Bioorganická chemie OCH/BIOR1

Rozměr: px
Začít zobrazení ze stránky:

Download "Bioorganická chemie OCH/BIOR1"

Transkript

1 Bioorganická chemie OCH/BIOR1 ZS 2015/2016 Přednáška 1 Úvod do předmětu RNDr. Lucie Brulíková, Ph.D. brulikova@orgchem.upol.cz 1

2 Sylabus předmětu 1. hodina - Úvod Opakování základů molekulární biologie prokaryotická a eukaryotická buňka, buněčný cyklus. Základní přehled interakcí v živých systémech, mezimolekulární a elektrostatické interakce, induktivní, disperzní síly, donor-akceptorové interakce, vodíkové vazby, koordinační reakce, samoorganizace, samoskladba. Význam při tvorbě a deformaci struktur biomolekul. 2. hodina - Bioorganické reakce v živých systémech Shrnutí základních molekulárních procesů, typy reakcí v živých organizmech ukázka na Calvinově cyklu a porovnání s přístupy v organické chemii (tvorba C-C vazeb, reakce aldolového typu, syntéza aromatických sloučenin, oxidace/redukce, esterifikace, dekarboxylace, fosforylace ). 2

3 Sylabus předmětu hodina - Metabolismu nukleových kyselin. Cíle molekulárního zásahu do přirozeného metabolismu NK. Interkalace princip, typy molekul způsobujících interkalaci, vliv na strukturu DNA, využití. Cross-linking princip, typy molekul způsobujících CL, využití. Štěpení nukleových kyselin princip, typy molekul způsobujících štěpení NK, využití. Interakce malých molekul s NK. Principy značení nukleových kyselin, chemické reakce využívané v diagnostice. 3

4 Sylabus předmětu hodina - Metabolismu proteinů. Porovnání biosyntézy a syntézy proteinů. Molekulární zásah do metabolismu aminokyselin a proteinů. Interakce vedoucí ke změně struktury proteinů. Fungování aktivních látek na bázi peptidomimetik, cyklických peptidů a nepřírodních aminokyselin. Principy značení proteinů, chemické reakce vedoucí ke konjugátům, mechanismus jejich účinku. Využití enzymů v organické syntéze, enzymové inženýrství. Látky inhibující enzymové reakce syntéza a mechanismus účinku významných inhibitorů proteosyntézy, nukleosyntézy, strategie syntézy analog koenzymů. 4

5 7.-8. hodina - Metabolismu cukrů. Sylabus předmětu Molekulární zásah do metabolismu cukrů využití v terapii. Tvorba konjugátů význam v metabolismu xenobiotik. Významné oligosacharidy, polysacharidy, cyklodextriny stavba, principy fungování v oblasti experimentální medicíny. 5

6 Sylabus předmětu hodina - Metabolismu lipidů. Molekulární zásah do metabolismu lipidů využití v terapii, liposomy a imunoliposomy molekulární stavba, principy fungování v oblasti experimentální medicíny. Látky působící na buněčnou membránu, buněčný transport biosyntéza buněčné membrány, molekulární podstata buněčného transportu, látky ovlivňující buněčný transport mechanismus tvorby kanálků (amfotericin), organické sloučeniny jako nosiče (kryptandy, crown-ethery, apod.), látky narušující strukturu a funkci buněčné membrány. 6

7 Sylabus předmětu hodina - Molekulární zařízení, supramolekulární chemie, nanočástice. Význam supramolekulární chemie ve výzkumu léčiv příprava, struktura a funkce cyklodextrinů, fullerenů, calixarenů, supramolekulární chemie dendrimerů a jejich využití v medicíně. Fotochemické senzory, molecular beacons, fluorescentní značky, katechany a rotaxany, supramolekulární systémy. Molekulární dráty, pinzety principy fungování a možnosti využití. Modifikované nanočástice, chemické metody přípravy, stabilita, biodegradace, interakce s biomolekulami, využití nančástic v cíleném transportu. 7

8 Bioorganická chemie je spojena se studiem organických molekul v buněčných systémech a zkoumáním reakcí, které v nich probíhají. 8

9 Něco málo z buněčné biologie Prokaryotická buňka charakteristický typ pro bakterie a archea o řád menší než buňka eukaryotická, vyznačuje se také jednodušší organizací vždy jednobuněčné organismy, netvoří tedy tkáně 9

10 Něco málo z buněčné biologie Prokaryotická buňka tři klíčové charakteristiky prokaryotických buněk: organizace nukleoidu (bakteriální obdoby jádra) nukleoid není oddělen od okolní cytoplazmy membránou, skládá se jen z jedné velké molekuly DNA, na níž nejsou histony ani jiné bazické bílkoviny, je haploidní nepřítomnost organel v prokaryotické buňce nejsou mitochondrie, plastidy, endoplazmatické retikulum ani jiná organela s membránou vlastnosti ribozomů ribozomy prokaryot se od eukaryot liší svou hmotností i velikostí 10

11 Něco málo z buněčné biologie Eukaryotická buňka 1 jadérko; 2 jádro; 3- ribozom; 4 vezikul; 5 - drsné endoplazmatické retikulum; 6 - Golgiho aparát; 7 cytoskelet; 8 - hladké endoplazmatické retikulum; 9 mitochondrie; 10 vakuola; 11 cytosol; 12 lysozom; 13 - centriola 11

12 Něco málo z buněčné biologie Eukaryotická buňka 12

13 Něco málo z buněčné biologie 13

14 Něco málo z buněčné biologie Eukaryotická buňka plazmatická membrána Plazmatická membrána odděluje vnitřní prostředí buňky od okolí. Jejím základem je dvojvrstva molekul, které jsou na jednom konci hydrofobní a na druhém hydrofilní. Hydrofilní konce se tak natáčejí směrem do vodného roztoku jak uvnitř, tak vně buňky. Hydrofobní konce se natáčejí k sobě navzájem. Podobnou dvojvrstvu můžeme pozorovat například u mýdlové bubliny, kdy hydrofilní konce snižují povrchové napětí tenké kulové vrstvy vody a hydrofobní jsou orientovány na jedné straně do nitra a na druhé vně z bubliny. Oddělené prostory jsou jistě důležité v případě, kdy dochází k soupeření o zdroje. 14

15 Něco málo z buněčné biologie Eukaryotická buňka plazmatická membrána Zdroj: Encyclopaedia Britannica. 15

16 Něco málo z buněčné biologie Eukaryotická buňka plazmatická membrána 16

17 Něco málo z buněčné biologie Eukaryotická buňka mitochondrie Jsou malé elektrárny buňky, obsahující energetické systémy, které produkují energii uloženou do makroergních vazeb ve formě ATP, vznikající oxidací živin molekulárním kyslíkem. Buňka jich obsahuje několik set až tisíc ve velikosti řádově v µm. Tvoří je dvě fosfolipidové membrány - vnější a vnitřní Vnější fosfolipidová membrána pórovitá, propustná pro většinu látek s molekulovou hmotností nepřesahující cca 5000Da, obsahuje Tom komplex, který přenáší proteiny z cytoplasmy do intermembránového prostoru; obsahuje enzymy, které jsou součástí metabolismu mastných kyselin a fosfolipidů Vnitřní fosfolipidová membrána velká zvlněna plocha (kristy); propouští molekuly selektivně, ionty nedifundují, obsahuje kardiolipin (z fosfátové hlavy vychází 4 mastné kys.); enzymy dýchacího řetězce, včetně ATP syntézy a ANT (vynáší ATP ven do buňky); obsahuje Tim komplex, který umožňuje přenos bílkovin 17

18 Něco málo z buněčné biologie Eukaryotická buňka mitochondrie Uvnitř mitochondrie matrix obsahuje enzymy Krebsova cyklu, různé nukleotidové koenzymy, anorganické ionty, mitochondriální DNA, příslušnou RNA a mitochondriální ribozomy. mezimembránový prostor, kde je cytochrom c a různé kinázy Na mitochondriích probíhají různé enzymatické procesy: buněčné dýchání (vyjma glykolýzy) - rozklad různých organických látek, čímž se získává energie potřebná pro syntézu adenosintrifosfátu (ATP) z ADP. Výchozí látkou jsou zejména pyruvát a mastné kyseliny, obě látky v mitochondriální matrix prochází reakcemi, při nichž vzniká acetylkoenzy A (pyruvát prochází dekarboxylací, mastné kyseliny beta-oxidací. Acetylkoenzym A následně vstupuje do Krebsova cyklu, což je série reakcí, které umožňují redukci koenzymů NAD + na NADH a FAD na FADH 2. 18

19 Něco málo z buněčné biologie Eukaryotická buňka mitochondrie Elektrony z těchto koenzymů jsou předávány do dýchacího řetězce, jenž je umístěn na vnitřní membráně mitochondrie. Dýchací řetězec přenáší do mezimembránového prostoru vodíkové kationty (H +, čímž vzniká v prostoru mezi membránami kyselé ph. Toto ph má tendenci se vyrovnávat, a tak prochází otvorem v enzymu ATP syntáze zpět dovnitř buňky. Průchodem H + však tento enzym vytváří ATP, jež je kýženým produktem celého sledu reakcí. Figure 1-13a Molecular Biology of the Cell, Fifth Edition ( Garland Science 2008) 19

