Úvod do GIS. Karel Jedlička. Zpracování dat I. Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium.
|
|
- Milada Horáčková
- před 8 lety
- Počet zobrazení:
Transkript
1 Úvod do GIS Zpracování dat I Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium. Karel Jedlička
2 Zpracování dat Geometrické transformace Zpracování obrazu Převody mezi reprezentacemi Vektorizace Rasterizace Interpolace Tvorba TIN...
3 Geometrické transformace V GIS se používají 2D i 3D transformace. Problematice 3D transformací mezi souřadnicovými systémy se věnuje matematická kartografie. My se zde budeme zabývat pouze jednoduchými 2D transformacemi. Jedná se v podstatě o stejnou problematiku, jaká byla již zmiňována u digitalizace a u scannování! Nyní se na ni podíváme podrobněji.
4 Geometrické transformace Transformace mezi rovinnými pravoúhlými souřadnicemi jsou založeny na poznání přesné polohy vybraných identických bodů.
5 Geometrické transformace Volba identických bodů připomenutí» dobře» špatně U výběru dvojic identických bodů je také vhodné mít na paměti, že je nutné je vybírat co nejblíže okrajům transformovaného území, aby nebyly způsobeny nežádoucí deformace na okrajích.
6 Geometrické transformace Identické body a transformační koeficienty Transformační koeficienty jsou hodnoty, vypočtené z dvojic identických bodů, kterými se vyjadřuje přechod od zdrojové souřadnicové soustavy do cílové. U transformace se ale obvykle používá více identických bodů, než je nutné pro výpočet transformačních koeficientů. Hodnoty transformačních koeficientů se pak vypočtou metodou nejmenších čtverců, kde se minimalizuje suma rozdílů v poloze mezi souřadnicemi transformovaných bodů. Transformace je například posun a změna měřítka.
7 Geometrické transformace Transformace souřadnicového systému mezi rovinnými pravoúhlými souřadnicemi Lineární konformní transformace (LKT) Afinní transformace (polynomická prvního řádu) a polynomické transformace vyšších řádů Projektivní transformace další specializované transformace
8 Helmertova transformace speciální případ LKT; m = 1 Geometrické transformace Lineární konformní transformace X(X,Y) x(x,y) B m p(a,b) - nové souřadnice - staré souřadnice - úhel otočení - změna měřítka - posun Zápis rovnicí X = m. cos (B). x - m. sin (B). y + a Y = m. sin (B). x + m. cos (B). y + b Transformační koeficienty (m, B, a, b) lze vypočíst již ze dvou dvojic identických bodů (X1,Y1), (X2,Y2) a původní (x1,y1), (x2, y2). Zápis maticí X = m R x + p = m cos β sin β sin β cos β x y + a b
9 Geometrické transformace Lineární konformní transformace Posun Rotace Uniformní změna měřítka (v obou osách stejná) Zachovává tvar objektu! Je potřeba dvou dvojic identických bodů
10 Geometrické transformace Affiní transformace X(X,Y) x(x,y) A p(c,f) - nové souřadnice - staré souřadnice - regulární matice - posun Zápis rovnicí c X = a.x + b.y + c f Y = d.x + e.y + f Zápis maticí X = [ X, Y, W ] = [ x, y, w] a b c d e f Transformační koeficienty (a, b, c,d,e,f) lze spočíst ze tří dvojic identických bodů. A = p = a b ( c, f c d )
11 Geometrické transformace Afinní transformace Posun Rotace Neuniformní změna měřítka (v každé ose jinak zkosení) Z obdélníka kosodélník Je potřeba tří dvojic identických bodů c f
12 Geometrické transformace Projektivní transformace
13 Geometrické transformace Projektivní transformace Posun Rotace Z obdélníka lichoběžník Je potřeba čtyř dvojic identických bodů
14 Geometrické transformace Polynomické transformace druhého a vyšších řádů Používají se pro deformace mapového listu, které mají lokální charakter, případně při komplikovanějším průběhu těchto deformací. Prakticky se však používají pouze řády 2 a 3, jelikož vyšší řády nepřinášejí podstatnější zvýšení přesnosti, spíše naopak. Obdélník deformují polynomické transformace vyšších řádů obdobným způsobem, jako afinní transformace. Jeho hranice v cílové soustavě pak tvoří křivky. Zatímco u prvního řádu to byly úsečky, u druhého řádu se jedná o části parabol, Další specializované transformace.. KMA/TGI
15 Geometrické transformace Projevy transformací Transformace Před Po Projekce Afinita Změna měřítka Rotace
16 Geometrické transformace Geometrické operace (nad vektory) Interaktivní editace prvků - obvykle standardní nástroje CAD jako kopírování, posuny, rotace, mazání, spojování a rozpojování segmentů. Snižování počtu vrcholů/ředění (Weeding/coordinate thinning,) - nástroj vycházející z generalizace a používaný hlavně po digitalizaci a vektorizaci. Spočívá v odstranění nadbytečného počtu vrcholů z linie. Zvyšování počtu vrcholů/zhušťování (Densification) - opak ředění - umělé vkládání dalších bodů na linii. Pouze pro vektorová data. Proložení bodů křivkou - použití po digitalizaci a vektorizaci vrstevnic. Proložení křivkou dodá vrstevnicím přirozený vzhled. Na rozdíl od zhušťování nezachovává 100% tvar křivky.
