojanova 13, místnost 033a E-mail: WWW: pavel.strachota@fjfi.cvut.cz

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Úlohy nad rastrovými daty Daniela

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 3. ročník Zpracovala: Mgr. Jiřina Hrdinová Číslo a početní operace čte, zapisuje a porovnává přirozená čísla do 1000, užívá a zapisuje vztah rovnosti a

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Žák cvičí prostorovou představivost Žák využívá při paměťovém i písemném počítání komutativnost i asociativní sčítání a násobení Žák provádí písemné početní operace v oboru Opakování učiva 3. ročníku Písemné

Více

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ),

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), Tělesa 1/6 Tělesa 1.Mnohostěny n-boký hranol Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), hranol kosý hranol kolmý (boční stěny jsou kolmé k rovině podstavy) pravidelný

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

Počítačová grafika. Studijní text. Karel Novotný

Počítačová grafika. Studijní text. Karel Novotný Počítačová grafika Studijní text Karel Novotný P 1 Počítačová grafika očítačová grafika je z technického hlediska obor informatiky 1, který používá počítače k tvorbě umělých grafických objektů a dále také

Více

Grafická data jsou u 2D vektorové grafiky uložena ve voxelech NEPRAVDA Grafická data jsou u rastrové grafiky uložena v pixelech PRAVDA Grafická data

Grafická data jsou u 2D vektorové grafiky uložena ve voxelech NEPRAVDA Grafická data jsou u rastrové grafiky uložena v pixelech PRAVDA Grafická data Grafická data jsou u 2D vektorové grafiky uložena ve voxelech Grafická data jsou u rastrové grafiky uložena v pixelech Grafická data jsou u vektorové grafiky uložena v pixelech Na rozdíl od rastrové grafiky

Více

GIS Geografické informační systémy

GIS Geografické informační systémy GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Obsah. Úvod do prostorového modelování 9. Prostředí AutoCADu při práci ve 3D 15 KAPITOLA 1 KAPITOLA 2

Obsah. Úvod do prostorového modelování 9. Prostředí AutoCADu při práci ve 3D 15 KAPITOLA 1 KAPITOLA 2 KAPITOLA 1 Úvod do prostorového modelování 9 Produkty společnosti Autodesk 9 3D řešení 10 Vertikální řešení založené na platformě AutoCAD 10 Obecný AutoCAD 11 Obecné 2D kreslení 11 Prohlížeče a pomocné

Více

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí

Více

HVrchlík DVrchlík. Anuloid Hrana 3D síť

HVrchlík DVrchlík. Anuloid Hrana 3D síť TVORBA PLOCH Plochy mají oproti 3D drátovým modelům velkou výhodu, pro snadnější vizualizaci modelů můžeme skrýt zadní plochy a vytvořit stínované obrázky. Plochy dále umožňují vytvoření neobvyklých tvarů.

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů.

Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů. Úvod V této knize předkládáme čtenáři základní matematické a fyzikální vzorce v přívětivé a snadno použitelné podobě. Využití čísel a symbolů k modelování, předpovídání a ovládání reality je mocnou zbraní

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Momenty setrvačnosti a deviační momenty

Momenty setrvačnosti a deviační momenty Momenty setrvačnosti a deviační momenty Momenty setrvačnosti a deviační momenty charakterizují spolu shmotností a statickými momenty hmoty rozložení hmotnosti tělesa vprostoru. Jako takové se proto vyskytují

Více

Úvod Typy promítání Matematický popis promítání Implementace promítání Literatura. Promítání. Pavel Strachota. FJFI ČVUT v Praze

Úvod Typy promítání Matematický popis promítání Implementace promítání Literatura. Promítání. Pavel Strachota. FJFI ČVUT v Praze Promítání Pavel Strachota FJFI ČVUT v Praze 30. března 2011 Obsah 1 Úvod 2 Typy promítání 3 Matematický popis promítání 4 Implementace promítání Obsah 1 Úvod 2 Typy promítání 3 Matematický popis promítání

Více

ŠVP Školní očekávané výstupy. - vytváří konkrétní soubory (peníze, milimetrový papír, apod.) s daným počtem prvků do 100