20 Něco málo z buněčné biologie Eukaryotická buňka Mitochondrie 20

21 Něco málo z buněčné biologie Eukaryotická buňka Mitochondrie Figure 1-33 Molecular Biology of the Cell, Fifth Edition ( Garland Science 2008) 21

22 Něco málo z buněčné biologie Eukaryotická buňka jádro 22

23 Něco málo z buněčné biologie Eukaryotická buňka jádro organela eukaryotických buněk, v níž je uložena většina genetického materiálu (DNA) buňky. Je to vlastně váček obalený dvěma buněčnými membránami, který má v průměru 5 10 mikrometrů. Uvnitř se nachází chromatin - DNA a různé přidružené bílkoviny, ale i další struktury (např. jadérko), kde probíhají různé enzymatické procesy související s DNA a RNA. Jádro se vyskytuje v buňkách všech eukaryot (s několika drobnými výjimkami např. lidská červená krvinka), tedy u všech rostlin, živočichů, hub nebo např. u prvoků. Někdy jich je dokonce v buňce více než jedno. O způsobu vzniku jádra existuje několik hypotéz a stále v tom není jasno. Mimo to, že jádro obsahuje DNA, má důležitou roli jako bariéra mezi místem transkripce (přepis DNA do RNA) a translace (z RNA do bílkovin). 23

24 Něco málo z buněčné biologie Eukaryotická buňka jádro Jádro je ohraničeno dvojitým jaderným obalem ( jadernou membránou ), v němž se nacházejí póry tvořené speciálními bílkovinami, které mají usnadnit a řídit transport specifických makromolekul, např. RNA. Z důvodu transportu mrna k ribozómům a posttranslační úpravy bílkovin je jádro napojeno na drsné endoplazmatické retikulum. Obal jádra sestává ze dvou membrán a vrstvy mezi nimi: vnitřní membrána (na kterou se váže chromatin) a vnější membrána připomíná membránu hrubého ER a stejně jako ona nese navázané ribozomy. Mezimembránový prostor V jaderné membráně se nachází tzv. jaderné póry, které umožňují transport látek přes membránu. Většinu vnitřního prostoru jádra vyplňuje tzv. chromatin, tedy vlastně DNA a asociované bílkoviny (jako jsou třeba histony). 24

25 Něco málo z buněčné biologie Eukaryotická buňka chromozomy Jaderná DNA je tvořena několika lineárními řetězci, které se označují jako chromozomy. Zdravý člověk má v každé tělní buňce 46 takových lineárních molekul, jejichž celková délka je asi jeden metr. Nejedná se však obvykle o náhodný spletenec, nýbrž o vysoce organizovaný komplex DNA a bílkovin. Na nejnižší úrovni vznikají z DNA a histonů tzv. nukleozomy, na vyšších úrovních nacházíme další typy organizace DNA. Kódující části chromatinu se nazývají euchromatin a bývají poněkud volněji smotané než heterochromatin, který tvoří nekódující DNA. 25

26 Něco málo z buněčné biologie Eukaryotická buňka chromozomy Jednotlivé chromozomy jsou obvykle pozorovány v M-fázi (při mitóze), kdy se buňka připravuje na dělení a jednotlivé chromozomy získávají svůj typický tvar (dvě chromatidy spojené v centromeře). V této době totiž je DNA tak hustě kondenzována, že jsou chromozomy viditelné i pod světelným mikroskopem. Většinu doby jsou však buňky v interfázi (období mezi děleními), kdy se chromozomy naopak rozmotávají, aby mohly být správně využívány pro běžnou činnost buňky. Je však zajímavé, že i v této době si udržují chromozomy svůj prostor a příliš se navzájem nesplétají. Každá taková komůrka se označuje chromozomální teritorium. 26

27 Něco málo z buněčné biologie Eukaryotická buňka chromozomy 27

28 Něco málo z buněčné biologie Eukaryotická buňka chromozomy 28

29 Něco málo z buněčné biologie Eukaryotická buňka ribozomy Jsou granulární organely o velikosti v průměru 20 nm, které jsou důležitým místem proteosyntézy. Tento proces v nich probíhá, když jsou napojeny a posunují se po mrna, která je předpisem pro tento děj. Je-li jich napojeno více na jednom vlákně, vznikají tzv. polyribozomy nebo-li polyzomy. 29

30 Něco málo z buněčné biologie Figure 1-10a Molecular Biology of the Cell, Fifth Edition ( Garland Science 2008) A ribosome at work. The diagram shows how a ribosome moves along an mrna molecule, capturing trna molecules that match the codons in the mrna and using them to join amino acids into a protein chain. The mrna specifies the sequence of amino acids. 30

31 Něco málo z buněčné biologie Prokaryotická buňka ukázka bakteriálního ribozomu The threedimensional structure of a bacterial ribosome (pale green and blue), moving along an mrna molecule (orange beads), with three trna molecules (yellow, green, and pink) at different stages in their process of capture and release. The ribosome is a giant assembly of more than 50 individual protein and RNA molecules. (B, courtesy of Joachim Frank, Yanhong Li and Rajendra Agarwal.) Figure 1-10b Molecular Biology of the Cell, Fifth Edition ( Garland Science 2008) 31

32 Něco málo z buněčné biologie 32

33 Buněčný cyklus 33

34 Buněčný cyklus..\kbch\videa\cell Division and the Cell Cycle.mp4 Molecular biology of the cell - interactive\videos\17.3-plant_cell_division.mov Molecular biology of the cell - interactive\videos\17.4-animal_cell_division.mov 34

35 Buněčný cyklus G2-fáze - 2. přípravná - závislá na dokončení replikace DNA v S fázi -Jedná se o 2. generační fázi (premitotickou), při níž dochází ke zvýšené syntéze a aktivaci proteinů (ke kondenzaci chromozomů, ke tvorbě mitotického aparátu a destrukci jaderného obalu), končí zahájením mitózy Mitóza - jaderné dělení, poslední etapa buněčného cyklu - chromozomy reduplikované do konce S fáze jsou ohraničeny, sesterské chromatidy odděleny a přemístěny k protilehlým pólům buňky (vlastní mitóza) - dceřiné buňky obdrží 2 kompletní sady chromosomů a shodnou výbavu cytoplazmatických organel 35

36 Buněčný cyklus - základní stadia mitotického dělení u živočišných buněk Profáze - počáteční stádium mitózy, dochází ke kondenzaci chromatinu, zaniká jadérko místo, kde během interfáze dochází k mohutné transkripci ribozomální RNA, vzniká dělící vřeténko. Každý chromozom se nyní skládá ze dvou identických molekul DNA (chromatid) spojených v místě centromery. Prometafáze - zaniká jaderná membrána a kondenzované chromozomy se nyní nacházejí v cytoplazmě, zápětí přicházejí chromozomy do kontaktu s mikrotubuly dělícího vřeténka, na něž se svými kinetochory připojí. Za pomoci molekulárních motorů začínají chromozomy postupovat směrem k ekvatoriální rovině buňky Metafáze chromosomy se přesunují ke středu vřeténka do tzv. ekvatoriální roviny. Pohyb chromozomů po mikrotubulech dělícího vřeténka je zprotředkován kinetochory, proteinovými komplexy nacházejícími se v oblasti centromery každého z chromozomů. 36

37 Buněčný cyklus - základní stadia mitotického dělení u živočišných buněk Anafáze sesterské chromatidy se od sebe oddělí po mikrotubulech dělícího vřeténka k opačným pólům, zároveň se od sebe tyto póly (zpravidla tvořené centrozomy) vzdalují, jak se vůči sobě posouvají polární mikrotubuly z opačných pólů vřeténka Telofáze chromatidy se přesunou k opačným pólům vřeténka, kde dekondenzují, výsledkem je vznik dvou dceřiných buněčných jader a oddělení cytoplazmy, dochází k obnově jadérka, chromatinu a jaderného obalu. V ekvatoriální rovině se zatím tvoří konstrikční rýha pro rozdělení cytoplasmy a organel. 37

38 Buněčný cyklus - základní stadia mitotického dělení u živočišných buněk Cytokineze - dochází k postupnému zaškrcení rýhy mezi 2 dceřinými buňkami, proběhne rekonstrukce buněčného jádra a cytoplazmy obou buněk do interfázové podoby, je rekonstruován i jaderný obal a napojení jeho zevní membrány na ER, chromosomy jsou ve svých euchromatinových úsecích rozvolněny a využity k transkripci, jadérko je obnoveno a tím jsou zahájeny procesy G1 fáze..\kbch\videa\mitosis.mp4 38

