Vodík jako alternativní ekologické palivo. palivové články a vodíkové hospodářství
|
|
- Jozef Janda
- před 9 lety
- Počet zobrazení:
Transkript
1 Vodík jako alternativní ekologické palivo palivové články a vodíkové hospodářství
2 Charakteristika vodíku vodík je nejrozšířenějším prvkem ve vesmíru na Zemi je třetím nejrozšířenějším prvkem po kyslíku a křemíku vodíkový atom má velkou ionizační energii (1311 kj/mol)
3 Charakteristika vodíku ATOMOVÉ VLASTNOSTI vodík (H 2 ) deuterium (D 2 ) tritium (T 2 ) Relativní atomová hmotnost 1,00794(7) 2, , jaderné spinové kvantové číslo 0,5 1 0,5 magnetický moment jádra 2, , ,9788 NMR frekvence (při 2,35 tesla) / Mhz NMR relativní citlivost (konstantní pole) jaderný kvadrupólový moment / (10-28 m 2 ) 100,56 15, ,68 1,000 0, ,21 0 2, radioaktivní stabilita stabilní stabilní β - t 1/2 =12,35 let FYZIKÁLNÍ VLASTNOSTI vodík (H 2 ) deuterium (D 2 ) tritium (T 2 ) Teplota tání [K] 13,957 18,73 20,62 Teplota varu [K] 20,39 23,67 25,04 Teplo tání [kj/mol] 0,117 0,197 0,250 Výparné teplo [kj/mol] 0,904 1,226 1,393 Kritická teplota [K] 33,19 38,35 40,6 Kritický tlak [Mpa] 1,315 1,665 1,834 Disociační teplo [kj/mol] (při 298,2 K) Energie nulového bodu [kj/mol] 435,88 443,35 446,9 25,9 18,5 15,1 Mezijaderná vzdálenost [pm] 74,14 74,14 74,14
4 Příprava a výroba vodíku nejvíce se využívá metody zplyňování uhlí touto metodou se vyrobí 90% produkce další perspektivní metody jsou: - elektrolýza vody - termické štěpení vody - zplyňování biomasy (především odpadní)
5 Příprava a výroba vodíku výrobu lze realizovat reakcí vody nebo zředěných kyselin s elektropozitivními kovy reakce může být explozivní vhodným zdrojem vodíku je elektrolýza okyselené vody s použitím platinových elektrod pro výrobu malého množství plynu se využívá tzv. vodíkový generátor zpracovává se směs metanolu a vody při teplotě 400 C (metanol krakuje na vodík a oxid uhelnatý; vodní pára reaguje s oxidem uhelnatým a vzniká oxid uhličitý a vodík)
6 Doprava a skladování vodíku výroba vodíku je vázána na tyto zdroje energie: - tepelné (jaderné) - elektrické (vodní) - solární při nerovnoměrném rozmístění zdrojů je uvažováno s dálkovým transportem zkapalněný vodík
7 Doprava a skladování vodíku Další možnosti transportu vodíku: potrubní rozvod plynného vodíku - vysokotlaký -středotlaký - nízkotlaký plynovod
8 Vodík a bezpečnost směs vodíku se vzduchem je výbušná využívají se detektory hořlavých plynů zaznamenávají již 10% dolní mez výbušnosti směsi přísná bezpečnostní opatření při výrobě, skladování a distribuci
9 Vodíková energetika v současné době konkurují vodíku tyto zdroje energie: - metanol - biopaliva z obnovitelných zdrojů konkurence těchto paliv je přechodná předpokládá se využití vodíku v mnoha energetických oblastech: - letectví - automobilový průmysl - výroba elektrické energie
10 Přeměna vodíku na elektrickou energii Součásti katalytické reakce: vodík kyslíková elektroda vodíková elektroda polymerová membrána vodík je vázán v hydridu železa - metalhydridu
11 Palivové články princip činnosti elektrochemický zdroj stejnosměrného proudu pracuje na obráceném principu elektrolýzy vody: vodík je přiváděn k anodě (dochází ke katalytické přeměně oxidace na proton a elektron) 2 H 2 4 H e - proton přechází ke katodě na katodě reaguje proton s kyslíkem a elektronem za vzniku vody O H 2 O + 4 e 4 OH - H + + OH - H 2 O na obou elektrodách vzniká rozdíl napětí asi 1V palivový článek obsahuje několik cel v sériovém zapojení
12 Palivové články princip činnosti