ŠVP Školní očekávané výstupy. - vytváří konkrétní soubory (peníze, milimetrový papír, apod.) s daným počtem prvků do 100 5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 1. období 3. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo M3101 používá přirozená

Více

Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie, Komplexní čísla Třída: 3. ročník Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor Volné rovnoběžné promítání Zobrazí ve volném rovnoběžném

Více

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/ Množiny, funkce

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/ Množiny, funkce Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018 2. Množiny, funkce MNOŽIN, ZÁKLDNÍ POJMY Pojem množiny patří v matematice ke stěžejním. Nelze jej zavést ve formě definice pomocí

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 7. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace provádí početní operace v oboru celých a racionálních čísel zaokrouhluje, provádí odhady

Více

Elementární křivky a plochy

Elementární křivky a plochy Příloha A Elementární křivky a plochy A.1 Analytický popis geometrických objektů Geometrické vlastnosti, které jsme dosud studovali, se týkaly především základních geometrických objektů bodů, přímek, rovin

Více

Hierarchický model. 1995-2013 Josef Pelikán CGG MFF UK Praha. pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 16

Hierarchický model. 1995-2013 Josef Pelikán CGG MFF UK Praha. pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 16 Hierarchický model 1995-2013 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 16 Hierarchie v 3D modelování kompozice zdola-nahoru složitější objekty se sestavují

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

Interaktivní modely pro Konstruktivní geometrii

Interaktivní modely pro Konstruktivní geometrii Interaktivní modely pro Konstruktivní geometrii Jakub Makarovský Abstrakt V příspěvku jsou prezentovány interaktivní modely základních úloh z Konstruktivní geometrie (1. ročník, zimní semestr) zaměřující

Více

Matematická analýza III.

Matematická analýza III. 1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )

Více

2 Grafický výstup s využitím knihovny

2 Grafický výstup s využitím knihovny 2 Grafický výstup s využitím knihovny Studijní cíl Tento blok je věnován základním principům při vytváření grafického výstupu pomocí standardních metod, které poskytuje grafické rozhraní. V textu budou

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

Očekávané výstupy z RVP Učivo Přesahy a vazby

Očekávané výstupy z RVP Učivo Přesahy a vazby Matematika - 1. ročník Používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků obor přirozených čísel : počítání do dvaceti - číslice

Více

Geometrické těleso je prostorově omezený geometrický útvar. Jeho hranicí, povrchem, je uzavřená plocha.

Geometrické těleso je prostorově omezený geometrický útvar. Jeho hranicí, povrchem, je uzavřená plocha. 18. Tělesa řezy, objemy a povrchy, (řez krychle, kvádru, jehlanu, objemy a povrchy mnohostěnů, rotačních těles a jejich částí včetně komolých těles, obvody a obsahy mnohoúhelníků, kruhu a jeho částí) Tělesa

Více

Inovace výuky prostřednictvím šablon pro SŠ

Inovace výuky prostřednictvím šablon pro SŠ Název projektu Číslo projektu Název školy Autor Název šablony Název DUMu Stupeň a typ vzdělávání Vzdělávací oblast Vzdělávací obor Tematický okruh Inovace výuky prostřednictvím šablon pro SŠ CZ.1.07/1.5.00/34.0748

Více

Předpokládané znalosti žáka 1. stupeň:

Předpokládané znalosti žáka 1. stupeň: Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje

Více

Počítačová grafika 2 (POGR2)

Počítačová grafika 2 (POGR2) Počítačová grafika 2 (POGR2) Pavel Strachota FJFI ČVUT v Praze 19. února 2015 Kontakt Ing. Pavel Strachota, Ph.D. Katedra matematiky Trojanova 13, místnost 033a E-mail: pavel.strachota@fjfi.cvut.cz WWW:

Více

Výukové texty. pro předmět. Automatické řízení výrobní techniky (KKS/ARVT) na téma

Výukové texty. pro předmět. Automatické řízení výrobní techniky (KKS/ARVT) na téma Výukové texty pro předmět Automatické řízení výrobní techniky (KKS/ARVT) na téma Podklady a grafická vizualizace k určení souřadnicových systémů výrobních strojů Autor: Doc. Ing. Josef Formánek, Ph.D.