39 Buněčný cyklus - základní stadia mitotického dělení u živočišných buněk 39

40 Buněčný cyklus - tubulin a mikrotubuly Mikrotubuly jsou jedny z vláken cytoskeletu, která slouží především k transportu různých struktur a látek uvnitř buňky umožňují pohyb chromosomů při buněčné mitóze dlouhé rovné válcovité struktury o průměru Å mikrotubuly jsou rozloženy po celé buňce a jsou víceméně zodpovědné za rozmístění organel po rozvolnění jaderné membrány v prometafázi vnikají mikrotubuly do prostoru jádra a prostřednictvím motorických proteinů (kinesin a dynein) vážou chromosomy, které pak transportují do ekvatoriální roviny vřeténka a k jeho pólům Molecular biology of the cell - interactive\videos\16.7-kinesin.mov 40

41 Buněčný cyklus - tubulin a mikrotubuly Mikrotubuly Figure Molecular Biology of the Cell ( Garland Science 2008) 41

42 Buněčný cyklus - tubulin a mikrotubuly Mikrotubuly Mikrotubuly mají dvě vazebná místa pro GTP nebo GDP a na tom, zda v těchto místech je GDP nebo GTP, závisí jejich stabilita. V případě, že je tam navázáno GTP, jsou stabilnější a proces depolymerizace je pomalejší než proces polymerizace, mikrotubuly tedy rostou. V případě, že je tam navázán GDP, depolymerizace převáží a mikrotubuly se zkracují. Samotná polymerizace tubulinu do mikrotubulů probíhá na úkor štěpení GTP. podél osy jsou rozloženy subjednotky proteinu tubulinu uměle můžeme způsobit jejich rozpad alkaloidem kolchicinem (z ocúnu) a stabilizovat jejich polymeraci můžeme alkaloidem taxolem (který se získává z tisu) oba tyto alkaloidy inhibují mitózu! 42

43 Buněčný cyklus - tubulin a mikrotubuly Tubulin kyselý protein s GTPasovou aktivitou uspořádán do dimerových jednotek složených z α-tubulinu a β- tubulinu každá molekula alfa i beta-tubulinu obsahuje vazebné místo pro GTP, jehož štěpením se uvolňuje energie - vazba je silně ovlivněna Ca 2+ a Mg 2+ v jejich blízkosti jsou vazebná místa charakterizovaná vazbou kolchicinu nebo vinca alkaloidů polymerizace tubulinu probíhá na úkor štěpení GTP --- GDP při nedostatku GTP se váže jen vzniklý GDP, vazba je výrazně slabší, proto dochází k depolymerizaci dynamická nestabilita dimery tubulinů spolu tvoří dlouhé řetězce, v nichž na sebe navazují vždy alfa-tubulin na beta-tubulin nikdy se dimery na sebe nemohou navázat souhlasnými typy tubulinů jeden řetězec se nazývá protofilament Molecular biology of the cell - interactive\videos\16.1-mt_instability.mov 43

44 Buněčný cyklus - tubulin a mikrotubuly 44

45 Buněčný cyklus - tubulin a mikrotubuly 45

46 Buněčný cyklus - tubulin a mikrotubuly Schematické znázornění struktury mikrotubulu Tubulinové dimery jsou seřazeny do 13 protofilament, která jsou vzájemně posunuta o 9 nm a vytváří tak levotočivou šroubovici. Nahoře je tzv. plus-konec mikrotubulu, na němž polymerace tubulinu probíhá rychleji (vystavuje β- podjednotku tubulinu s E-vazebným místem pro nukleotid) K polymeraci (přidávání) a disociaci (odebírání) dimerů bude docházet jen na koncích mikrotubulu. Ten konec mikrotubulu, který je zakončen betatubulinem, má schopnost růstu a proto se nazývá plus konec. Naopak mínus konec bude zakončen alfa-tubulinem a bude tam docházet k disociaci. Mikrotubulus má průměr 25 nm. 46

47 Buněčný cyklus - tubulin a mikrotubuly Dynamická nestabilita Polymerace a disociace neprobíhá najednou, ale samostatně závisí to na existenci tzv. GTP čepičky, která je posazená na plusovém konci mikrotubulu jedná se o připojené beta-tubuliny, které na sobě mají navázané GTP později, až odroste tato nově navázaná část blíže ke středu mikrotubulu, tak se GTP rozštěpí na GDP a tento beta-tubulin s GDP, již nebude patřit do GTP čepičky GTP způsobuje to, že mikrotubul roste rovně, GDP má tendenci se ohýbat když nastane situace, že se přestanou polymerovat beta-tubuliny s GTP do GTP čepičky, dojde k disociaci mikrotubulu na mínusovém konci 47

48 Buněčný cyklus - tubulin a mikrotubuly V rámci mitózy fungují mikrotubuly následujícím způsobem: po rozvolnění jaderné membrány mikrotubuly narostou od pólů buňky k jednotlivým chromozómům, připojí se k jejich centrálním částem pomocí motorových proteinů (kinesin a dinein) a transportují je do rovníkové oblasti buňky ke každé kopii chromozómu je připojen mikrotubul z opačné strany buňky mikrotubuly připojené k centromerám se začnou zkracovat, motorové proteiny po nich posouvají chromatidy každou k jinému pólu buňky v každé polovině dělící se buňky tak zůstane jeden kompletní set chromozomů. Molecular biology of the cell - interactive\videos\16.7-kinesin.mov 48

49 Buněčný cyklus - tubulin a mikrotubuly Mitotické vřeténko při metafázi: Při metafázi se chromozómy seřadí v rovníkové oblasti dělícího vřeténka. Z centrozomů, které jsou umístěné na pólech vřeténka, vyrostou mikrotubuly směrem k chromozómům a obě sesterské chromatidy každého chromozómu se připojí k těmto mikrotubulům (zelené) prostřednictvím svých kinetochorů. Kromě těchto mikrotubulů jsou v dělícím vřeténku přítomné dva další typy mikrotubulů polární mikrotubuly (červené), které vybíhají z obou centrozomů a v ekvatoriální oblasti se překrývají a astrální mikrotubuly (modré), které rostou z centrozomů směrem k okraji buňky. Všechny tři typy mikrotubulů mají (-) konec u centrozomů a (+) konec směrem od centrozomů. Molecular biology of the cell - interactive\videos\17.7-mitotic_spindle.mov 49

50 Buněčný cyklus - tubulin a mikrotubuly Mitotické vřeténko při metafázi: 50

51 Buněčný cyklus - tubulin a mikrotubuly Mitotické vřeténko při anafázi: Při anafázi se oddělí sesterské chromatidy a pohybují se směrem k pólům buňky. Děje se tak prostřednicvím mikrotubulů připojených ke kinetochorům. Tyto mikrotubuly se zkracují na svých (+) koncích a současně motorové proteiny připojené ke kinetochorům posouvají chromatidy podél zkracujícího se vlákna směrem k (-) konci, sesterské chromatidy tak zůstávají připojeny ke zkracujícím se mikrotubulům. 51

52 Buněčný cyklus - tubulin a mikrotubuly Mitotické vřeténko při anafázi: 52

53 Buněčný cyklus - tubulin a mikrotubuly v blízkosti vazebných míst pro GTP jsou vazebná místa charakterizovaná vazbou kolchicinu nebo vinca alkaloidů charakteristika je náhodná, v systému přirozené polymerizace tubulinu nehraje žádnou roli všechny látky, které se mohou vázat do těchto center, však silně narušují tvorbu komplexu s GTP a bráni tak polymerizaci tubulinu proto dochází k jeho spontánní depolymerizaci, zastavuje se pohyb motorických proteinů, zprotředkovaný mikrotubuly (včetně pohybu chromosomů), a tím se zastaví i buněčná mitóza látky narušující polymerizaci tubulinu mají proto obecně antineoplastický účinek a mnohé z nich se používají v terapii nádorů a malignit hemopoietického systému 53

54 Buněčný cyklus - meióza Meióza jaderné, resp. buněčné dělení, během kterého dochází k produkci buněk se zredukovaným počtem chromozómů (2n 1n) základní proces umožňující pohlavní rozmnožování počet chromozomů (resp. chromozomových sad) dceřiných jader je redukován na polovinu původního množství geny dceřiných jader nemusí být kvalitativně stejné, jsou mezi ně totiž rozděleny homologické chromozomové sady (vytvořené náhodnou segregací homologických chromozomů) a nikoli identické kopie DNA 54

55 Buněčný cyklus meióza vs mitóza 55

56 Buněčný cyklus Regulace buněčného cyklu Kontrolní uzly Během buněčného cyklu existuje několik kontrolních bodů, kdy buňka zjišťuje připravenost na další fázi buněčného cyklu a pokud zjistí, že připravena není, pak přechod zablokuje, případně zahájí apoptózu. Prvním kontrolním uzlem je přechod G 1 /S. Pokud jsou vnější podmínky nepříznivé pro dělení a nebo existuje poškození buňky, zablokuje se přechod z G 1 do S fáze. Druhým kontrolním uzlem je přechod G 2 /M. Zde se buněčný cyklus zastaví v případě poškození DNA. Buňky zůstanou v G2 fázi, dokud není DNA plně replikovaná, případně pokud je jinak poškozená. Třetím kontrolním uzlem je přechod M/G 1. Buněčný cyklus se zastaví při přechodu z metafáze do anafáze, pokud nejsou chromozómy dokonale připojené k dělícímu vřeténku. 56