13 Palivové články - rozdělení Typ článků Pracovní teplota [ C] Elektrolyt rozdělení podle pracovních teplot Nízkoteplotní články alkalické roztok hydroxid membránové polymerická membrána Vysokoteplotní články fosforečné kyselina fosforečná uhličitanové roztavené uhličitany keramické pevné oxidy Označení Typ Elektrolyt Účinnost AFC alkalické roztok hydroxidu PEMFC polymerické polymerická membrána PAFC s kyselinou fosforečnou kyselina fosforečná η el = 40 % rozdělení podle použitého elektrolytu MCFC SOFC karbonátové s tuhým elektrolytem roztavené uhličitany pevné oxidy η el = 60 % η el = 40 %
14 Palivové články alkalické poprvé byly využity jako energetické zdroje v kosmických lodích Apollo mají nejrychlejší kinetiku katodové kyslíkové reakce mají vysokou účinnost a energetickou kapacitu mohou využívat jen čistý vodík dodávaný kyslík musí být zbaven kysličníku uhličitého
15 Palivové články kyselé (kyselinové) jsou vyráběny v širokém výkonovém pásmu (1 kw až 5 MW) kapalný elektrolyt má korozívní účinky pomalá kinetika katodové reakce použití hlavně ve formě statických generátorů elektrické a tepelné energie
16 Palivové články články s tavenými karbonáty nepotřebují pro reakce při vysokých teplotách katalyzátory elektrodových reakcí mohou používat reformovaná paliva dosahují malé účinnosti a energetické kapacity statické zdroje elektrické a tepelné energie (10 kw až 10 MW)
17 Palivové články membránové (keramické) jejich vývoj začal nejpozději mají pevný nekorozívní elektrolyt iontovýměnnou membránu jednoduchá konstrukce nejrychlejší kinetika anodové oxidace vodíku vysoká účinnost vysoká energetická kapacita nejsou citlivé na kysličník uhličitý reformovaná paliva minimální nároky na údržbu vhodné pro pohony dopravních prostředků
18 Palivové články membránové (keramické) existují tzv. regenerativní membránové palivové články při dodávce paliva vyrábějí elektrickou energii nebo při dodávce energie mohou vyrábět vodíka kyslík elektrolýzou vody využívá se např. energie solární a větrná možnost realizace tzv. hybridních článků nevýhodou je cena těchto článků
19 Využití palivových článků v současnosti hlavně jako zdroj energie při kosmických letech v poslední době se objevují realizace statických zdrojů současný instalovaný výkon přesahuje 50MW automobilový průmysl kombinovaná výroba tepelné a elektrické energie
20 Výhody využití palivových článků neprodukují žádné látky zatěžující životní prostředí obnovitelný zdroj vysoká účinnost je možné je přetížit bez nebezpečí havárie rychlý náběh na plný výkon výhodné je využití článků od výkonu 50 kw až několik MW nevyžadují složitou údržbu a obsluhu
21 Nevýhody využití palivových článků vysoké investiční náklady, až 5000 USD/kW vysoká cena vstupního paliva nízké stejnosměrné napětí cca 0,7 V na článek
OBSAH. 3.0 Druhy palivových článků, elektrolyty, teploty, paliva, emise. 6.0 Porovnání palivových článků s konvenčními způsoby výroby energie
2 PALIVOVÉ ČLÁNKY OBSAH 1.0 Úvod 2.0 Princip činnosti palivového článku 3.0 Druhy palivových článků, elektrolyty, teploty, paliva, emise 4.0 Provozovaná zařízení s palivovými články 5.0 Výhled využití
VÝROBA VODÍKU reforming benzinových frakcí parní reforming zemního plynu parciální oxidace ropných zbytků zplyňováním biomasy elektrolýza
VODÍK - představuje jeden z hlavních chemických prvků v celém vesmíru jak ve hvězdách, tak i mezigalaktickém prostoru; - tvoří přibližně 75 % jeho hmoty a dokonce 90 % všech atomů; - z chemického hlediska
PALIVOVÉ ČLÁNKY. Miloš Kos, Jan Vrňák. ISŠT Benešov Černoleská 1997, Benešov. 1. Historie Princip fungování složení 5 zjednodušeně 5
Středoškolská technika 2010 Setkání a prezentace prací středoškolských studentů na ČVUT PALIVOVÉ ČLÁNKY Miloš Kos, Jan Vrňák Obsah: ISŠT Benešov Černoleská 1997, 25601 Benešov 1. Historie 4 2. Princip