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Povrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3

Povrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3 y, objemy nám vlastně říká, kolik tapety potřebujeme k polepení daného tělesa. Základní jednotkou jsou metry čtverečné (m 2 ). nám pak říká, kolik vody se do daného tělesa vejde. Základní jednotkou jsou

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Cvičení z Lineární algebry 1

Cvičení z Lineární algebry 1 Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a

Více

Mechanika s Inventorem

Mechanika s Inventorem CAD data Mechanika s Inventorem Optimalizace FEM výpočty 4. Prostředí aplikace Petr SCHILLING, autor přednášky Ing. Kateřina VLČKOVÁ, obsahová korekce Tomáš MATOVIČ, publikace 1 Obsah cvičení: Prostředí

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

BRICSCAD V13 X-Modelování

BRICSCAD V13 X-Modelování BRICSCAD V13 X-Modelování Protea spol. s r.o. Makovského 1339/16 236 00 Praha 6 - Řepy tel.: 235 316 232, 235 316 237 fax: 235 316 038 e-mail: obchod@protea.cz web: www.protea.cz Copyright Protea spol.

Více

POČÍTAČOVÁ GRAFIKA 3D MODELOVÁNÍ ZÁKLADY PROGRAMU SKETCHUP

POČÍTAČOVÁ GRAFIKA 3D MODELOVÁNÍ ZÁKLADY PROGRAMU SKETCHUP POČÍTAČOVÁ GRAFIKA 3D MODELOVÁNÍ ZÁKLADY PROGRAMU SKETCHUP SKETCHUP SketchUp je program pro tvorbu trojrozměrných modelů. Je to jednoduchý, intuitivní a silný nástroj pro modelování. Není žádný problém

Více

Očekávané výstupy z RVP Učivo Přesahy a vazby

Očekávané výstupy z RVP Učivo Přesahy a vazby Matematika - 1. ročník Používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků Rozezná, pojmenuje, vymodeluje a popíše základní rovinné

Více

PŘÍKLADY K MATEMATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY. x 2. 3+y 2

PŘÍKLADY K MATEMATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY. x 2. 3+y 2 PŘÍKLADY K ATEATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY ZDENĚK ŠIBRAVA.. Dvojné integrály.. Vícenásobné intergrály Příklad.. Vypočítejme dvojný integrál x 3 + y da, kde =, 3,. Řešení: Funkce f(x, y) = x je na obdélníku

Více

Vyplňování souvislé oblasti

Vyplňování souvislé oblasti Počítačová grafika Vyplňování souvislé oblasti Jana Dannhoferová (jana.dannhoferova@mendelu.cz) Ústav informatiky, PEF MZLU. Které z následujících tvrzení není pravdivé: a) Princip interpolace je určení

Více

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace

Více

Využití programu AutoCAD při vytváření geometrie konstrukce v prostředí programu ANSYS

Využití programu AutoCAD při vytváření geometrie konstrukce v prostředí programu ANSYS Využití programu AutoCAD při vytváření geometrie konstrukce v prostředí programu ANSYS Abstrakt Jan Pěnčík 1 Článek popisuje a porovnává způsoby možného vytváření geometrie konstrukce v prostředí programu

Více

Bedrich Beneš, Jirí Sochor, Petr Felkel. Moderní počítačová. Computer Press Brno 2004

Bedrich Beneš, Jirí Sochor, Petr Felkel. Moderní počítačová. Computer Press Brno 2004 r- I Jirí Žára, Bedrich Beneš, Jirí Sochor, Petr Felkel Moderní počítačová grafika Computer Press Brno 2004 . Obsah A ROVINNÁ GRAFIKA 1. Svetlo a barvy v počítačové grafice JS & JŽ 1.1 Vlastnosti lidskéhosystému

Více

37. PARABOLA V ANALYTICKÉ GEOMETRII

37. PARABOLA V ANALYTICKÉ GEOMETRII 37.. Napiš rovnici paraboly, která má osu rovnoběžnou s osou y a prochází body A 0; 60, B 4; 8, C 8;36. 0m p60n 4m p8n 8m p36n m p pn 0 6 8 6 mm p pn 64 6 7 3 mm p pn 6 8m64 p 3 64 6m9 p Je-li osa rovnoběžná

Více

Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Grafická data jsou u 2D vektorové grafiky uložena ve voxelech."

Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: Grafická data jsou u 2D vektorové grafiky uložena ve voxelech. Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Grafická data jsou u 2D vektorové grafiky uložena ve voxelech." Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Na

Více

Rekurzivní sledování paprsku

Rekurzivní sledování paprsku Rekurzivní sledování paprsku 1996-2016 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 21 Model dírkové kamery 2 / 21 Zpětné sledování paprsku L D A B C 3 / 21 Skládání

Více

Detekce kolizí v 3D Josef Pelikán KSVI MFF UK Praha

Detekce kolizí v 3D Josef Pelikán KSVI MFF UK Praha Detekce kolizí v 3D 2001-2003 Josef Pelikán KSVI MFF UK Praha e-mail: Josef.Pelikan@mff.cuni.cz W W W: http://cgg.ms.mff.cuni.cz/~pepca/ Aplikace CD mobilní robotika plánování cesty robota bez kontaktu

Více

Fakulta elektrotechniky a informatiky Počítačová grafika. Zkouška ústní

Fakulta elektrotechniky a informatiky Počítačová grafika. Zkouška ústní Zkouška ústní (Anti)aliasing Aliasing je jev, ke kterému může docházet v situacích, kdy se spojitá (analogová) informace převádí na nespojitou (digitální signály). Postup, jak docílit lepší ostrosti obrazu

Více

Singularity rotačních obalových ploch

Singularity rotačních obalových ploch Singularity rotačních obalových ploch Ivana Linkeová ČVUT v Praze, Fakulta strojní, Ústav technické matematiky Karlovo nám. 13, 121 35 Praha 2 Nové Město Ivana.Linkeova@fs.cvut.cz Abstrakt. V příspěvku

Více

Témata ke státní závěrečné zkoušce z matematiky ARITMETIKA

Témata ke státní závěrečné zkoušce z matematiky ARITMETIKA Státní zkouška aritmetika Témata ke státní závěrečné zkoušce z matematiky ARITMETIKA Teoretická aritmetika 1. Prvky výrokové logiky - výrok, skládání výroků, abeceda výrokové logiky, výrokové formule,

Více

Očekávané výstupy z RVP Učivo Přesahy a vazby

Očekávané výstupy z RVP Učivo Přesahy a vazby Matematika - 1. ročník Používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků obor přirozených čísel: počítání do dvaceti - číslice

Více

Vyučovací předmět / ročník: Matematika / 4. Učivo

Vyučovací předmět / ročník: Matematika / 4. Učivo Vzdělávací oblast: Matematika a její aplikace Výstupy žáka Vyučovací předmět / ročník: Matematika / 4. ČÍSLO A POČETNÍ OPERACE Zpracoval: Mgr. Dana Štěpánová orientuje se v posloupnosti přirozených čísel

Více

Rekonstrukce ploch: Polygonální a analytická reprezentace Vybrané metody aproximace ploch

Rekonstrukce ploch: Polygonální a analytická reprezentace Vybrané metody aproximace ploch Rekonstrukce ploch: Polygonální a analytická reprezentace Vybrané metody aproximace ploch Petra Surynková Matematicko-fyzikální fakulta Univerzita Karlova v Praze petra.surynkova@mff.cuni.cz Přehled (1)

Více

Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti

Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Cvičení 1 Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Napjatost v bodě tělesa Napjatost (napěťový stav) v bodě tělesa je množinou obecných napětí ve všech řezech, které lze

Více

Úpravy rastrového obrazu

Úpravy rastrového obrazu Přednáška 11 Úpravy rastrového obrazu Geometrické trasformace Pro geometrické transformace rastrového obrazu se používá mapování dopředné prochází se pixely původního rastru a určuje se barva a poloha

Více

8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura:

8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura: 8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura: (1)Poláček, J., Doležal, M.: Základy deskriptivní a konstruktivní geometrie, díl 5, Křivky a plochy