57 Buněčný cyklus Figure Molecular Biology of the Cell ( Garland Science 2008) 57

58 Buněčný cyklus Regulace buněčného cyklu Existují dva typy molekul, které hrají zásadní roli při regulaci buněčného cyklu - cykliny a cyklin dependentní kinázy (CDK) CDK jsou v buňce přítomné neustále, ale jsou neaktivní v přítomnosti cyklinů se aktivují a začnou fosforylovat (a tím aktivovat nebo deaktivovat) cílové proteiny, které buňku navedou do další fáze buněčného cyklu G1/S cykliny, S-cykliny, M-cykliny aktivací různých CDK se ovlivní různé proteiny tak, jak buňka postupuje fázemi buněčného cyklu jedná se o kaskádovitý děj - po obdržení extracelulárního promitotického signálu se aktivuje G 1 cyklin-cdk a připraví buňku na přechod do S fáze. Zahájí syntézu transkripčních faktorů, které jsou nutné pro expresi S cyklinů a enzymů potřebných pro replikaci DNA. Také způsobí degradaci molekul, které inhibují přechod buňky do S fáze 58

59 Buněčný cyklus Figure Molecular Biology of the Cell ( Garland Science 2008) 59

60 Buněčný cyklus Regulace buněčného cyklu aktivní S cyklin-cdk fosforylují proteiny prereplikačních komplexů a tím je jednak aktivují a jednak zabrání vzniku nových prereplikačních komplexů důvodem je, aby jich bylo správné množství a celý genetický materiál byl zkopírován právě jednou aktivací dalších cyklin-cdk a proteinů dojde k přechodu do G 2 fáze během S a G 2 fáze se syntetizují neaktivní mitotické cyklin-cdk, ty se aktivují na přechodu do M fáze 60

61 Buněčný cyklus Figure Molecular Biology of the Cell ( Garland Science 2008) 61

62 Buněčný cyklus Figure Molecular Biology of the Cell ( Garland Science 2008) 62

63 Buněčný cyklus Regulace buněčného cyklu Narušení cyklu buněčného dělení nádorových buněk nebo transformovaných buněk hemopoetického systému je cílem antineoplastické chemoterapie. 63

64 Buněčná smrt 64

65 Buněčná smrt Apoptóza: organizovaná, programovaná, přísně regulovaná buněčná sebevražda bez patologických důsledků pro okolní tkáň. K tomu je nutné dodání energie. Týká se jednotlivých buněk, nezasahuje okolní buňky, nevyvolává zánět. Klíčovými enzymy jsou kaspázy (proteázy štěpící jiné proteiny i sebe samotné, jejich štěpení je signálem pro apoptózu). K aktivaci apoptózy dochází buď vnější cestou jako odpověď na vnější signál nebo vnitřní cestou (iniciační signál se tvoří uvnitř buňky) Nekróza: nekontrolovaná, neregulovaná smrt buněk a tkání v živém organismu z různých příčin (fyzikální faktory, hypoxie, ischemie, toxiny, infekce, volné radikály atd.). Projevuje se nabobtnáním buňky a organel, dezintegrací jádra, ztrátou asymetrie i integrity buněčné membrány, lýzou buňky, vylitím cytosolu do mezibuněčného prostoru. Postihuje skupiny buněk, celé tkáně až orgány a v daném místě spouští zánět. 65

66 Molekulární interakce v biologických systémech 66

67 Molekulární interakce v biologických systémech 67

68 Molekulární interakce v biologických systémech Ve vodném prostředí (buňka) jsou kovalentní vazby krát silnější než jiné přitažlivé síly mezi atomy, avšak nejvíce se uplatňují slabé nevazebné interakce. Tabulka popisuje sílu těchto vazeb ve vakuu a ve vodě, tedy v přirozeném prostředí buněk. Table 2-1 Molecular Biology of the Cell ( Garland Science 2008) 68

69 Nekovalentní interakce v živých systémech Vodíkové vazby Hydrofobní interakce Van der Waalsovy interakce Interakce π-π Elektrostatické interakce 69

70 Nekovalentní interakce v živých systémech Vodíkové vazby - vzniká u sloučenin, které obsahují atomy vodíku kovalentně vázané na atom o vysoké elektronegativitě (F, O, N) Figure 2-15 Molecular Biology of the Cell ( Garland Science 2008) 70

71 Nekovalentní interakce v živých systémech Vodíkové vazby - příklad v biologickém systému Figure 4-4 Molecular Biology of the Cell ( Garland Science 2008) 71

72 Nekovalentní interakce v živých systémech van der Waalsovy interakce - přitažlivé nebo odpudivé interakce (síly) mezi molekulami. - jsou slabší než kovalentní, koordinačně kovalentní síly a vodíkové můstky - vznikají převážně v nepolárních molekulách, které neobsahují stálé dipóly, jejich vazby nejsou polarizované 72

73 Nekovalentní interakce v živých systémech van der Waalsovy interakce -př. Van der Waalsovy ineterakce v proteinech 73

74 Nekovalentní interakce v živých systémech Elektrostatické interakce - přitažlivé (atraktivní) nebo odpudivé nekovalentní interakce nábojů nebo permanentních dipólů - řídí se Coulombovým zákonem (proto též Coulombické interakce) - jejich energie závisí na velikosti nábojů a permitivitě prostředí - ve srovnání s ostatními nekovalentními interakcemi mají daleký dosah - hrají významnou roli zejména při interakci nukleových kyselin, které nesou při fysiologickém ph záporný náboj, s bazickými proteiny, ale i při vazbě nabitých substrátů do vazebného místa enzymu či při interakcích nabitých polárních hlavic fosfolipidů - energeticky výhodná elektrostatická interakce nabitých skupin (např. postranních řetězců aminokyselin Glu, Asp, Lys a Arg) s dipóly vody je příčinou jejich hydrofilní povahy 74

75 Nekovalentní interakce v živých systémech Elektrostatické interakce - Př.: voda - zásadním způsobem ovlivňuje elektrostatické interakce. - Dipóly se orientují v nabitým částicím a redukují tak afinitu opačně nabitých částic. Figure 2-14 Molecular Biology of the Cell ( Garland Science 2008) 75

76 Nekovalentní interakce v živých systémech Hydrofobní interakce - shlukováním hydrofóbních (s vodou neinteragujících) skupin se získají nové interakce mezi molekulami vody (kapičky oleje ve vodě se spojí, tím se zmenší jejich celkový povrch) - podobně se chovají hydrofóbní části proteinů (aminokyseliny s nepolárními postranními řetězci se orientují dovnitř prostorové struktury bílkoviny) - v DNA metylové skupiny thyminu a 5-metyl cytosinu 76

77 Nekovalentní interakce v živých systémech Interakce - - pí stacking ( - stacking) - nekovalentní interakce mezi paralelně orientovanými páry bází - důležité síly v DNA, proteinech - interakce s jinými molekulami (interkalátory, zbytky aromatických aminokyselin při interakcích DNAprotein) 77

78 Nekovalentní interakce v živých systémech H- vazby a) N-H/ interaction in the bovine pancreatic trypsin inhibitor (PDB code: 4PTI) b) O-H/ interaction in the complex of glutathione transferase with glutathione (GSH; PDB code: 6GST). 78

79 Nekovalentní interakce v živých systémech kationt- interakce Alternating cationic (Arg, Lys) and aromatic (Tyr, Phe, Trp) amino acid residues shown by X-ray crystallography (2.8 Å) within the human growth hormone receptor (hghr) extracellular domain (PDB code: 3HHR). 79

80 Nekovalentní interakce v živých systémech komplexy s ionty kovů - př. aktivní místo alkoholdehydrogenasy 80

81 Complexes with metal cations Active site of alcohol dehydrogenase Binding site of Mg endonuclease

82 Nekovalentní interakce v živých systémech Interakce v proteinech 82

83 Nekovalentní interakce v živých systémech Ukázka nekovalentních interakcí spojujících dvě makromolekuly. Figure 2-16 Molecular Biology of the Cell ( Garland Science 2008)

84 Chemické složení buněk Table 2-2 Molecular Biology of the Cell ( Garland Science 2008) 84

85 Buňky jsou tvořeny 4 základními stavebními kameny Figure 2-17 Molecular Biology of the Cell ( Garland Science 2008) 85

86 Sacharidy Buňky jsou tvořeny 4 základními stavebními kameny Figure 2-18 Molecular Biology of the Cell ( Garland Science 2008) 86

87 Sacharidy Buňky jsou tvořeny 4 základními stavebními kameny Figure 2-19 Molecular Biology of the Cell ( Garland Science 2008) 87