Hybridní pohony. Měniče a nosiče energie. Doc. Ing. Pavel Mindl, CSc. ČVUT FEL Praha
Hybridní pohony Měniče a nosiče energie Doc. Ing. Pavel Mindl, CSc. ČVUT FEL Praha 1 Hybridní pohony Obsah Měniče energie pracující na principu Fyzikální princip Pracovní média Účinnost přeměny energie
Přeměna chemické energie na elektrickou energii GALVANICKÝ ČLÁNEK
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Přeměna chemické energie na elektrickou energii GALVANICKÝ ČLÁNEK Pokus: Ponořte dva různé kovy vzdáleně od
Ondřej Mišina. Měření volt-ampérové charakteristiky palivových článků
Ondřej Mišina Měření volt-ampérové charakteristiky palivových článků Vedoucí práce: Mgr. František Tichý Datum odevzdání: 18. 8. 2018 Abstrakt V této práci byl sestaven měřicí obvod pro měření volt-ampérové
Ekonomické a ekologické efekty kogenerace
Ekonomické a ekologické efekty kogenerace Kogenerace (KVET) společná výroba elektřiny a dodávka tepla -zvyšuje využití paliva. Velká KVET teplárenství. Malá KVET - parní, plynová, paroplynová, palivové
PALIVOVÉ ČLÁNKY - ALTERNATIVNÍ ZDROJ ELEKTRICKÉ ENERGIE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE PALIVOVÉ ČLÁNKY - ALTERNATIVNÍ ZDROJ ELEKTRICKÉ
Vodík palivo budoucnosti. Ivo Navrátil
Vodík palivo budoucnosti Ivo Navrátil Bakalářská práce 2006 ABSTRAKT Bakalářská práce se týká vodíku, jeho vlastností a možnosti využití jako zdroje elektrické energie. Obsahuje metody získávání a výroby
Palivové články. D. Javůrek, M.Záruba Fakulta jaderná a fyzikálně inženýrská ČVUT Břehová 7, 115 19 Praha 1 navy@centrum.cz
Palivové články D. Javůrek, M.Záruba Fakulta jaderná a fyzikálně inženýrská ČVUT Břehová 7, 115 19 Praha 1 navy@centrum.cz Abstrakt Tato práce by měla jednoduchým způsobem přiblížit co to palivový článek
Technická zařízení pro energetické transformace bioplynu
Technická zařízení pro energetické transformace bioplynu Cíle Seznámit studenty s technologiemi energetického využití bioplynu: Kogenerace Trigenerace Palivové články Klíčová slova Bioplyn, energie, kogenerace,
Decentralizovaná KVET VÝHLEDOVÉ PERSPEKTIVNÍ TYPY ZDROJŮ ELEKTŘINY A TEPLA. Tepelná síť. DKVET na bázi spalovacích motorů
VÝHLEDOVÉ PERSPEKTIVNÍ TYPY ZDROJŮ ELEKTŘINY A TEPLA Kombinovaná výroba elektřiny a tepla (KVET) Kombinovaná výroba elektřiny a tepla je významná z hledisek energetických ekologických společenských musí
Test vlastnosti látek a periodická tabulka
DUM Základy přírodních věd DUM III/2-T3-2-08 Téma: Test vlastnosti látek a periodická tabulka Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý Mgr. Josef Kormaník TEST Test vlastnosti
Úvod do vodíkového hospodářství
Úvod do vodíkového hospodářství Ing. Aleš Doucek, Ing. Luděk Janík, Ústav jaderného výzkumu Řež METODY ZÍSKÁVÁNÍ VODÍKU Vodík může být vyráběn mnoha způsoby z širokého spektra vstupních zdrojů. V celosvětové
Energetika se zabývá získáváním, přeměnou a distribucí všech forem energie. Energii nevytváříme, pouze transformujeme z jedné formy na druhou.
VŠB TU Ostrava Energetika se zabývá získáváním, přeměnou a distribucí všech forem energie. Energii nevytváříme, pouze transformujeme z jedné formy na druhou. VŠB TU Ostrava 2 VŠB TU Ostrava 3 Dle zdroje:
ELEKTROLÝZA. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 13. 3. 2012. Ročník: osmý
Autor: Mgr. Stanislava Bubíková ELEKTROLÝZA Datum (období) tvorby: 13. 3. 2012 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Chemické reakce 1 Anotace: Žáci se seznámí s elektrolýzou. V rámci
Palivové články ENVIROS. Autoři: Vedoucí projektu. Spoluautoři Ing. Josef Křepinský Ing. Vladimír Civín Ing. Miroslav Bleha, CSc. Mgr.