17 Zpracování obrazu U rastrových systémů a u systémů DPZ se pro úpravu rastrů používají nástroje nazývané souhrnně "Image Processing". Je to poměrně rozsáhlá problematika (na KIV a KKY se image processing učí celý semestr, částečně je probírán také v předmětu KKY/DPZ). Metody zpracování obrazu mají v GIS relativně omezené využití, resp. používají se ve Fotogrammetrii a DPZ. GIS využívá jejich výsledků.
18 Zpracování obrazu Některé z funkcí zpracování obrazu: filtrace (hledání hran, vyhlazování, ostření), úpravy histogramu (roztahování), prahování, změna jasu/kontrastu, odstraňování nečistot, mozaikování, klasifikace převzorkování (nejbližší soused, bilineární, bikubické)
19 Převody mezi reprezentacemi Jelikož pro některé analýzy jsou vhodnější vektorové reprezentace dat a pro jiné zase rastrové, GIS systémy pracující s oběma typy nabízejí nejrůznější nástroje umožňující a usnadňující převod mezi oběma reprezentacemi. Převod z rastrové do vektorové podoby se nazývá vektorizace, opačný proces z vektorové do rastrové podoby je rasterizace.
20 Vektorizace Vektorizace je převod rastru na vektor. Jedná se o složitější proces než rasterizace (je nutné rekonstruovat jednotlivé vektorové objekty z jejich spojité rastrové podoby). Existují tři základní metody Ruční (a čtvrt automatická ) Poloautomatická Automatická
21 Vektorizace Ruční Vše dělá operátor (případně za asistence počítače při přichytávání vektorových prvků na existující rastrovou kresbu - tzv. čtvrtautomatická ). Jedná se o nejméně náročný způsob na hardware a software, ale nejdéle trvající (záleží na podkladech). Vhodný pro staré podklady nebo řídké podklady, kde operátor musí velice často rozhodovat, co k čemu patří. Příklad systému - Kokeš, MicroStation I/RAS.
22 Vektorizace Poloautomatická Operátor zvolí počátek rastrové linie, systém se pokusí identifikovat rastrový objekt, ukáže operátorovi směr, kterým se vektorizace bude ubírat, a při potvrzení ze strany operátora, se vydá vektorizovat, dokud nenarazí na nějakou překážku (mezera, křižovatka) či sporný bod, kde se zastaví a čeká na operátorovu odezvu (jestli má pokračovat, v jakém směru má pokračovat, ). Existují dva módy poloautomatické vektorizace, podle způsobu přichytávání: na střed rastru (používaný pro vektorizaci linií), na okraj rastru (používaný pro vektorizaci polygonů).
23 Vektorizace Poloautomatická Přichytávání na okraj je pro počítač výrazně jednodušší, jelikož vektorizační software pouze hledá hranu v rastrovém obrazu, které se drží. Přichytávání na střed je složitější a pro identifikaci středu vektorizovaného objektu se využívá principu nazývaného skeletizace, který vychází z principů používaných v automatické vektorizaci.
24 Vektorizace Vektorizace linií skeletizace 1) 2) 3) Vektorizace polygonů
25 Vektorizace Poloautomatická Jelikož nascanované mapy jsou různé kvality (spíše horší než lepší), systémy pro poloautomatickou vektorizaci umožňují obvykle nastavit několik důležitých parametrů pro zautomatizování činnosti. Mezi tyto parametry patří: kvalita rastrového podkladu (jestli jsou objekty homogenní oblasti či ne), maximální přípustná šířka linie, akceptovatelná mezera v rastrové linii (při digitalizaci čerchovaných a jiných čar), akceptovatelný úhel mezi částmi linie a variabilita (jak reaguje systém na změny šířky pouze v jednom směru).
26 - kvalita podkladu - maximální šířka linie - akceptovatelná mezera - akceptovatelný úhel Vektorizace
27 - kvalita podkladu - maximální šířka linie - akceptovatelná mezera - akceptovatelný úhel Vektorizace
28 Vektorizace Poznámky Schopnosti systémů se liší,ne všechny systémy pro poloautomatickou vektorizaci mají výše uvedené možnosti. Navíc nastavení parametrů je vždy třeba provést empiricky. Písma ma mapách jsou často velmi nestandardními fonty => možnosti využití OCR jsou omezené převážněna analogové podklady vytvořené z digitálních dat (tištěné digitální mapy, výkresy). Příklad nástrojů pro poloautomatickou vektorizaci: MicroStation Descartes, I/Geovec.