88 Lipidy Buňky jsou tvořeny 4 základními stavebními kameny Figure 2-21 Molecular Biology of the Cell ( Garland Science 2008) 88

89 Lipidy Buňky jsou tvořeny 4 základními stavebními kameny Figure 2-22 Molecular Biology of the Cell ( Garland Science 2008) 89

90 Buňky jsou tvořeny 4 základními stavebními kameny Aminokyseliny Figure 2-23 Molecular Biology of the Cell ( Garland Science 2008) 90

91 Buňky jsou tvořeny 4 základními stavebními kameny Aminokyseliny Figure 2-24 Molecular Biology of the Cell ( Garland Science 2008) 91

92 Nukleotidy Buňky jsou tvořeny 4 základními stavebními kameny Figure 2-26 Molecular Biology of the Cell ( Garland Science 2008) 92

93 Nukleotidy Buňky jsou tvořeny 4 základními stavebními kameny Figure 2-27 Molecular Biology of the Cell ( Garland Science 2008) 93

94 Buňky jsou tvořeny zejména makromolekulami Figure 2-29 Molecular Biology of the Cell ( Garland Science 2008) 94

95 Buňky jsou tvořeny zejména makromolekulami Figure 2-32 Molecular Biology of the Cell ( Garland Science 2008) 95

96 Buněčný metabolismus a enzymy 96

97 Buněčný metabolismus a enzymy Figure 2-36 Molecular Biology of the Cell ( Garland Science 2008) 97

98 Jak buňka získá energii? - Energie je uchovávána ve formě chemických vazeb organických molekul rostliny i zvířata tuto energii získávají oxidací - respirace Figure 2-41 Molecular Biology of the Cell ( Garland Science 2008) 98

99 Enzymy - Snižují energetické bariéry, které blokují chemické reakce Figure 2-44 Molecular Biology of the Cell ( Garland Science 2008) 99

100 Enzymy - analogie Figure 2-46a Molecular Biology of the Cell ( Garland Science 2008) 100

101 Enzymy - analogie Figure 2-46b Molecular Biology of the Cell ( Garland Science 2008) 101

102 Enzymy Figure 2-47 Molecular Biology of the Cell ( Garland Science 2008) 102

103 Přenašeče energie - energie, která je uvolněna oxidačními procesy musí být dočasně uchována než je využita v dalších procesech - ve většině případů je uchovávána ve formě chemických vazeb tzv. přenašečů, které obsahují jednu nebo více energeticky bohatých kovalentních vazeb - př.: ATP, NADH, NADPH, acetylcoa Figure 2-55 Molecular Biology of the Cell ( Garland Science 2008) 103

104 Přenašeče energie Table 2-5 Molecular Biology of the Cell ( Garland Science 2008) 104

105 Přenašeče energie Figure 2-57 Molecular Biology of the Cell ( Garland Science 2008) 105

106 Přenašeče energie Figure 2-58 Molecular Biology of the Cell ( Garland Science 2008) 106

107 Přenašeče energie Příklad energeticky nepříznivé biosyntetické reakce poháněné hydrolýzou ATP. Figure 2-59a Molecular Biology of the Cell ( Garland Science 2008) 107

108 Elektronové přenašeče Figure 2-60a Molecular Biology of the Cell ( Garland Science 2008) 108

109 Elektronové přenašeče Figure 2-60b Molecular Biology of the Cell ( Garland Science 2008) 109

110 Elektronové přenašeče Figure 2-61 Molecular Biology of the Cell ( Garland Science 2008) 110

111 Přenašeče energie Figure 2-62 Molecular Biology of the Cell ( Garland Science 2008) 111

112 Přenašeče energie využití v syntéze Figure 2-65 Molecular Biology of the Cell ( Garland Science 2008) 112

113 Přenašeče energie využití v syntéze Figure 2-67 Molecular Biology of the Cell ( Garland Science 2008) 113

114 Glykolýza Jak buňky získávají energii z jídla Figure 2-70 Molecular Biology of the Cell ( Garland Science 2008) 114

115 Glykolýza Jak buňky získávají energii z jídla Figure 2-72b Molecular Biology of the Cell ( Garland Science 2008) 115

116 Fosfátové vazby mají rozdílné energie Figure 2-74 Molecular Biology of the Cell ( Garland Science 2008) 116

117 Jak se tvoří ATP Figure 2-76 Molecular Biology of the Cell ( Garland Science 2008) 117

118 Jak buňky získávají energii z jídla z mastných kyselin Figure 2-78 Molecular Biology of the Cell ( Garland Science 2008) 118

119 Jak buňky získávají energii z jídla citrátový cyklus Figure 2-81b Molecular Biology of the Cell ( Garland Science 2008) 119

120 Jak buňky získávají energii z jídla citrátový cyklus Figure 2-82 Molecular Biology of the Cell ( Garland Science 2008) 120

121 Prekurzory pro syntézu dalších látek Figure 2-84 Molecular Biology of the Cell ( Garland Science 2008) 121

Základy buněčné biologie

Základy buněčné biologie Maturitní otázka č. 8 Základy buněčné biologie vypracovalo přírodozpytné sympózium LP, AM & DK na konferenci v Praze, 1. Máje 2014 Buňka (cellula) je nejmenší známý útvar, který je schopný všech životních

Více

BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA:

BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA: BUNĚČ ĚČNÁ STAVBA ŽIVÝCH ORGANISMŮ KLÍČOVÁ SLOVA: Prokaryota, eukaryota, viry, bakterie, živočišná buňka, rostlinná buňka, organely buněčné jádro, cytoplazma, plazmatická membrána, buněčná stěna, ribozom,

Více

Stavba dřeva. Základy cytologie. přednáška

Stavba dřeva. Základy cytologie. přednáška Základy cytologie přednáška Buňka definice, charakteristika strana 2 2 Buňky základní strukturální a funkční jednotky živých organismů Základní charakteristiky buněk rozmanitost (diverzita) - např. rostlinná

Více

Buňky, tkáně, orgány, soustavy

Buňky, tkáně, orgány, soustavy Lidská buňka buněčné organely a struktury: Jádro Endoplazmatické retikulum Goldiho aparát Mitochondrie Lysozomy Centrioly Cytoskelet Cytoplazma Cytoplazmatická membrána Buněčné jádro Jadérko Karyoplazma

Více

44 somatických chromozomů pohlavní hormony (X,Y) 46 chromozomů

44 somatických chromozomů pohlavní hormony (X,Y) 46 chromozomů Buněčný cyklus MUDr.Kateřina Kapounková Inovace studijního oboru Regenerace a výţiva ve sportu (CZ.107/2.2.00/15.0209) 1 DNA,geny genom = soubor všech genů a všechna DNA buňky; kompletní genetický materiál

Více

http://www.accessexcellence.org/ab/gg/chromosome.html

http://www.accessexcellence.org/ab/gg/chromosome.html 3. cvičení Buněčný cyklus Mitóza Modifikace mitózy 1 DNA, chromosom genetická informace organismu chromosom = strukturní podoba DNA během dělení (mitózy) řetězec DNA (chromonema) histony další enzymatické

Více

MITÓZA V BUŇKÁCH KOŘÍNKU CIBULE

MITÓZA V BUŇKÁCH KOŘÍNKU CIBULE Cvičení 6: BUNĚČNÝ CYKLUS, MITÓZA Jméno: Skupina: MITÓZA V BUŇKÁCH KOŘÍNKU CIBULE Trvalý preparát: kořínek cibule obarvený v acetorceinu V buňkách kořínku cibule jsou viditelné různé mitotické figury.

Více

Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza

Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových

Více

Nukleové kyseliny Replikace Transkripce, RNA processing Translace

Nukleové kyseliny Replikace Transkripce, RNA processing Translace ukleové kyseliny Replikace Transkripce, RA processing Translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti

Více

Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách

Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách Buňka Historie 1655 - Robert Hooke (1635 1703) - použil jednoduchý mikroskop k popisu pórů v řezu korku. Nazval je, podle podoby k buňkám včelích plástů, buňky. 18. - 19. St. - vznik buněčné biologie jako

Více

- význam: ochranná funkce, dodává buňce tvar. jádro = karyon, je vyplněné karyoplazmou ( polotekutá tekutina )

- význam: ochranná funkce, dodává buňce tvar. jádro = karyon, je vyplněné karyoplazmou ( polotekutá tekutina ) Otázka: Buňka a dělení buněk Předmět: Biologie Přidal(a): Štěpán Buňka - cytologie = nauka o buňce - rostlinná a živočišná buňka jsou eukaryotické buňky Stavba rostlinné (eukaryotické) buňky: buněčná stěna

Více

DUM č. 1 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika

DUM č. 1 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika projekt GML Brno Docens DUM č. 1 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 02.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Charakteristika buněčného cyklu eukaryot

Více

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ SPOLEČNÉ ZNAKY ŽIVÉHO - schopnost získávat energii z živin pro své životní potřeby - síla aktivně odpovídat na změny prostředí - možnost růstu, diferenciace a reprodukce

Více

Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).

Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA). Typy nukleových kyselin Existují dva typy nukleových kyselin (NA, z anglických slov nucleic acid): deoxyribonukleová (DNA); ribonukleová (RNA). DNA je lokalizována v buněčném jádře, RNA v cytoplasmě a

Více

pátek, 24. července 15 BUŇKA

pátek, 24. července 15 BUŇKA BUŇKA ŽIVOČIŠNÁ BUŇKA mitochondrie ribozom hrubé endoplazmatické retikulum cytoplazma plazmatická membrána mikrotubule lyzozom hladké endoplazmatické retikulum Golgiho aparát jádro jadérko chromatin volné

Více

Eukaryotická buňka. Stavba. - hlavní rozdíly:

Eukaryotická buňka. Stavba. - hlavní rozdíly: Eukaryotická buňka - hlavní rozdíly: rostlinná buňka živočišná buňka buňka hub buněčná stěna ano (celulóza) ne ano (chitin) vakuoly ano ne (prvoci ano) ano lysozomy ne ano ne zásobní látka škrob glykogen

Více

Biologie buňky. systém schopný udržovat se a rozmnožovat

Biologie buňky. systém schopný udržovat se a rozmnožovat Biologie buňky 1665 - Robert Hook (korek, cellulae = buňka) Cytologie - věda zabývající se studiem buňek Buňka ozákladní funkční a stavební jednotka živých organismů onejmenší známý uspořádaný dynamický

Více

Nejmenší jednotka živého organismu schopná samostatné existence. Výměnu látek Růst Pohyb Rozmnožování Dědičnost

Nejmenší jednotka živého organismu schopná samostatné existence. Výměnu látek Růst Pohyb Rozmnožování Dědičnost BUŇKA Nejmenší jednotka živého organismu schopná samostatné existence Buňka je schopna uskutečňovat základní funkce organismu: obrázky použity z Nečas: BIOLOGIE LIDSKÉ TĚLO Alberts: ZÁKLADY BUNĚČNÉ BIOLOGIE

Více

Typy molekul, látek a jejich vazeb v organismech

Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Organismy se skládají z molekul rozličných látek Jednotlivé látky si organismus vytváří sám z jiných látek,

Více

VAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost

VAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost VAKUOLA membránou ohraničený váček membrána se nazývá tonoplast běžná u rostlin, zvířata specializované funkce či její nepřítomnost VAKUOLA Funkce: uložiště odpadů a uskladnění chemických látek (fenolické

Více

Chemická reaktivita NK.

Chemická reaktivita NK. Chemické vlastnosti, struktura a interakce nukleových kyselin Bi7015 Chemická reaktivita NK. Hydrolýza NK, redukce, oxidace, nukleofily, elektrofily, alkylační činidla. Mutageny, karcinogeny, protinádorově

Více

- pro učitele - na procvičení a upevnění probírané látky - prezentace

- pro učitele - na procvičení a upevnění probírané látky - prezentace Číslo projektu Název školy Autor Tematická oblast CZ.1.07/1.5.00/34.0743 Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková Biologie 10 obecná biologie Organely eukaryotní buňky Ročník 1. Datum tvorby

Více

Eva Benešová. Dýchací řetězec

Eva Benešová. Dýchací řetězec Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ

Více

Mitóza, meióza a buněčný cyklus. Milan Dundr

Mitóza, meióza a buněčný cyklus. Milan Dundr Mitóza, meióza a buněčný cyklus Milan Dundr Rozmnožování eukaryotických buněk Mitóza (mitosis) Mitóza dělení (nepřímé) tělních (somatických) buněk 1 jádro s2n (diploidním počtem) chromozómů (dvouchromatidových)

Více

2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:

2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné: Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících

Více

Endocytóza o regulovaný transport látek v buňce

Endocytóza o regulovaný transport látek v buňce . Endocytóza o regulovaný transport látek v buňce Exocytóza BUNĚČNÝ CYKLUS OMNIS CELLULA ET CELLULA - buňka vzniká jen z buňky Sled akcí, ve kterých buňka zdvojí svůj obsah a pak se rozdělí systém regulace

Více

Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA

Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA

Více

Energetický metabolizmus buňky

Energetický metabolizmus buňky Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie

Více

Projekt realizovaný na SPŠ Nové Město nad Metují

Projekt realizovaný na SPŠ Nové Město nad Metují Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 Přírodovědné předměty Hana Gajdušková 1 Viry

Více

Buněčné dělení ŘÍZENÍ BUNĚČNÉHO CYKLU

Buněčné dělení ŘÍZENÍ BUNĚČNÉHO CYKLU BUNĚČNÝ CYKLUS Buněčné dělení Cykliny a na cyklinech závislé proteinkinázy (Cyclin- Dependent Protein Kinases; Cdk-proteinkinázy) - proteiny, které jsou součástí řídícího systému buněčného cyklu 8 cyklinů

Více

Opakování

Opakování Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony

Více

Buňka. Autor: Mgr. Jitka Mašková Datum: Gymnázium, Třeboň, Na Sadech 308

Buňka. Autor: Mgr. Jitka Mašková Datum: Gymnázium, Třeboň, Na Sadech 308 Buňka Autor: Mgr. Jitka Mašková Datum: 27. 10. 2012 Gymnázium, Třeboň, Na Sadech 308 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0702 VY_32_INOVACE_BIO.prima.02_buňka Škola Gymnázium, Třeboň, Na Sadech

Více

Otázka: Metabolismus. Předmět: Biologie. Přidal(a): Furrow. - přeměna látek a energie

Otázka: Metabolismus. Předmět: Biologie. Přidal(a): Furrow. - přeměna látek a energie Otázka: Metabolismus Předmět: Biologie Přidal(a): Furrow - přeměna látek a energie Dělení podle typu reakcí: 1.) Katabolismus reakce, při nichž z látek složitějších vznikají látky jednodušší (uvolňuje

Více

1.Biologie buňky. 1.1.Chemické složení buňky

1.Biologie buňky. 1.1.Chemické složení buňky 1.Biologie buňky 1.1.Chemické složení buňky 1. Stavbu molekuly DNA objasnil: a) J. B. Lamarck b) W. Harwey c) J.Watson a F.Crick d) A. van Leeuwenhoeck 2. Voda obsažená v buňkách je: a) vázaná na lipidy

Více

8 cyklinů (A, B, C, D, E, F, G a H) - v jednotlivých fázích buněčného cyklu jsou přítomny určité typy cyklinů

8 cyklinů (A, B, C, D, E, F, G a H) - v jednotlivých fázích buněčného cyklu jsou přítomny určité typy cyklinů Buněč ěčné dělení BUNĚČ ĚČNÝ CYKLUS ŘÍZENÍ BUNĚČ ĚČNÉHO CYKLU cykliny a na cyklinech závislé proteinkinázy (Cyclin-Dependent Protein Kinases; Cdk-proteinkinázy) - proteiny, které jsou součástí řídícího

Více

(molekulární) biologie buňky

(molekulární) biologie buňky (molekulární) biologie buňky Buňka základní principy Molecules of life Centrální dogma membrány Metody GI a MB Interakce Struktura a funkce buňky - principy proteiny, nukleové kyseliny struktura, funkce

Více

Cvičeníč. 4: Chromozómy, karyotyp a mitóza. Mgr. Zbyněk Houdek

Cvičeníč. 4: Chromozómy, karyotyp a mitóza. Mgr. Zbyněk Houdek Cvičeníč. 4: Chromozómy, karyotyp a mitóza Mgr. Zbyněk Houdek Chromozomy Geny jsou u eukaryotických organizmů z převážnéčásti umístěny právě na chromozómech v b. jádře. Jejich velikost a tvar jsou rozmanité,

Více

Karyokineze. Amitóza. Mitóza. Meióza. Dělení jádra. Předchází dělení buňky Dochází k rozdělení genetické informace u mateřské buňky.