Palivové články ENVIROS Autoři: Vedoucí projektu Ing. Antonín Český Spoluautoři Ing. Josef Křepinský Ing. Vladimír Civín Ing. Miroslav Bleha, CSc. Mgr. Jana Čejková Spoluřešitelé Ing. Miroslav Malý, CSc.
Prohlašuji, že jsem pracoval sám a že jsem nepoužil cizí práci ani její části.
Otázka: Vodík jako zdroj energie Předmět: Chemie Přidal(a): Tomislav Kopřiva Tomislav Kopřiva Prohlašuji, že jsem pracoval sám a že jsem nepoužil cizí práci ani její části. Obsah: Úvod 1. Základní informace
Gymnázium, Milevsko, Masarykova 183 Školní vzdělávací program (ŠVP) pro vyšší stupeň osmiletého studia a čtyřleté studium 4.
Vyučovací předmět - Chemie Vzdělávací obor - Člověk a příroda Gymnázium, Milevsko, Masarykova 183 Školní vzdělávací program (ŠVP) pro vyšší stupeň osmiletého studia a čtyřleté studium 4. ročník - seminář
AKUMULÁTORY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 15. 3. 2012. Ročník: devátý
Autor: Mgr. Stanislava Bubíková AKUMULÁTORY Datum (období) tvorby: 15. 3. 2012 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Chemické reakce 1 Anotace: Žáci se seznámí se zdroji elektrického
Osnova: 1. Zdroje stejnosměrného napětí 2. Zatěžovací charakteristika
K620ZENT Základy elektroniky Přednáška č. 4 Osnova: 1. Zdroje stejnosměrného napětí 2. Zatěžovací charakteristika Výroba elektrická energie z energie mechanické - prostřednictvím točivých elektrických
Bioplyn biomethan vodík biovodík
Bioplyn biomethan vodík biovodík bioplyn biomethan vodík (biovodík) CH4 + CO2 CH4 ( CO2) H2 biomethan CH4 + (CO2 + H2) CH4 Vodík představuje surovinu s obrovským potenciálem pro celou řadu aplikací, hlavně
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Oxidace a redukce jsou chemické reakce spojené s výměnou elektronů. Při oxidaci látka elektrony uvolňuje a její oxidační číslo se zvyšuje.
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Chemie (CHE) Obecná chemie, anorganická chemie 2. ročník a sexta 2 hodiny týdně Školní tabule, interaktivní tabule, tyčinkové a kalotové modely molekul, zpětný
Palivové články. Obsah 1 Seznam zkratek... 3 Úvod... 3
Palivové články Obsah 1 Seznam zkratek... 3 Úvod... 3 8.1 Historie a blízká budoucnost 3 8.2 Základní princip a konstrukce palivových článků... 5 8.2.1 Rozdělení palivových článků.. 8 8.2.2 Aplikace, výhody
NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE. Ing. Stanislav HONUS
NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE Ing. Stanislav HONUS ORGANICKÝ MATERIÁL Spalování Chemické přeměny Chem. přeměny ve vodním prostředí Pyrolýza Zplyňování Chemické Biologické Teplo
H H C C C C C C H CH 3 H C C H H H H H H
Alkany a cykloalkany sexta Martin Dojiva uhlovodíky obsahující pouze jednoduché vazby obecný vzorec alkanů: C n 2n+2 cykloalkanů: C n 2n homologický přírůstek C 2 Dělení alkanů přímé větvené u větvených
PRŮMYSLOVÉ TECHNOLOGIE I - SOUBOR OTÁZEK KE ZKOUŠCE
PRŮMYSLOVÉ TECHNOLOGIE I - SOUBOR OTÁZEK KE ZKOUŠCE 1. PRVKY 5. SKUPINY (N,P,As,Sb,Bi) obecné zákonitosti ve skupině DUSÍK Výskyt, chemické vlastnosti molekulární dusík Amoniak vlastnosti, příprava, hydrolýza,
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ - ENERGETICKÝ ÚSTAV ODBOR TERMOMECHANIKY A TECHNIKY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ - ENERGETICKÝ ÚSTAV ODBOR TERMOMECHANIKY A TECHNIKY PROSTŘEDÍ doc. Ing. Josef ŠTETINA, Ph.D. Předmět 3. ročníku BS http://ottp.fme.vutbr.cz/sat/
Lukáš Feřt SPŠ dopravní, Plzeň, Karlovarská 99, 326 00
Lukáš Feřt SPŠ dopravní, Plzeň, Karlovarská 99, 326 00 V rámci projektu: Inovace odborného vzdělávání na středních školách zaměřené na využívání energetických zdrojů pro 21. století El. proud I je určen
ZDROJE A PŘEMĚNY. JAN PREHRADNÝ, EVŽEN LOSA Katedra jaderných reaktorů FJFI ČVUT v Praze