29 Vektorizace Automatická Při automatické vektorizaci probíhá převod rastr->vektor automatizovaně, bez aktivní účasti operátora. Algoritmy automatické vektorizace vycházejí z algoritmů zpracování digitalizovaného obrazu a umělé inteligence. Tuto metodu však většinou nelze použít pro převod běžných analogových podkladů, ale pouze pro již tištěné map z digitálních podkladů (podobně jako OCR).
30 Vektorizace Princip automatické vektorizace pro jednotlivé typy základních objektů: Body - zpracovávací program vyhledá střed buňky reprezentující bod a zjistí jeho souřadnice a zaznamená je spolu s identifikátorem bodu v rastru (obvykle barva, či nějaká skalární hodnota). Linie - automatická vektorizace linií funguje na principu hledání kostry (skeletu, odtud skeletizace) objektů, což je metoda velice často používaná pro ztenčování objektů. Po nalezení skeletu jsou pak pouze vyhledány na sebe napojené pixely (v rámci 4 nebo 8 okolí) a ty tvoří požadovanou linii. Polygony - podobně jako u poloautomatické vektorizace jsou hledány hrany objektů a ty pak převáděny do linií. Poté se ze všech uzavřených liniových objektů vytvoří polygony.
31 Vektorizace Následné úpravy Po vlastní vektorizaci často následuje proces, který odstraní nadbytečné informace získané při vlastním procesu vektorizace (nadbytečné body). Může to být odstranění nadbytečného počtu vrcholů nebo i jiná generalizační technika. Příklad software umožňujícího automatickou vektorizaci: ArcGIS s modulem ArcScan, MicroStation Descartes.
32 Rasterizace Princip Provádí se jako překryt vektorové vrstvy na rastrovou mřížku (o určené velikosti buňky) a přiřazení hodnoty této buňky z vybraného atributu. Při rasterizaci je nejdůležitější určit správnou velikost buňky výsledného rastru (která bude dostatečně velká pro požadované účely, ale přitom nebude příliš velká pro možnosti hardware, které zpracovává rastr).
33 Rasterizace Metody řešení konfliktu Problémy však mohou vznikat v případech, kdy jedna výsledná buňka obsahuje více různých objektů. Pro řešení této se používají 3 základní metody, z čehož první dvě se používají pro převod bodů, linií i polygonů a zbývající jen pro převod polygonů: Metoda dominantního typu vychází z principu, že u buňky, do které zasahuje více objektů, se vyjádří podíl její plochy, zabíraný každým z objektů a hodnota objektu s největším podílem je pak buňce přiřazena (u bodů a linií se podíl plochy nahrazuje počtem a příp. délkou objektů, které buňka obsahuje). Metoda nejdůležitějšího typu buňce přiřadí hodnotu, která je považovaná za nejdůležitější z hlediska aplikace. Centroidová metoda, buňka má přiřazenou hodnotu definovanou polohou jejího středu při průmětu do vektorové reprezentace.
34 Rasterizace Dominantní typ Nejdůležitější typ Centroidy
35 Rasterizace Řešení konfliktů pro polygony
GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 8
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 8 Lubomír Vašek Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního fondu (ESF)
Geoinformatika. VI Transformace dat
VI Transformace dat jaro 2017 Petr Kubíček kubicek@geogr.muni.cz Laboratory on Geoinformatics and Cartography (LGC) Institute of Geography Masaryk University Czech Republic Atributová data Způsoby vstupu
GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 9
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 9 Lubomír Vašek Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního fondu (ESF)
8. přednáška z předmětu GIS1 Rastrový datový model a mapová algebra
8. přednáška z předmětu GIS1 Rastrový datový model a mapová algebra Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky z www.gis.zcu.cz Předmět KMA/UGI,
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Úlohy nad rastrovými daty Daniela
DZDDPZ3 Digitální zpracování obrazových dat DPZ. Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava
DZDDPZ3 Digitální zpracování obrazových dat DPZ Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava Digitální zpracování obrazových dat DPZ Předzpracování (rektifikace a restaurace) Geometrické
3.Restrukturalizace nebo manipulace s údaji
3.Restrukturalizace nebo manipulace s údaji Uchování dat Konverze datových formátů geodat konverze datových formátů převod datových reprezentací převod typu geometrie Generalizace dat Topologické překrytí
Kartometrická analýza starých map II. KGI/KAMET Alžběta Brychtová
Kartometrická analýza starých map II. KGI/KAMET Alžběta Brychtová KARTOMETRIE DŘÍVE A DNES Dříve používané pomůcky a postupy: A dnes? Pravítko Kružítko Úhloměr Metody výpočtu měřítka: Výpočtem ze slovního
GEOREFERENCOVÁNÍ RASTROVÝCH DAT
GEOREFERENCOVÁNÍ RASTROVÝCH DAT verze 1.0 autoři listu: Lukáš Brůha, video Jan Kříž Cíle V tomto pracovním listu se student: seznámí se základní koncepcí geometrické transformace souřadnicových systémů,
Geometrické transformace
1/15 Předzpracování v prostoru obrazů Geometrické transformace Václav Hlaváč, Jan Kybic Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/
GIS Geografické informační systémy
GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu
GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 10
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 10 Lubomír Vašek Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního fondu (ESF)
Tvorba dat pro GIS. Vznik rastrových dat. Přímo v digitální podobě družicové snímky. Skenování
Vznik rastrových dat Tvorba dat pro GIS Přednáška 5. Přímo v digitální podobě družicové snímky Skenováním z analogové podoby: Mapy Letecké snímky na fotografickém materiálu Pořizov izování dat Podle způsobu
PROBLEMATICKÉ ASPEKTY GEOREFERENCOVÁNÍ MAP
Digitální technologie v geoinformatice, kartografii a DPZ PROBLEMATICKÉ ASPEKTY GEOREFERENCOVÁNÍ MAP Katedra geomatiky Fakulta stavební České vysoké učení technické v Praze Jakub Havlíček, 22.10.2013,
Geografické informační systémy p. 1
Geografické informační systémy Slajdy pro předmět GIS Martin Hrubý hrubym @ fit.vutbr.cz Vysoké učení technické v Brně Fakulta informačních technologií, Božetěchova 2, 61266 Brno akademický rok 2004/05
Geoinformační technologie
Geoinformační technologie Geografické informační systémy (GIS) Výukový materiál l pro gymnázia a ostatní středn ední školy Gymnázium, Praha 6, Nad Alejí 1952 Vytvořeno v rámci projektu SIPVZ 1357P2006
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník SOUŘADNICOVÉ SOUSTAVY VE FOTOGRAMMETRII
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník SOUŘADNICOVÉ SOUSTAVY VE FOTOGRAMMETRII SOUŘADNICOVÉ SOUSTAVY VE FTM hlavní souřadnicové soustavy systém snímkových souřadnic systém modelových
Realita versus data GIS
http://www.indiana.edu/ Realita versus data GIS Data v GIS Typy dat prostorová (poloha a vzájemné vztahy) popisná (atributy) Reprezentace prostorových dat (formát) rastrová Spojitý konceptuální model vektorová
Přehled vhodných metod georeferencování starých map
Přehled vhodných metod georeferencování starých map ČVUT v Praze, katedra geomatiky 12. 3. 2015 Praha Georeferencování historická mapa vs. stará mapa georeferencování umístění obrazu mapy do referenčního
GIS Geografické informační systémy
GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu
DIGITÁLNÍ ORTOFOTO. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník
DIGITÁLNÍ ORTOFOTO SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník DIGITÁLNÍ SNÍMEK Ortofotomapa se skládá ze všech prvků, které byly v době expozice přítomné na povrchu snímkované oblasti.
Práce s texty, Transformace rastru, Připojení GPS
Školení programu TopoL xt Práce s texty, Transformace rastru, Připojení GPS Obsah: 1. Uživatelské rozhraní (heslovitě, bylo součástí minulých školení) 2. Nastavení programu (heslovitě, bylo součástí minulých
Transformace dat mezi různými datovými zdroji
Transformace dat mezi různými datovými zdroji Zpracovali: Datum prezentace: BUČKOVÁ Dagmar, BUC061 MINÁŘ Lukáš, MIN075 09. 04. 2008 Obsah Základní pojmy Souřadnicové systémy Co to jsou transformace Transformace
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Úlohy nad rastrovými daty Daniela
Kartometrická analýza starých map část 2
Podpora tvorby národní sítě kartografie nové generace Kartometrická analýza starých map část 2 Seminář NeoCartoLink, Olomouc, 29. 11. 2012 Tato prezentace je spolufinancována Evropským sociálním fondem
Digitální kartografie
Brno, 2014 Ing. Miloš Cibulka, Ph.D. Cvičení č. 6 Digitální kartografie Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na
KIG/1GIS2. Geografické informační systémy. rozsah: 2 hod přednáška, 2 hod cvičení způsob ukončení: zápočet + zkouška
Geografické informační systémy KIG/1GIS2 rozsah: 2 hod přednáška, 2 hod cvičení způsob ukončení: zápočet + zkouška vyučující: e-mail: Ing. Jitka Elznicová, Ph.D. jitka.elznicova@ujep.cz Konzultační hodiny:
Digitální kartografie 6
Digitální kartografie 6 Automatická vektorizace v ArcGIS extenze ArcScan strana 2 Aplikace ArcScan je extenzí softwaru ArcGIS, která je primárně určena pro úpravu a zpracování rastrových podkladů a jejich
2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2
Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací
Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA
Rovinné přetvoření Rovinné přetvoření, neboli, jak se také často nazývá, geometrická transformace je vlastně lineární zobrazení v prostoru s nějakou soustavou souřadnic. Jde v něm o přepočet souřadnic
Geometrické transformace obrazu
Geometrické transformace obrazu a související témata 9. přednáška předmětu Zpracování obrazů Martina Mudrová 2004 Téma přednášk O čem bude tato přednáška? Geometrické transformace obrazu Interpolace v
Geografické informační systémy #6. Činnosti v rámci projektu GIS: vstup a restrukturalizace údajů
Geografické informační systémy #6 Činnosti v rámci projektu GIS: vstup a restrukturalizace údajů Co bude... Zdroje informací Fotogrammetrie, DPZ Restrukturalizace dat Činnosti v rámci projektu GIS 4 typické
9. přednáška z předmětu GIS1 Digitální model reliéfu a odvozené povrchy. Vyučující: Ing. Jan Pacina, Ph.D.