Více

MATEMATIKA - 4. ROČNÍK

MATEMATIKA - 4. ROČNÍK VZDĚLÁVACÍ OBLAST: VZDĚLÁVACÍ OBOR: PŘEDMĚT: MATEMATIKA A JEJÍ APLIKACE MATEMATIKA MATEMATIKA - 4. ROČNÍK Téma, učivo Rozvíjené kompetence, očekávané výstupy Mezipředmětové vztahy Poznámky Opakování ze

Více

Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2

Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2 Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2 Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Diferenciální počet funkcí více proměnných 1. Funkce více proměnných (a)

Více

01_Grafické rozhraní

01_Grafické rozhraní 01_Grafické rozhraní Jaké jsou základní rozdíly mezi konzolovou aplikací a aplikací s grafickým uživatelským rozhraním? Hlavní rozdíly mezi běžnou konzolovou aplikací a aplikací s GUI lze shrnout do dvou

Více

5. Statika poloha střediska sil

5. Statika poloha střediska sil 5. Statika poloha střediska sil 5.1 Rovnoběžné sily a jejich střed Uvažujeme soustavu vzájemně rovnoběžných sil v prostoru s pevnými působišti. Každá síla má působiště dané polohovým vektorem. Všechny

Více

MATEMATIKA. 1. 5. ročník

MATEMATIKA. 1. 5. ročník Charakteristika předmětu MATEMATIKA 1. 5. ročník Obsahové, časové a organizační vymezení Vyučovací předmět matematika má časovou dotaci 4 hodiny týdně v 1. ročníku, 5 hodin týdně ve 2. až 5. ročníku. Časová

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos

Více

Základní vlastnosti ploch

Základní vlastnosti ploch plocha zpravidla se definuje jako výsledek spojitého pohybu jisté tvořící křivky podél zadané trajektorie lze obohatit o možnost spojitých změn tvaru tvořící křivky x v průběhu pohybu podél trajektorie

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika. 4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti

Více

Vývoj počítačové grafiky. Tomáš Pastuch Pavel Skrbek 15.3. 2010

Vývoj počítačové grafiky. Tomáš Pastuch Pavel Skrbek 15.3. 2010 Vývoj počítačové grafiky Tomáš Pastuch Pavel Skrbek 15.3. 2010 Počítačová grafika obor informatiky, který používá počítače k tvorbě umělých grafických objektů nebo pro úpravu již nasnímaných grafických

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh Algoritmizace prostorových úloh Vektorová data Daniela Szturcová Prostorová data Geoobjekt entita definovaná v prostoru. Znalost jeho identifikace, lokalizace umístění v prostoru, vlastností vlastních

Více

TEMATICKÝ PLÁN. září říjen

TEMATICKÝ PLÁN. září říjen TEMATICKÝ PLÁN Předmět: MATEMATIKA Literatura: Matematika doc. RNDr. Oldřich Odvárko, DrSc., doc. RNDr. Jiří Kadleček, CSc Matematicko fyzikální tabulky pro základní školy UČIVO - ARITMETIKA: 1. Rozšířené

Více

P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r,

P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r, P R O M Í T Á N Í Promítání je zobrazení prostorového útvaru do roviny. Je určeno průmětnou a směrem (rovnoběžné) nebo středem (středové) promítání. Princip rovnoběžného promítání rovina π - průmětna vektor

Více

3.2 3DgrafyvMaple 106 KAPITOLA 3. UŽITÍ MAPLE PŘI ŘEŠENÍ KVADRIK

3.2 3DgrafyvMaple 106 KAPITOLA 3. UŽITÍ MAPLE PŘI ŘEŠENÍ KVADRIK 106 KAPITOLA 3. UŽITÍ MAPLE PŘI ŘEŠENÍ KVADRIK > A2:=augment(submatrix(A,1..3,[1]),b,submatrix(A,1..3,[3])); Potom vypočítáme hodnotu x 2 : > x2:=det(a2)/det(a); Zadání matice. Matici M typu (2, 3) zadáme

Více

Perspektiva jako matematický model objektivu

Perspektiva jako matematický model objektivu Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra informatiky a výpočetní techniky Semestrální práce z předmětu KMA/MM Perspektiva jako matematický model objektivu Martin Tichota mtichota@students.zcu.cz

Více