ZDROJE A PŘEMĚNY ENERGIE JAN PREHRADNÝ, EVŽEN LOSA Katedra jaderných reaktorů FJFI ČVUT v Praze Formy energie Energie rozdělení podle působící síly omechanická energie Kinetická (Pohybová) Potenciální
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 2 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat
Střední škola obchodu, řemesel a služeb Žamberk
Střední škola obchodu, řemesel a služeb Žamberk Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ Registrační číslo projektu: CZ.1.07/1.5.00/34.0130 Šablona: III/2 Ověřeno ve výuce dne: 11.2.2013
Technické plyny. kapalný vzduch kyslík dusík vzácné plyny vodík (syntézní plyny)
Technické plyny kapalný vzduch kyslík dusík vzácné plyny vodík (syntézní plyny) Kapalný vzduch složení vzduchu Před zkapalněním odstranění nežádoucích složek, např. vodní pára, CO 2, prach Zkapalňování
Alternativní zdroje energie
Autor: Ivo Vymětal Pracovní list 1 Přeměny energie 1. Podle vzoru doplň zdroje a druhy energie, které se uplatní v popsaných dějích. Využij seznamu: Žárovka napájená z tepelné elektrárny. Slunce Rostliny
1/82 Malé teplárenské zdroje mikrokogenerace
1/82 Malé teplárenské zdroje mikrokogenerace spalovací pístové motory plynové mikroturbíny ORC cyklus palivové články Stirlingův motor Teplárenské zdroje 2/82 velké centralizované zdroje energie uhlí,
Využití vodíku v dopravě
Využití vodíku v dopravě Vodík - vlastnosti nejběžnější prvek ve vesmíru (90 % všech atomů a 75 % celkové hmotnosti) na Zemi hlavně ve formě sloučenin (hlavně voda H 2 O) hořlavý plyn lehčí než vzduch
Zplyňování biomasy. Sesuvný generátor. Autotermní zplyňování Autotermní a alotermní zplyňování
Zplyňování = termochemická přeměna uhlíkatého materiálu v pevném či kapalném skupenství na výhřevný energetický plyn pomocí zplyňovacích médií a tepla. Produktem je plyn obsahující výhřevné složky (H 2,
Principy chemických snímačů
Principy chemických snímačů Název školy: SPŠ Ústí nad Labem, středisko Resslova Autor: Ing. Pavel Votrubec Název: VY_32_INOVACE_05_AUT_99_principy_chemickych_snimacu.pptx Téma: Principy chemických snímačů
DOUČOVÁNÍ KVINTA CHEMIE
1. ÚVOD DO STUDIA CHEMIE 1) Co studuje chemie? 2) Rozděl chemii na tři důležité obory. DOUČOVÁNÍ KVINTA CHEMIE 2. NÁZVOSLOVÍ ANORGANICKÝCH SLOUČENIN 1) Pojmenuj: BaO, N 2 0, P 4 O 10, H 2 SO 4, HMnO 4,
Josef Kameš ALTERNATIVNÍ POHON AUTOMOBILÙ 2004 Josef Kameš ALTERNATIVNÍ POHON AUTOMOBILÙ Bez pøedchozího písemného svolení nakladatelství nesmí být kterákoli èást kopírována nebo rozmnožována jakoukoli
Uplatnění vodíkového palivového článku
Středoškolská technika 2012 Setkání a prezentace prací středoškolských studentů na ČVUT Uplatnění vodíkového palivového článku Michal Hloušek ISŠ Nová Paka Kumburská 846, Nová Paka 1 Využití vodíkových
Sekundární elektrochemické články
Sekundární elektrochemické články méně odborně se jim říká také akumulátory všechny elektrochemické reakce jsou vratné (ideálně na 100%) řeší problém ekonomický (vícenásobné použití snižuje náklady) řeší
Spolek pro kombinovanou výrobu elektřiny a tepla člen COGEN Europe. Firemní profil
Spolek pro kombinovanou výrobu elektřiny a tepla člen COGEN Europe Firemní profil Obsah prezentace Potenciál a možnosti využití Vybrané technologie Základní principy a vlastnosti Hlavní oblasti využití
EU peníze středním školám digitální učební materiál
EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky
VYSOKÉ U!ENÍ TECHNICKÉ V BRN" BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ U!ENÍ TECHNICKÉ V BRN" BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING ENERGETICKÝ ÚSTAV ENERGY INSTITUTE UKLÁDÁNÍ ELEKTRICKÉ ENERGIE DO VÝH#EVNÝCH
GALAVANICKÝ ČLÁNEK. V běžné životě používáme název baterie. Odborné pojmenování pro baterii je galvanický článek.