9. přednáška z předmětu GIS1 Digitální model reliéfu a odvozené povrchy Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Lehký úvod Digitální modely terénu jsou dnes v geoinformačních systémech
Geometrické transformace obrazu a související témata. 9. přednáška předmětu Zpracování obrazů
Geometrické transformace obrazu a související témata 9. přednáška předmětu Zpracování obrazů Martina Mudrová 2004 Téma přednášk O čem bude tato přednáška? Geometrické transformace obrazu Interpolace v
13 Barvy a úpravy rastrového
13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody
Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr
Geometrické transformace v prostoru Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Shodné transformace 1 Shodné transformace stejný přístup jako ve 2D shodné transformace (shodnosti,
Geoinformační technologie
Geoinformační technologie JDKEY1 1 GEOINFORMATIKA nový vítr v do plachet geografie obor zabývající se informacemi o prostorových objektech, procesech a vazbách mezi nimi geoinformační technologie = konkrétn
Deformace rastrových obrázků
Deformace rastrových obrázků 1997-2011 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Warping 2011 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 22 Deformace obrázků
Geometrické transformace pomocí matic
Geometrické transformace pomocí matic Pavel Strachota FJFI ČVUT v Praze 2. dubna 2010 Obsah 1 Úvod 2 Geometrické transformace ve 2D 3 Geometrické transformace ve 3D Obsah 1 Úvod 2 Geometrické transformace
5. přednáška z předmětu GIS1 Princip tvorby dat
5. přednáška z předmětu GIS1 Princip tvorby dat Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky z www.gis.zcu.cz Předmět KMA/UGI, autor Ing. K. Jedlička
Přehled základních metod georeferencování starých map
Přehled základních metod georeferencování starých map ČVUT v Praze, Fakulta stavební, katedra mapování a kartografie 4. listopadu 2011 Obsah prezentace 1 2 3 4 5 Zhlediska georeferencování jsou důležité
Tvorba nových dat. Vektor. Geodatabáze. Prezentace prostorových dat. Základní geometrické objekty Bod Linie Polygon. Vektorová
Tvorba nových dat Vektor Rastr Geodatabáze Prezentace prostorových dat Vektorová Základní geometrické objekty Bod Linie Polygon Uložení atributů v tabulce Příklad vektorových dat Výhody/nevýhody použití
Digitální model reliéfu (terénu) a analýzy modelů terénu
Digitální model reliéfu (terénu) a analýzy modelů terénu Digitální modely terénu jsou dnes v geoinformačních systémech hojně využívány pro různé účely. Naměřená terénní data jsou často zpracována do podoby
Digitalizace starých glóbů
Milan Talich, Klára Ambrožová, Jan Havrlant, Ondřej Böhm Milan.Talich@vugtk.cz 21. kartografická konference, 3. 9. - 4. 9. 2015, Lednice Cíle Vytvoření věrného 3D modelu, umožnění studia online, možnost
Rastrová reprezentace
Rastrová reprezentace Zaměřuje se na lokalitu jako na celek Používá se pro reprezentaci jevů, které plošně pokrývají celou oblast, případně se i spojitě mění. Používá se i pro rasterizované vektorové vrstvy,
Rastrová reprezentace geoprvků model polí Porovnání rastrové a vektorové reprezentace geoprvků Digitální model terénu GIS 1 153GS01 / 153GIS1
GIS 1 153GS01 / 153GIS1 Martin Landa Katedra geomatiky ČVUT v Praze, Fakulta stavební 14.11.2013 Copyright c 2013 Martin Landa Permission is granted to copy, distribute and/or modify this document under
7. Geografické informační systémy.
7. Geografické informační systémy. 154GEY2 Geodézie 2 7.1 Definice 7.2 Komponenty GIS 7.3 Možnosti GIS 7.4 Datové modely GIS 7.5 Přístup k prostorovým datům 7.6 Topologie 7.7 Vektorové datové modely 7.8
Rastrové digitální modely terénu
Rastrové digitální modely terénu Rastr je tvořen maticí buněk (pixelů), které obsahují určitou informaci. Stejně, jako mohou touto informací být typ vegetace, poloha sídel nebo kvalita ovzduší, může každá
GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 12
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 12 Lubomír Vašek Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního fondu (ESF)
transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím [1]
[1] Afinní transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím využití například v počítačové grafice Evropský sociální fond Praha & EU. Investujeme do
4. Digitální model terénu.
4. Digitální model terénu. 154GEY2 Geodézie 2 4.1 Úvod - Digitální model terénu. 4.2 Tvorba digitálního modelu terénu. 4.3 Druhy DMT podle typu ploch. 4.4 Polyedrický model terénu (TIN model). 4.5 Rastrový
Nová realizace ETRS89 v ČR Digitalizace katastrálních map
Nová realizace ETRS89 v ČR Digitalizace katastrálních map Karel Štencel Konference Implementácia JTSK-03 do katastra nehnuteľností a digitalizácia máp KN v praxi 15. 2. 2013 Obsah Nová realizace ETRS 89
12. přednáška ze stavební geodézie SG01. Ing. Tomáš Křemen, Ph.D.
12. přednáška ze stavební geodézie SG01 Ing. Tomáš Křemen, Ph.D. Definice: Geografické informační systémy (GIS) GIS je informační systém pracující s prostorovými daty. ESRI: GIS je organizovaný soubor
GEODETICKÉ VÝPOČTY I.
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. TABELACE FUNKCE LINEÁRNÍ INTERPOLACE TABELACE FUNKCE Tabelace funkce se v minulosti často využívala z důvodu usnadnění
Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr
Geometrické transformace v rovině Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Shodné transformace 1 Shodné transformace shodné transformace (shodnosti, izometrie) převádějí objekt
Topografické mapování KMA/TOMA
Topografické mapování KMA/TOMA ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta aplikovaných věd - KMA oddělení geomatiky Ing. Martina Vichrová, Ph.D. vichrova@kma.zcu.cz Vytvoření materiálů bylo podpořeno prostředky
Analýza a zpracování digitálního obrazu
Analýza a zpracování digitálního obrazu Úlohy strojového vidění lze přibližně rozdělit do sekvence čtyř funkčních bloků: Předzpracování veškerých obrazových dat pomocí filtrací (tj. transformací obrazové
7 Transformace 2D. 7.1 Transformace objektů obecně. Studijní cíl. Doba nutná k nastudování. Průvodce studiem
7 Transformace 2D Studijní cíl Tento blok je věnován základním principům transformací v rovinné grafice. V následujícím textu bude vysvětlen rozdíl v přístupu k transformacím u vektorového a rastrového
ZPRACOVÁNÍ DAT DÁLKOVÉHO PRŮZKUMU
A - zdroj záření B - záření v atmosféře C - interakce s objektem D - změření záření přístrojem E - přenos, příjem dat F - zpracování dat G - využití informace v aplikaci Typ informace získávaný DPZ - vnitřní
Úvod do GIS. Prostorová data I. část. Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium.
Úvod do GIS Prostorová data I. část Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium. Karel Jedlička Prostorová data Analogová prostorová data Digitální prostorová
OBRAZOVÁ ANALÝZA. Speciální technika a měření v oděvní výrobě
OBRAZOVÁ ANALÝZA Speciální technika a měření v oděvní výrobě Prostředky pro snímání obrazu Speciální technika a měření v oděvní výrobě 2 Princip zpracování obrazu matice polovodičových součástek, buňky
Metamorfóza obrázků Josef Pelikán CGG MFF UK Praha
Metamorfóza obrázků 1998-2011 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Morphing 2011 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 21 Metamorfóza obrázků -
Digitální kartografie 3
Digitální kartografie 3 základy práce v ESRI ArcGIS strana 2 Založení nového projektu v aplikaci ArcMap 1. Spuštění aplikace ArcMap v menu Start Programy ArcGIS. 2. Volba Blank map pro založení nového
Algoritmizace prostorových úloh
Algoritmizace prostorových úloh Vektorová data Daniela Szturcová Prostorová data Geoobjekt entita definovaná v prostoru. Znalost jeho identifikace, lokalizace umístění v prostoru, vlastností vlastních
Plzeňský kraj převzal v rámci realizace projektu Digitální mapa veřejné správy Plzeňského kraje první část hotového díla Účelovou katastrální mapu.
Plzeňský kraj převzal v rámci realizace projektu Digitální mapa veřejné správy Plzeňského kraje první část hotového díla Účelovou katastrální mapu. Jedná se o digitalizovanou katastrální mapu v místech,
2. přednáška z předmětu GIS1 Data a datové modely
2. přednáška z předmětu GIS1 Data a datové modely Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky z www.gis.zcu.cz Předmět KMA/UGI, autor Ing. K.
GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 6
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 6 Lubomír Vašek Zlín 2013 Obsah... 3 1. Základní pojmy... 3 2. Princip rastrové reprezentace... 3 2.1 Užívané
GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY
GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY KGI/APGPS RNDr. Vilém Pechanec, Ph.D. Univerzita Palackého v Olomouci Univerzita Palackého v Olomouci INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Environmentální vzdělávání rozvíjející
Bézierovy křivky Bohumír Bastl KMA/GPM Geometrické a počítačové modelování Bézierovy křivky GPM 1 / 26
Bézierovy křivky Bohumír Bastl (bastl@kma.zcu.cz) KMA/GPM Geometrické a počítačové modelování Bézierovy křivky GPM 1 / 26 Opakování Spline křivky opakování Bézierovy křivky GPM 2 / 26 Opakování Interpolace
Operace s obrazem II
Operace s obrazem II Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 Osnova Matematická morfologie Segmentace obrazu Klasifikace objektů
Porovnání metod při georeferencování vícelistového mapového díla Müllerovy mapy Moravy
Porovnání metod při georeferencování vícelistového mapového díla Müllerovy mapy Moravy Jakub Havlíček Katedra geomatiky Fakulta stavební ČVUT v Praze Dep. of Geomatics, www.company.com FCE Obsah 1. Vícelistová
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 2 2/6 Transformace souřadnic z ETRF2000 do
Digitální mapa veřejné správy Plzeňského kraje - část II.
Příloha č. 1 Zadávací dokumentace Dodávka základního SW pro projekt DMVS PK Digitální mapa veřejné správy Plzeňského kraje - část II. Zadávací dokumentace výběrového řízení: "Dodávka základního SW pro
Digitální fotoaparáty a digitalizace map
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE Digitální fotoaparáty a digitalizace map semestrální práce Martina Jíšová Petr Dvořák editor:
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE název předmětu TOPOGRAFICKÁ A TEMATICKÁ KARTOGRAFIE číslo úlohy název úlohy 2 Tvorba tematických
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník RELATIVNÍ A ABSOLUTNÍ ORIENTACE AAT ANALYTICKÁ AEROTRIANGULACE
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník RELATIVNÍ A ABSOLUTNÍ ORIENTACE AAT ANALYTICKÁ AEROTRIANGULACE PŘÍPRAVA STEREODVOJICE PRO VYHODNOCENÍ Příprava stereodvojice pro vyhodnocení
L A TEX Reprodukce starých map
Semestrální práce z předmětu Kartografická polygrafie a reprografie L A TEX Reprodukce starých map Autor: Jan Strnad, Pavel Škréta Editor: Petr Štěpančič Praha, duben 2010 Katedra mapování a kartografie
Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Grafická data jsou u 2D vektorové grafiky uložena ve voxelech."
Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Grafická data jsou u 2D vektorové grafiky uložena ve voxelech." Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Na
Úvod do GIS. Karel Jedlička. Analýza a syntéza I. Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium.
Úvod do GIS Analýza a syntéza I Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium. Karel Jedlička Analýzy a syntézy v GIS Co je analýza a syntéza Měřící funkce
Generalizace. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita
Generalizace Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Vznik dokumentu: 20. 9. 2004 Poslední aktualizace: 28. 11. 2011 Definice generalizace Kartografická
Pravidla pro tvorbu ÚKM Jihočeského kraje
Pravidla pro tvorbu ÚKM Jihočeského kraje Pravidla pro tvorbu ÚKM Jihočeského kraje stanovují způsob tvorby ÚKM Jihočeského kraje a její aktualizace do doby než dojde ke zprovoznění RUIAN, poté přechází
Činnosti v rámci projektů
Činnosti v rámci projektů Postup řešení 1. Stanovení cílů projektu 2. Budování datové databáze navržení databáze naplnění databáze vstup údajů kontrola údajů a odstraňování chyb 3. Restrukturalizace nebo
Lekce 4 - Vektorové a rastrové systémy
Lekce 4 - Vektorové a rastrové systémy 1. Cíle lekce... 1 2. Vlastnosti rastrových systémů... 1 2.1 Zobrazování vrstev... 1 2.1.1 Základní zobrazování... 1 2.1.2 Další typy zobrazení... 2 2.2 Lokální operace...
Lekce 10 Analýzy prostorových dat
Lekce 10 Analýzy prostorových dat 1. Cíle lekce... 1 2. Základní funkce analýza prostorových dat... 1 3. Organizace geografických dat pro analýzy... 2 4. Údržba a analýza prostorových dat... 2 5. Údržba
KMA/GPM Barycentrické souřadnice a
KMA/GPM Barycentrické souřadnice a trojúhelníkové pláty František Ježek jezek@kma.zcu.cz Katedra matematiky Západočeské univerzity v Plzni, 2008 19. dubna 2009 1 Trojúhelníkové pláty obecně 2 Barycentrické
Jasové transformace. Karel Horák. Rozvrh přednášky:
1 / 23 Jasové transformace Karel Horák Rozvrh přednášky: 1. Úvod. 2. Histogram obrazu. 3. Globální jasová transformace. 4. Lokální jasová transformace. 5. Bodová jasová transformace. 2 / 23 Jasové transformace
Úvod do GIS. Návrh databáze a vstup geografických dat II
Úvod do GIS Návrh databáze a vstup geografických dat II Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium. Karel Jedlička Zdroje atributových dat, konverze
Matematická morfologie
/ 35 Matematická morfologie Karel Horák Rozvrh přednášky:. Úvod. 2. Dilatace. 3. Eroze. 4. Uzavření. 5. Otevření. 6. Skelet. 7. Tref či miň. 8. Ztenčování. 9. Zesilování..Golayova abeceda. 2 / 35 Matematická
Geografické informační systémy #6. Vstup údajů do GIS a jejich restrukturalizace
Geografické informační systémy #6 Vstup údajů do GIS a jejich restrukturalizace Úvod Zdroje informací Získávání dat ze zdrojů geodat GIS je obecné prostředí pro zpracování geo-informací Program + data
K metodám převodu souřadnic mezi ETRS 89 a S-JTSK na území ČR
K metodám převodu souřadnic mezi ETRS 89 a S-JTSK na území ČR Vlastimil Kratochvíl * Příspěvek obsahuje popis vlastností některých postupů, využitelných pro transformaci souřadnic mezi geodetickými systémy
Afinní transformace Stručnější verze
[1] Afinní transformace Stručnější verze je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím body a vektory: afinní prostor využití například v počítačové grafice a)
Úvod do GIS. Prostorová data II. část. Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium.
Úvod do GIS Prostorová data II. část Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium. Karel Jedlička Prostorová data Analogová prostorová data Digitální
Obraz matematický objekt. Spojitý obraz f c : (Ω c R 2 ) R
Obraz matematický objekt Spojitý obraz f c : (Ω c R 2 ) R Obraz matematický objekt Spojitý obraz f c : (Ω c R 2 ) R Diskrétní obraz f d : (Ω {0... n 1 } {0... n 2 }) {0... f max } Obraz matematický objekt
Text úlohy. Která barva nepatří do základních barev prostoru RGB? Vyberte jednu z nabízených možností: a. Černá b. Červená c. Modrá d.
Úloha 1 Která barva nepatří do základních barev prostoru RGB? a. Černá b. Červená c. Modrá d. Zelená Úloha 2 V rovině je dán NEKONVEXNÍ n-úhelník a bod A. Pokud paprsek (polopřímka) vedený z tohoto bodu
Geometrie pro počítačovou grafiku - PGR020
Geometrie pro počítačovou grafiku - PGR020 Zbyněk Šír Matematický ústav UK Zbyněk Šír (MÚ UK) - Geometrie pro počítačovou grafiku - PGR020 1 / 18 O čem předmět bude Chceme podat teoretický základ nezbytný
GIS Geografické informační systémy
GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu geoprvků. Geometrická
APROXIMACE KŘOVÁKOVA ZOBRAZENÍ PRO GEOGRAFICKÉ ÚČELY
APROXIMACE KŘOVÁKOVA ZOBRAZENÍ PRO GEOGRAFICKÉ ÚČELY Radek Dušek, Jan Mach Katedra fyzické geografie a geoekologie, Přírodovědecká fakulta, Ostravská univerzita, Ostrava Gymnázium Omská, Praha Abstrakt
7 Analytické vyjádření shodnosti
7 Analytické vyjádření shodnosti 7.1 Analytická vyjádření shodných zobrazení v E 2 Osová souměrnost Osová souměrnost O(o) podle osy o s obecnou rovnicí o : ax + by + c =0: x = x 2a (ax + by + c) a 2 +
Geografické informační systémy GIS
Geografické informační systémy GIS Prohloubení nabídky dalšího vzdělávání v oblasti zeměměřictví a katastru nemovitostí ve Středočeském kraji CZ.1.07/3.2.11/03.0115 Projekt je finančně podpořen Evropským
Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m.
Matice lineárních zobrazení [1] Připomenutí Zobrazení A : L 1 L 2 je lineární, když A( x + y ) = A( x ) + A( y ), A(α x ) = α A( x ). Což je ekvivalentní s principem superpozice: A(α 1 x 1 + + α n x n