Karyokineze. Amitóza. Mitóza. Meióza. Dělení jádra. Předchází dělení buňky Dochází k rozdělení genetické informace u mateřské buňky. Karyokineze Dělení jádra Předchází dělení buňky Dochází k rozdělení genetické informace u mateřské buňky Druhy karyokineze Amitóza Mitóza Meióza Amitóza Přímé dělení jádra Genetická informace je rozdělena

Více

Centrální dogma molekulární biologie

Centrální dogma molekulární biologie řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových

Více

od eukaryotické se liší svou výrazně jednodušší stavbou a velikostí Dosahuje velikosti 1-10 µm. Prokaryotní buňku mají bakterie a sinice skládá se z :

od eukaryotické se liší svou výrazně jednodušší stavbou a velikostí Dosahuje velikosti 1-10 µm. Prokaryotní buňku mají bakterie a sinice skládá se z : Otázka: Buňka Předmět: Biologie Přidal(a): konca88 MO BI 01 Buňka je základní stavební jednotka živých organismů. Je to nejmenší živý útvar schopný samostatné existence a rozmnožování. Každá buňka má svůj

Více

A. chromozómy jsou rozděleny na 2 chromatidy spojené jen v místě centromery. B. vlákna dělícího vřeténka jsou připojena k chromozómům

A. chromozómy jsou rozděleny na 2 chromatidy spojené jen v místě centromery. B. vlákna dělícího vřeténka jsou připojena k chromozómům Karlova univerzita, Lékařská fakulta Hradec Králové Obor: všeobecné lékařství - test z biologie Vyberte tu z nabídnutých odpovědí (1-5), která je nejúplnější. Otázka Odpověď 1. Mezi organely membránového

Více

Interakce buněk s mezibuněčnou hmotou. B. Dvořánková

Interakce buněk s mezibuněčnou hmotou. B. Dvořánková Interakce buněk s mezibuněčnou hmotou B. Dvořánková Obsah přednášky Buňka a její organely Extracelulární matrix Interakce buněk s ECM i navzájem Kultivace buněk in vitro Buněčné jádro Alberts: Molecular

Více

Aplikované vědy. Hraniční obory o ţivotě

Aplikované vědy. Hraniční obory o ţivotě BIOLOGICKÉ VĚDY Podle zkoumaného organismu Mikrobiologie (viry, bakterie) Mykologie (houby) Botanika (rostliny) Zoologie (zvířata) Antropologie (člověk) Hydrobiologie (vodní organismy) Pedologie (půda)

Více

Číslo a název projektu Číslo a název šablony

Číslo a název projektu Číslo a název šablony Číslo a název projektu Číslo a název šablony DUM číslo a název CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT SSOS_ZE_1.05

Více

DUM č. 3 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika

DUM č. 3 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika projekt GML Brno Docens DUM č. 3 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 02.06.2014 Ročník: 6AF, 6BF Anotace DUMu: chromatin - stavba, organizace a struktura

Více

Buněčný cyklus. Replikace DNA a dělení buňky

Buněčný cyklus. Replikace DNA a dělení buňky Buněčný cyklus Replikace DNA a dělení buňky 2 Regulace buněčného dělení buněčný cyklus: buněčné dělení buněčný růst kontrola kvality potomstva (dceřinných buněk) bránípřenosu nekompletně zreplikovaných

Více

BUNĚČNÝ CYKLUS. OMNIS CELLULA ET CELLULA - buňka vzniká jen z buňky. Sled akcí, ve kterých buňka zdvojí svůj obsah a pak se rozdělí

BUNĚČNÝ CYKLUS. OMNIS CELLULA ET CELLULA - buňka vzniká jen z buňky. Sled akcí, ve kterých buňka zdvojí svůj obsah a pak se rozdělí (1 BUNĚČNÝ CYKLUS BUNĚČNÝ CYKLUS OMNIS CELLULA ET CELLULA - buňka vzniká jen z buňky Sled akcí, ve kterých buňka zdvojí svůj obsah a pak se rozdělí systém regulace kontrolní body molekulární brzdy Jednobuněčné

Více

NUKLEOVÉ KYSELINY. Základ života

NUKLEOVÉ KYSELINY. Základ života NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním

Více

BUŇEČNÝ CYKLUS A JEHO KONTROLA

BUŇEČNÝ CYKLUS A JEHO KONTROLA BUŇEČNÝ CYKLUS A JEHO KONTROLA MITOSA - fáze: Profáze - kondensace chromosomů - 30 nm chromatine fibres vázané na matrix Rozpad Metafáze - párové ( sesterské ) chromatidy - vázané centromerou, seřazené

Více

Současná formulace: Buňka je minimální jednotka, která vykazuje všechny znaky živých soustav

Současná formulace: Buňka je minimální jednotka, která vykazuje všechny znaky živých soustav Buněčná teorie: Počátky formování: 1840 a dále, Jan E. Purkyně myšlenka o analogie rostlinného a živočišného těla (buňky zrníčka) Schwann T. Virchow R. nové buňky vznikají pouze dělením buněk již existujících

Více

Buňka. Kristýna Obhlídalová 7.A

Buňka. Kristýna Obhlídalová 7.A Buňka Kristýna Obhlídalová 7.A Buňka Buňky jsou nejmenší a nejjednodušší útvary schopné samostatného života. Buňka je základní stavební a funkční jednotkou živých organismů. Zatímco některé organismy jsou

Více

Základy molekulární a buněčné biologie. Přípravný kurz Komb.forma studia oboru Všeobecná sestra

Základy molekulární a buněčné biologie. Přípravný kurz Komb.forma studia oboru Všeobecná sestra Základy molekulární a buněčné biologie Přípravný kurz Komb.forma studia oboru Všeobecná sestra Genetický aparát buňky DNA = nositelka genetické informace - dvouvláknová RNA: jednovláknová mrna = messenger

Více

Buňka buňka je základní stavební a funkční jednotka živých organismů

Buňka buňka je základní stavební a funkční jednotka živých organismů Buňka - buňka je základní stavební a funkční jednotka živých organismů - je pozorovatelná pouze pod mikroskopem - na Zemi existuje několik typů buněk: 1. buňky bez jádra (prokaryotní buňky)- bakterie a

Více

Nukleové kyseliny. Nukleové kyseliny. Genetická informace. Gen a genom. Složení nukleových kyselin. Centrální dogma molekulární biologie

Nukleové kyseliny. Nukleové kyseliny. Genetická informace. Gen a genom. Složení nukleových kyselin. Centrální dogma molekulární biologie Centrální dogma molekulární biologie ukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Transkripce D R Translace rotein Mendel) Replikace 1869 objev nukleových kyselin (Miescher) 1944 nukleové kyseliny

Více

MEMBRÁNOVÉ STRUKTURY EUKARYONTNÍCH BUNĚK

MEMBRÁNOVÉ STRUKTURY EUKARYONTNÍCH BUNĚK MEMBRÁNOVÉ STRUKTURY EUKARYONTNÍCH BUNĚK PLASMATICKÁ MEMBRÁNA EUKARYOTICKÝCH BUNĚK Všechny buňky (prokaryotické a eukaryotické) jsou ohraničeny membránami zajišťujícími integritu a funkci buněk Ochrana

Více

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ METABOLISMUS SAHARIDŮ A. Odbourávání sacharidů - nejdůležitější zdroj energie pro heterotrofy - oxidací sacharidů až na. získávají aerobní organismy energii ve formě. - úplná oxidace glukosy: složitý proces

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání

Více

- v interfázi dále viditelné - jadérko, jaderný skelet, jaderný obal

- v interfázi dále viditelné - jadérko, jaderný skelet, jaderný obal Buňka buňka : 10-30 mikrometrů největší buňka : vajíčko životnost : hodiny: leukocyty, erytrocyty: 110 130 dní, hepatocyty: 1 2 roky, celý život organismu: neuron počet bb v těle: 30 biliónů pojem buňka

Více

Toxikologie PřF UK, ZS 2016/ Toxikodynamika I.

Toxikologie PřF UK, ZS 2016/ Toxikodynamika I. Toxikodynamika toxikodynamika (řec. δίνευω = pohánět, točit) interakce xenobiotika s cílovým místem (buňkou, receptorem) biologická odpověď jak xenobiotikum působí na organismus toxický účinek nespecifický

Více

Předmět: KBB/BB1P; KBB/BUBIO

Předmět: KBB/BB1P; KBB/BUBIO Předmět: KBB/BB1P; KBB/BUBIO Chemické složení buňky Cíl přednášky: seznámit posluchače se složením buňky po chemické stránce Klíčová slova: biogenní prvky, chemické vazby a interakce, uhlíkaté sloučeniny,

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická oblast Odborná biologie, část biologie organismus

Více

Buňka cytologie. Buňka. Autor: Katka www.nasprtej.cz Téma: buňka stavba Ročník: 1.

Buňka cytologie. Buňka. Autor: Katka www.nasprtej.cz Téma: buňka stavba Ročník: 1. Buňka cytologie Buňka - Základní, stavební a funkční jednotka organismu - Je univerzální - Všechny organismy jsou tvořeny z buněk - Nejmenší životaschopná existence - Objev v 17. stol. R. Hooke Tvar: rozmanitý,

Více

Nukleové kyseliny Replikace Transkripce translace

Nukleové kyseliny Replikace Transkripce translace Nukleové kyseliny Replikace Transkripce translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti buněk skladovat,

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání

Více

DUM č. 11 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika

DUM č. 11 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika projekt GML Brno Docens DUM č. 11 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 30.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Princip genové exprese, intenzita překladu

Více

1 (2) CYTOLOGIE stavba buňky

1 (2) CYTOLOGIE stavba buňky 1 (2) CYTOLOGIE stavba buňky Buňka základní stavební a funkční jednotka všech živých organismů. (neexistuje život mimo buňku!) buňky se liší tvarem i velikostí - záleží při tom hlavně na jejich funkci.