GALAVANICKÝ ČLÁNEK V běžné životě používáme název baterie. Odborné pojmenování pro baterii je galvanický článek. Galvanický článek je zařízení, které využívá redoxní reakce jako zdroj energie. Je zdrojem
ELEKTROCHEMIE. Danielův článek e
ELEKTROCHEMIE Při reakcích v elektrochemických soustavách vzniká nebo se spotřebovává elektrická energie. Praktické aplikace elektrochemie: 1. Využití elektrochemických soustav jako zdroje elektrické energie
Obloukové svařování wolframovou elektrodou v inertním plynu WIG (TIG) - 141
Obloukové svařování wolframovou elektrodou v inertním plynu WIG (TIG) - 141 Při svařování metodou 141 hoří oblouk mezi netavící se elektrodou a základním matriálem. Ochranu elektrody i tavné lázně před
ALTERNATIVNÍ ZDROJE ENERGIE
Inovace a zkvalitnění výuky v oblasti přírodních věd Člověk a příroda 7.ročník červenec 2011 ALTERNATIVNÍ ZDROJE ENERGIE Anotace: Kód: VY_52_INOVACE_ Čap-Z 7.,8.16 Vzdělávací oblast: energie slunce, větru,
Inovace profesní přípravy budoucích učitelů chemie
Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
rní zdroj energie pro elektromobily Petr Vysoký
Vodík k jako primárn rní zdroj energie pro elektromobily Petr Vysoký Dopravní fakulta ČVUT Vodík palivo budoucnosti Sloučen ením m vodíku s kyslíkem kem dojde k uvolnění energie, odpadem je voda Vodík
6. Nekovy chlor a vodí k
6. Nekovy chlor a vodí k 1) Obecná charakteristika nekovů 2) Chlor a jeho sloučeniny 3) Vodík a jeho sloučeniny Obecná charakteristika nekovů Jedna ze tří chemických skupin prvků. Nekovy mají vysokou elektronegativitu.
VODÍK: ZÁSOBÁRNA ENERGIE PRO BUDOUCNOST
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE VODÍK: ZÁSOBÁRNA ENERGIE PRO BUDOUCNOST HYDROGEN:
Gymnázium Jiřího Ortena, Kutná Hora. Pojmy Metody a formy Poznámky
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Chemie (CHE) Obecná chemie, anorganická chemie 2. ročník a sexta 2 hodiny týdně Školní tabule, interaktivní tabule, tyčinkové a kalotové modely molekul, zpětný
ZŠ ÚnO, Bratří Čapků 1332
Animovaná chemie Top-Hit Analytická chemie Analýza anorganických látek Důkaz aniontů Důkaz kationtů Důkaz kyslíku Důkaz vody Gravimetrická analýza Hmotnostní spektroskopie Chemická analýza Nukleární magnetická
Energie,výkon, příkon účinnost, práce. V trojfázové soustavě
Energie,výkon, příkon účinnost, práce V trojfázové soustavě Energie nevzniká ani se neztrácí, jen se mění z jedné na druhou Energie je nejdůležitější vlastnost hmoty a záření Jednotlivé druhy energie:
BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING
NOVÉ TECHNOLOGIE ROZŠIŘUJÍCÍ VYUŽITÍ CELKOVÉHO ENERGETICKÉHO POTENCIÁLU BIOPLYNU A BIOMASY
NOVÉ TECHNOLOGIE ROZŠIŘUJÍCÍ VYUŽITÍ CELKOVÉHO ENERGETICKÉHO POTENCIÁLU BIOPLYNU A BIOMASY Prof. Ing. Jana Zábranská, CSc Ústav technologie vody a prostředí, Vysoká škola chemicko-technologická Praha,
1 Prvky 1. skupiny (alkalické kovy )
1 Prvky 1. skupiny (alkalické kovy ) Klíčové pojmy: alkalický kov, s 1 prvek, sodík, draslík, lithium, rubidium, cesium, francium, sůl kamenná, chilský ledek, sylvín, biogenní prvek, elektrolýza taveniny,
Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan
Číslo projektu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0743 Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Chemie chemie ve společnosti kvarta Datum tvorby 2.6.2013 Anotace a)
EU peníze středním školám digitální učební materiál
EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky
1932 H. C. 1934 M.L.E.
Vodík Historie 1671 Robert Boyle uvolnění vodíku rozpouštěním Fe v HCl nebo H 2 SO 4 1766 Henry Cavendish podrobný popis vlastností 1932 H. C. Urey objev deuteria 1934 M.L.E. Oliphant, P. Harteck a E.
Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO
1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu
Bioplyn - hořlavý a energeticky bohatý plyn
Bioplyn - hořlavý a energeticky bohatý plyn je použitelný ke kogenerační výrobě elektrické energie a tepla je skladovatelný a po úpravě na biomethan může být použit jako zemní plyn biomethan je použitelný
Předmět: CHEMIE Ročník: 8. ŠVP Základní škola Brno, Hroznová 1. Výstupy předmětu
Chemie ukázka chemického skla Chemie přírodní věda, poznat chemické sklo a pomůcky, zásady bezpečné práce práce s dostupnými a běžně používanými látkami (směsmi). Na základě piktogramů žák posoudí nebezpečnost
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE PALIVOVÉ ČLÁNKY FUELL CELLS BAKALÁŘSKÁ PRÁCE
Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta
Tepelné elektrárny 1) Kondenzační elektrárny uhelné K výrobě elektrické energie se využívá tepelné energie uvolněné z uhlí spalováním. Teplo uvolněné spalováním se využívá k výrobě přehřáté (ostré) páry.
Zdroje elektrické energie
Zdroje elektrické energie Zpracoval. Ing. Jaroslav Chlubný 1. Energie Elektrická energie nás provází na každém kroku bez ní si dnešní život stěží dokážeme představit. Stačí když nám dojde baterka v mobilu
13. Netradiční topné plyny bioplyn, skládkový plyn, využití vodíku jako topného plynu. Ing. Tomáš Hlinčík, Ph.D.
13. Netradiční topné plyny bioplyn, skládkový plyn, využití vodíku jako topného plynu Ing. Tomáš Hlinčík, Ph.D. Bioplyny a plyny z biomasy Skládkový plyn Bioplyn z ČOV Zemědělské bioplynové stanice Plyn
STABILNÍ ELEKTŘINA ZA PŘIJATELNOU CENU
STABILNÍ ELEKTŘINA ZA PŘIJATELNOU CENU ENERGETICKÉ KONCEPCE Tisková konference MPO 31. 7. 2012 Kde se nacházíme 2 Vnější podmínky Globální soupeření o primární zdroje energie Energetická politika EU Technologický
Fotokatalytické materiály Materiály a technologie přípravy M. Čada
Fotokatalytické materiály 22. 1. 2017 Materiály a technologie přípravy M. Čada www.fzu.cz/~cada 1 Fotokatalýza Znečištěné životní prostředí. Vyčerpání fosilních zdrojů energie. Je třeba vyvinout technologie
Solární dům. Vybrané experimenty
Solární dům Vybrané experimenty 1. Závislost U a I na úhlu osvitu stolní lampa, multimetr a) Zapojíme články sériově. b) Na výstup připojíme multimetr. c) Lampou budeme články nasvěcovat pod proměnlivým
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY ANALÝZA VYUŽITÍ VODÍKU V ENERGETICE BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROENERGETIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
Elektroenergetika 1. Jaderné elektrárny
Jaderné elektrárny Vazební energie jádra Klidová hmotnost jádra všech prvků a izotopů je menší než je součet hmotností všech nukleonů -> hmotnostní defekt m j m j = Nm n + Zm p m j Kde m n je klidová hmotnost
PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ OVZDUŠÍ
PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ OVZDUŠÍ 2010 Ing. Andrea Sikorová, Ph.D. 1 Problémy životního prostředí - ovzduší V této kapitole se dozvíte: Co je to ovzduší. Jaké plyny jsou v atmosféře. Jaké složky znečišťují
Vliv zdrojů elektrické energie na životní prostředí
Klimatické změny odpovědnost generací Hotel Dorint Praha Don Giovanni 11.4.2007 Vliv zdrojů elektrické energie na životní prostředí Tomáš Sýkora ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická
PŘEDSTAVENÍ VÝROBY ELEKTŘINY
PŘEDSTAVENÍ VÝROBY ELEKTŘINY INTRODUCTION NA PALIVOVÝCH OF GASIFICATION ČLÁNCÍCH TECHNOLOGY, IGCC Seminář ELECTRICITY SVSE, 3.května PRODUCTION 2012 AND ALTERNATIVE ENERGY SOLUTIONS Ing. Tomáš Rohal, Business
Hybridní pohony vozidel Bakalářská práce
Mendelova univerzita v Brně Agronomická fakulta Ústav techniky a automobilové dopravy Hybridní pohony vozidel Bakalářská práce Vedoucí práce: doc. Ing. Pavel Sedlák CSc. Vypracovala: Kateřina Kolegarová
TERMICKÉ PROCESY PŘI VYUŽITÍ ALTERNATIVNÍCH SUROVIN. Most, 13.6.2013 Autor: Doc. Ing. J.LEDERER, CSc.