Více

Prokaryotická X eukaryotická buňka. Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen)

Prokaryotická X eukaryotická buňka. Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Cytoplazmatická membrána osemipermeabilní ofosfolipidy, bílkoviny otransport látek, receptory,

Více

prokaryotní Znaky prokaryoty

prokaryotní Znaky prokaryoty prokaryotní buňka Znaky prokaryoty Základní stavební jednotka bakterií a sinic Mikroskopická velikost viditelné pouze v optickém mikroskopu Buňka neobsahuje organely Obsahuje pouze 1 biomembránu cytoplazmatickou

Více

BIOLOGIE BUŇKY. Aplikace nanotechnologií v medicíně zimní semestr 2016/2017. Mgr. Jana Rotková, Ph.D.

BIOLOGIE BUŇKY. Aplikace nanotechnologií v medicíně zimní semestr 2016/2017. Mgr. Jana Rotková, Ph.D. BIOLOGIE BUŇKY Aplikace nanotechnologií v medicíně zimní semestr 2016/2017 Mgr. Jana Rotková, Ph.D. OBSAH zařazení v systému organismů charakterizace buňky buněčné organely specializace buněk užitečné

Více

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ METABOLISMUS SACHARIDŮ PRINCIP Rozštěpené sacharidy vstřebávání střevní sliznicí do krevního oběhu dopraveny vrátnicovou žílou do jater. V játrech enzymaticky hexózy štěpeny na GLUKÓZU vyplavována do krve

Více

Inovace profesní přípravy budoucích učitelů chemie

Inovace profesní přípravy budoucích učitelů chemie Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

Mitóza a buněčný cyklus

Mitóza a buněčný cyklus Mitóza a buněčný cyklus Něco o chromosomech - Chromosom = 1 molekula DNA + navázané proteiny -V diploidní buňce jsou od každého chromosomu 2 kopie (= homologní chromosomy) - Homologní chromosomy nesou

Více

BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ

BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ BIOMEMRÁNA BIOLOGICKÁ MEMBRÁNA - všechny buňky na povrchu plazmatickou membránu - Prokaryontní buňky (viry, bakterie, sinice) - Eukaryontní buňky vnitřní členění do soustavy membrán KOMPARTMENTŮ - za

Více

NUKLEOVÉ KYSELINY. Složení nukleových kyselin. Typy nukleových kyselin:

NUKLEOVÉ KYSELINY. Složení nukleových kyselin. Typy nukleových kyselin: NUKLEOVÉ KYSELINY Deoxyribonukleová kyselina (DNA, odvozeno z anglického názvu deoxyribonucleic acid) Ribonukleová kyselina (RNA, odvozeno z anglického názvu ribonucleic acid) Definice a zařazení: Nukleové

Více

Bu?ka - maturitní otázka z biologie (6)

Bu?ka - maturitní otázka z biologie (6) Bu?ka - maturitní otázka z biologie (6) by Biologie - Pátek, Únor 21, 2014 http://biologie-chemie.cz/bunka-6/ Otázka: Bu?ka P?edm?t: Biologie P?idal(a): david PROKARYOTICKÁ BU?KA = Základní stavební a

Více

Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková

Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková Registrační číslo projektu: CZ.1.07/1.1.38/02.0025 Název projektu: Modernizace výuky na ZŠ Slušovice, Fryšták, Kašava a Velehrad Tento projekt je spolufinancován z Evropského sociálního fondu a státního

Více

Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D.

Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D. Proteiny Genová exprese 2013 Doc. MVDr. Eva Bártová, Ph.D. Bílkoviny (proteiny), 15% 1g = 17 kj Monomer = aminokyseliny aminová skupina karboxylová skupina α -uhlík postranní řetězec Znát obecný vzorec

Více

Inovace studia molekulární. a buněčné biologie

Inovace studia molekulární. a buněčné biologie Inovace studia molekulární I n v e s t i c e d o r o z v o j e v z d ě l á v á n í a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: CZ.1.07/1.5.00/34.0410 Číslo šablony: V/2 - inovace směřující k rozvoji odborných kompetencí Název materiálu: Buněčný cyklus

Více

6. Nukleové kyseliny

6. Nukleové kyseliny 6. ukleové kyseliny ukleové kyseliny jsou spolu s proteiny základní a nezbytnou složkou živé hmoty. lavní jejich funkce je uchování genetické informace a její přenos do dceřinné buňky. ukleové kyseliny

Více

Nukleové kyseliny. obecný přehled

Nukleové kyseliny. obecný přehled Nukleové kyseliny obecný přehled Nukleové kyseliny objeveny r.1868, izolovány koncem 19.stol., 1953 objasněno jejich složení Watsonem a Crickem (1962 Nobelova cena) biopolymery nositelky genetické informace

Více

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu Test pro přijímací řízení magisterské studium Biochemie 2019 1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná

Více

B9, 2015/2016, I. Literák, V. Oravcová CYTOSKELETÁLNÍ PRINCIP BUŇKY

B9, 2015/2016, I. Literák, V. Oravcová CYTOSKELETÁLNÍ PRINCIP BUŇKY B9, 2015/2016, I. Literák, V. Oravcová CYTOSKELETÁLNÍ PRINCIP BUŇKY CYTOSKELETÁLNÍ PRINCIP BUŇKY mikrotubuly střední filamenta aktinová vlákna CYTOSKELETÁLNÍ PRINCIP BUŇKY funkce cytoskeletu - udržovat

Více

Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch

Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch Atom, složení a struktura Chemické prvky-názvosloví, slučivost Chemické sloučeniny, molekuly Chemická vazba

Více

Přijímací zkoušky BGI Mgr. 2016/2017. Počet otázek: 30 Hodnocení každé otázky: 1 bod Čas řešení: 60 minut. Varianta B

Přijímací zkoušky BGI Mgr. 2016/2017. Počet otázek: 30 Hodnocení každé otázky: 1 bod Čas řešení: 60 minut. Varianta B Přijímací zkoušky BGI Mgr. 2016/2017 Počet otázek: 30 Hodnocení každé otázky: 1 bod Čas řešení: 60 minut Varianta B A1. Čepička na 5' konci eukaryotické mrna je tvořena a. 7-methylguanosin trifosfátem

Více

Molekulárn. rní. biologie Struktura DNA a RNA

Molekulárn. rní. biologie Struktura DNA a RNA Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace

Více

Exprese genetické informace

Exprese genetické informace Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu

Více

Energetika a metabolismus buňky

Energetika a metabolismus buňky Předmět: KBB/BB1P Energetika a metabolismus buňky Cíl přednášky: seznámit posluchače s tím, jak buňky získávají energii k životu a jak s ní hospodaří Klíčová slova: energetika buňky, volná energie, enzymy,

Více

Bílkoviny a rostlinná buňka

Bílkoviny a rostlinná buňka Bílkoviny a rostlinná buňka Bílkoviny Rostliny --- kontinuální diferenciace vytváření orgánů: - mitotická dělení -zvětšování buněk a tvorba buněčné stěny syntéza bílkovin --- fotosyntéza syntéza bílkovin

Více

Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

Základy molekulární biologie KBC/MBIOZ

Základy molekulární biologie KBC/MBIOZ Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.

Více

Regulace metabolických drah na úrovni buňky

Regulace metabolických drah na úrovni buňky Regulace metabolických drah na úrovni buňky EB Obsah přednášky Obecné principy regulace metabolických drah na úrovni buňky regulace zajištěná kompartmentací metabolických dějů změna absolutní koncentrace

Více

Struktura proteinů. - testík na procvičení. Vladimíra Kvasnicová

Struktura proteinů. - testík na procvičení. Vladimíra Kvasnicová Struktura proteinů - testík na procvičení Vladimíra Kvasnicová Mezi proteinogenní aminokyseliny patří a) kyselina asparagová b) kyselina glutarová c) kyselina acetoctová d) kyselina glutamová Mezi proteinogenní

Více

Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech

Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech Citrátový cyklus Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech 1. stupeň: OXIDACE cukrů, tuků a některých aminokyselin tvorba Acetyl-CoA a akumulace elektronů v NADH a FADH 2 2.

Více

ENZYMY A NUKLEOVÉ KYSELINY

ENZYMY A NUKLEOVÉ KYSELINY ENZYMY A NUKLEOVÉ KYSELINY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 28. 3. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí

Více

Biologie I. Buňka II. Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings

Biologie I. Buňka II. Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings Biologie I Buňka II Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings BUŇKA II centrioly, ribosomy, jádro endomembránový systém semiautonomní organely peroxisomy

Více

FYZIOLOGIE ROSTLIN. Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz

FYZIOLOGIE ROSTLIN. Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz FYZIOLOGIE ROSTLIN Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz Studijní literatura: Hejnák,V., Zámečníková,B., Zámečník, J., Hnilička, F.: Fyziologie rostlin.

Více

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu:

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu: Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu: VY_32_INOVACE_05_BUŇKA 2_P1-2 Číslo projektu: CZ 1.07/1.5.00/34.1077

Více