TERMICKÉ PROCESY PŘI VYUŽITÍ ALTERNATIVNÍCH SUROVIN Most, 13.6.2013 Autor: Doc. Ing. J.LEDERER, CSc. OBSAH PRINCIPY POUŽÍVANÝCH TERMOCHEMICKÝCH PROCESŮ VELKOKAPACITNÍ REALIZACE TERMOCHEMICKÝCH PROCESŮ
ELEKTRICKÝ PROUD V KAPALINÁCH
ELEKTRICKÝ PROUD V KPLINÁCH 1. Elektrolyt a elektrolýza elektrolyt kapalina, která může vést elektrický proud (musí obsahovat ionty kyselin, zásad nebo solí - rozpuštěné nebo roztavené) elektrolýza proces,
Zdroje energie. Leonardo da Vinci Projekt. Udržitelný rozvoj v průmyslových prádelnách. Kapitola 1. Modul 5 Energie v prádelnách.
Leonardo da Vinci Projekt Udržitelný rozvoj v průmyslových prádelnách Modul 5 Energie v prádelnách Kapitola 1 Zdroje energie Dodavatel energie Modul 5 Energie v prádelnách Kapitola 1 Zdroje energie 1 Obsah
Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch
Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch Atom, složení a struktura Chemické prvky-názvosloví, slučivost Chemické sloučeniny, molekuly Chemická vazba
Využití vodíkových technologií: koncepce, aktuality, bariéry
ÚJV Řež, a. s. Využití vodíkových technologií: koncepce, aktuality, bariéry Aleš Doucek 25.5.2017 Koncepce využití vodíkových technologií Dvě hlavní větve (prolínají se) Energetické aplikace Čistá mobilita
VY_32_INOVACE_FY.17 JADERNÁ ENERGIE
VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje
3.4. Chemické vlastnosti
34 Chemické vlastnosti Chemické vlastnosti materiálů jsou určovány jejich schopností chemicky reagovat s okolním prostředím, nejčastěji kapalným nebo plynným Za určitých podmínek, např při vysokých teplotách,
SHRNUTÍ A ZÁKLADNÍ POJMY chemie 8.ročník ZŠ
SHRNUTÍ A ZÁKLADNÍ POJMY chemie 8.ročník ZŠ 1. ČÍM SE ZABÝVÁ CHEMIE VLASTNOSTI LÁTEK, POKUSY - chemie přírodní věda, která studuje vlastnosti a přeměny látek pomocí pozorování, měření a pokusu - látka
HOŘČÍK KOVY ALKALICKÝCH ZEMIN. Pozn. Elektronová konfigurace valenční vrstvy ns 2
HOŘČÍK KOVY ALKALICKÝCH ZEMIN Pozn. Elektronová konfigurace valenční vrstvy ns 2 Hořčík Vlastnosti: - stříbrolesklý, měkký, kujný kov s nízkou hustotou (1,74 g.cm -3 ) - diagonální podobnost s lithiem
2016 Bc. Karel Štrbík
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra elektroenergetiky Zdroj energie pro obytný dům na bázi palivočlánkové mikrokogenerační jednotky Energy source for residential
12. Elektrochemie základní pojmy
Důležité veličiny Elektroda, článek Potenciometrie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Důležité veličiny proud I (ampér - A) náboj Q (coulomb - C) Q t 0 I dt napětí, potenciál
Vybavení Laboratoře vodíkových technologií II-1
Vysoká škola báňská Technická univerzita Ostrava Vybavení Laboratoře vodíkových technologií II-1 Stručný popis zakázky nebo nákupu(ů) : část A) Palivové články Předmětem této části veřejné zakázky je dodávka
NÍZKOTEPLOTNÍ KYSLÍKO-VODÍKOVÉ PALIVOVÉ ČLÁNKY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF