- Princip metody spočívá ve využití ultrazvukového vlnění, resp. jeho odrazu od plošných necelistvostí.
|
|
- Bohumír Havel
- před 6 lety
- Počet zobrazení:
Transkript
1 P10: NDT metody 3/5
2 Princip metody - Princip metody spočívá ve využití ultrazvukového vlnění, resp. jeho odrazu od plošných necelistvostí. - Ultrazvukovým vlněním rozumíme mechanické vlnění s frekvencí nad 20 khz, které se šíří prostředím v důsledku jeho elastických vlastností. Ultrazvukový přístroj spolu se sondou/sondami slouží k vysílání, přijímání a rovněž i zpracování signálu. - Přístroj vybudí díky krátkému impulzu o vysokém napětí (řádově stovky Voltů) v měniči sondy mechanické vlnění o frekvenci stovek khz až jednotek MHz. - Přijatý signál přístroj zobrazuje ve formě echa.
3 Mechanické kmitání - U aplikací ultrazvuku se setkáváme s malými amplitudami kmitajících částic, u nichž většinou nenastávají odchylky od sinusového tvaru. Takový druh kmitání lze popsat vlnovou rovnicí: 2 a t 2 = 2 a c2 x 2, jejichž partikulární řešení pro rovinnou vlnu je rovnice harmonického pohybu: a = A sinω t x c, kde: A je amplituda výchylky [m], ω = 2πf je kruhová frekvence [rad/s], c určuje rychlost šíření vlny [m/s], x je souřadnice polohy [m], x/c je fázový úhel [rad]. - Rychlost kmitání částic kolem rovnovážné polohy, tzv. akustická rychlost, je dána: v = da dt = ωacos t x c,
4 Mechanické kmitání - Prochází-li ultrazvuková vlna s akustickou rychlostí v prostředím s vlnovým odporem ρc, vznikne v něm akustický tlak: p = Zv = ρc ω Acos ω t x c, kde: Z=ρc akustický vlnový odpor [Pa. s/m] ω A ρc P a amplituda akustického tlaku [Pa] ω A V a amplituda akustické rychlosti [m/s] Obdobně jako v elektronice můžeme zavést efektivní veličiny: p ef = ω A ρc 2, v ef = ω A 2,
5 Mechanické kmitání s nimiž lze definovat intenzitu ultrazvukové rovinné nebo kulové vlny výrazem: I = p ef v ef = 1 2 ω2 A 2 ρc = P a 2 2
6 Typy ultrazvukových vln Podélné (longitudinální/kompresní) vlny - Podélné vlny se mohou šířit v pevných, kapalných i plynných prostředích. - Směr kmitání částic je shodný se směrem šíření vlny v daném prostředí. - Vlivem šíření podélné vlny v daném prostředí dochází k objemovým změnám tohoto prostředí (zhušťování a zřeďování prostředí). - Rychlost šíření podélných vln je funkcí elastických vlastností materiálu a hustoty: c L = E 1 μ ρ(1 + μ (1 2μ kde E [MPa] vyjadřuje modul pružnosti a ρ [kg/m3] je hustota prostředí, jakým se vlna šíří a μ je Poissonovo číslo.
7 Typy ultrazvukových vln Příčné (transverzální) vlny - Příčné vlny se mohou šířit pouze těch látkách, ve kterých je možné přenést smykové zatížení. Směr kmitání částic je kolmý na směr šíření vlny daným prostředím. - Rychlost šíření příčných vln v tuhých látkách je dána vztahem: c T = G ρ, - kde G [MPa] vyjadřuje smykový modul pružnosti a ρ [kg/m 3 ] je hustota prostředí, jakým se vlna šíří.
8 Typy ultrazvukových vln Rayleighovy vlny - Rayleighova vlna je kombinací příčné a podélné vlny. Částice vykonávají pohyb po eliptických drahách. Rayleighovy vlny se šíří po povrchu a zasahují do hloubky o velikosti jedné vlnové délky. Rychlost šíření Rayleighových vln je dána vztahem: c R 0,87 + 1,12μ 1 + μ kde μ je Poissonovo číslo a c T rychlost šíření příčných vln v daném prostředí. c T
9 Typy ultrazvukových vln Lambovy (deskové) vlny - Lambovy vlny existují ve dvou variacích, a to vlny symetrické a asymetrické. - Výskyt počtu módů asymetrické resp. symetrické Lambovy vlny je podmíněn polohou buzení, frekvencí vlny a tloušťkou materiálu. - Lambovy vlny, na rozdíl od Rayleighových vln, zasahují celou tloušťku materiálu.
10 Grupová rychlost cg [m/s] Fázová rychlost cp [m/s] Ultrazvuková metoda Typy ultrazvukových vln Lambovy (deskové) vlny - Fázová rychlost Lambových vln, počet módů a jejich grupová rychlost je určována z disperzních křivek Frekvence. tloušťka [MHz.mm] S0 S1 S2 S3 S4 A0 A1 A2 A3 A Frekvence. tloušťka [MHz.mm] c_g(s0) c_g(s1) c_g(s2) c_g(s3) c_g(s4) c_g(a0) c_g(a1) c_g(a2) c_g(a3) c_g(a4)
11 Typy ultrazvukových vln Lambovy (deskové) vlny - Lambovy vlny existují ve dvou variacích, a to vlny symetrické a asymetrické. - Výskyt počtu módů asymetrické resp. symetrické Lambovy vlny je podmíněn polohou buzení, frekvencí vlny a tloušťkou materiálu. - Lambovy vlny, na rozdíl od Rayleighových vln, zasahují celou tloušťku materiálu.
12 Odraz a lom ultrazvukových vln - Kolmý dopad na rozhraní - V souvislosti s kolmým dopadem na rozhraní dvou prostředí je možné se setkat s pojmy jako činitel odrazu: či činitel průchodu: R = Z 2 Z 1 Z 2 + Z 1 D = 2Z 2 Z 2 + Z 1 kde Z 1 resp. Z 2 vyjadřují akustické vlnové odpory prostředí 1 resp. 2.
13 Odraz a lom ultrazvukových vln - Šikmý dopad na rozhraní - Při šikmém dopadu ultrazvukové vlny na rozhraní dvou prostředí dochází k jejímu odrazu, lomu a popřípadě i transformaci v případě, že jedno z prostředí je schopné přenášet příčné vlny.
14 Odraz a lom ultrazvukových vln - Šikmý dopad na rozhraní - Vzájemný vztah úhlů všech složek měřených od normály k rozhraní a jejich rychlostí šíření je dán Snellovým zákonem: sinα 1 sinα 2 = c 1 c 2 kde c vyjadřuje rychlost šíření daného typu vlny v prostředích 1 resp. 2 a α určuje úhel dané vlny v prostředích 1 resp Při postupném zvyšování úhlu α 1L nastane pro limitní hodnotu α 1K totální odraz podélné vlny v prostředí 2 tak, že bude platit α 2L =90 o. Úhel α 1K se nazývá první kritický úhel. - Při prvním kritickém úhlu vymizí z prostředí 2 podélná vlna za současné existence podpovrchové podélné vlny a příčné vlny. α 1K = arcsin c 1L c 2L
15 Odraz a lom ultrazvukových vln - Šikmý dopad na rozhraní - Jestliže budeme dále zvyšovat úhel dopadu podélné vlny v prostředí 1 α 1L, nastane pro limitní hodnotu α 2K totální odraz příčné vlny v prostředí 2 tak, že bude platit α 2T =90 o. - Úhel α 2K se nazývá druhý kritický úhel. Při druhém kritickém úhlu vymizí z prostředí 2 příčná vlna za současné existence podpovrchové příčné vlny. α 2K = arcsin c 1L c 2T - Při dalším navyšování úhlu dopadu podélné vlny v prostředí 1 nad hodnotu α 2K, vznikne v prostředí 2 Rayleighova povrchová vlna. Tento úhel se nazývá třetí kritický úhel, a je označován jako α 3K.
16 Konstrukce ultrazvukových snímačů - Na následujícím obrázku je znázorněna typická konstrukce ultrazvukového snímače. Hlavními částmi jsou pouzdro, měnič, tlumící tělísko a nosná destička.
17 Konstrukce ultrazvukových snímačů - Měnič Piezoelektrické měniče - Piezoelektrické měniče fungují na principu transformace elektrické energie na energii mechanickou a naopak. - V případě přímého piezoelektrického jevu se mechanická energie transformuje na elektrickou, v případě nepřímého piezoelektrického jevu je tomu naopak - energie elektrická se transformuje na energii mechanickou. - Typickými piezoelektrickými materiály jsou křemen, PVDF, PZT 5. Relace mezi tloušťkou měniče a jeho rezonanční frekvencí je následující: f R = c 2d kde c je rychlost šíření podélné vlny v piezoelementu a d vyjadřuje tloušťku piezoelementu.
18 Konstrukce ultrazvukových snímačů - Měnič Magnetostrikční měniče - Magnetostrikční měniče využívají ke své činnosti magnetostrikci fyzikální jev, kdy těleso z feromagnetického materiálu mění v magnetickém poli své rozměry.
19 Konstrukce ultrazvukových snímačů - Měnič Elektrodynamické měniče - Elektrodynamické měniče ke své funkci využívají Lorentzovu sílu, která generuje ultrazvukové vlnění přímo v materiálu. - V případě EMAT sond není nutný kontakt s povrchem. Podmínkou a zároveň jistým omezením použití EMAT sondy je elektricky vodivý materiál.
20 Konstrukce ultrazvukových snímačů - Tlumení - U většiny sond je za měničem umístěno tlumící tělísko, které jednak fixuje samotný měnič a dále jej v potřebné míře tlumí. - Tlumící tělísko je tvořeno z epoxidové pryskyřice plněné wolframovým práškem. Míra tlumení měniče ovlivňuje rozlišovací schopnost a dosah. Širokopásmová sonda je charakterizována: přítomností tlumícího tělíska o vysokém tlumení dobrou rozlišitelností (pod povrchem a rovněž i v hloubce) menším dosahem širokým frekvenčním spektrem Úzkopásmová sonda je charakterizována: přítomností tlumícího tělíska o malém tlumení špatnou rozlišitelností (pod povrchem a rovněž i v hloubce) větším dosahem užším frekvenčním spektrem
21 Konstrukce ultrazvukových snímačů Blízké a vzdálené pole - Ultrazvukový svazek, který vystupuje ze snímače, je možné rozdělit na dvě dominantní oblasti blízké a vzdálené pole. - V blízkém poli (angl. near field), též nazývaném jako Fresnelova oblast, dochází k cyklickému střídání maxim a minim akustického tlaku jak v podélném, tak i příčném směru vlivem interference vln. - Blízké pole je zakončeno přítomností jednoho samostatného maxima s přibližně dvojnásobkem amplitudy akustického tlaku ve směru příčném. - Tento rapidní nárůst amplitudy akustického tlaku je dán díky fokusaci ultrazvukového svazku. Délku blízkého pole je možné určit na základě vztahu: N = D2 f 4 c - kde N je délka blízkého pole [mm], D je průměr měniče [mm], f je frekvence sondy [MHz] a c je rychlost šíření ultrazvukového svazku v daném prostředí [mm/µs].
22 Konstrukce ultrazvukových snímačů Blízké a vzdálené pole - Ve vzdálenosti větší než délka blízkého pole již amplituda akustického tlaku klesá a její maximum je vždy na ose. Ve vzdáleném poli (Frauhoferově oblasti) se rovněž uplatňuje rozevírání ultrazvukového svazku, které je možné určit na základě následujícího vztahu: si n( φ 6dB = 0,5 c f D kde φ určuje úhel rozevření svazku při poklesu amplitudy akustického tlaku na okraji vzhledem k ose o 6 db, D je průměr měniče [mm], f je frekvence sondy [MHz] a c je rychlost šíření ultrazvukového svazku v daném prostředí [mm/µs].
23 Typy ultrazvukových snímačů - Přímé sondy - Přímé sondy jsou v drtivé většině zdrojem podélných vln. Ultrazvukový svazek prochází materiálem ve směru kolmém na povrch. - Přímé sondy obsahují pouze jeden měnič, který plní funkci jak přijímače, tak i vysílače.
24 Typy ultrazvukových snímačů - Dvojité sondy - Dvojité sondy se využívají v případě zkoušení výrobků s malou tloušťkou, resp. požadavkem na zkoušení v těsné blízkosti povrchu. - Dvojitá sonda obsahuje ve společném pouzdru dva akusticky oddělené snímače, kdy jeden plní roli vysílače a druhý figuruje jako přijímač.
25 Typy ultrazvukových snímačů - Úhlové sondy - Úhlové sondy se využívají pro účely prozvučování příčnými, podélnými popřípadě povrchovými vlnami. Generace požadovaného typu vlny se dosáhne vhodným úhlem sklonu měniče vůči normále k povrchu. - Úhlové sondy se vyrábějí buď ve formě sondy s pevně zabudovaným měničem do šasi samotné sondy, nebo ve formě plexiklínu, do kterého je možné upnout přímou sondu.
26 Typy ultrazvukových snímačů - Imerzní sondy - V případě imerzního zkoušení (pod vodou) využíváme k tomu určené imerzní sondy. Imerzní sondy disponují vodotěsnou konstrukcí s nebo bez fokusace ultrazvukového svazku. - Fokusace ultrazvukového svazku zvyšuje citlivost k reflektorům v ohnisku, mimo ohnisko je však citlivost k reflektorům nižší oproti nefokusované sondě.
27 Typy ultrazvukových snímačů - Phased array sondy - Phased array sondy obsahují řadu segmentových měničů ve společném pouzdru. Díky řízené generaci pulzů u jednotlivých měničů je možné téměř libovolně modifikovat výsledný tvar ultrazvukové vlny (fokusovat, naklápět atd.)
28 Typy ultrazvukových snímačů - Phased array sondy - Phased array sondy obsahují řadu segmentových měničů ve společném pouzdru. Díky řízené generaci pulzů u jednotlivých měničů je možné téměř libovolně modifikovat výsledný tvar ultrazvukové vlny (fokusovat, naklápět atd.)
29 Literatura [1] Školící mariály, Advanced Technology Group a.s. [2] Obraz, J.: Ultrazvuk v měřící technice, 2. upravené vydání, Praha, 1984, 485 s [3] Kopec, B. a kol.: Nedestruktivní zkoušení materiálů a konstrukcí, Brno, CERM 2008, 571 s., ISBN
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Vlnění Vhodíme-li na klidnou vodní hladinu kámen, hladina se jeho dopadem rozkmitá a z místa rozruchu se začnou
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P05 MECHANICKÉ VLNĚNÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. Bohumil Koktavý,CSc. FYZIKA PRŮVODCE GB01-P05 MECHANICKÉ VLNĚNÍ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 2 OBSAH 1 Úvod...5
Ultrazvuková defektoskopie. Vypracoval Jan Janský
Ultrazvuková defektoskopie Vypracoval Jan Janský Základní principy použití vysokých akustických frekvencí pro zjištění vlastností máteriálu a vad typické zařízení: generátor/přijímač pulsů snímač zobrazovací
Ultrazvukové zkoušení materiálů DZM - 2013. http://1.bp.blogspot.com/-_rtpuuvjbdk/tggpeztxodi/aaaaaaaaac0/ncsuvkujp1m/s1600/1.jpg
Ultrazvukové zkoušení materiálů DZM - 2013 1 http://1.bp.blogspot.com/-_rtpuuvjbdk/tggpeztxodi/aaaaaaaaac0/ncsuvkujp1m/s1600/1.jpg Výhody použití ultrazvuku analýza vad povrchových i vnitřních možnost
2. přednáška. Petr Konvalinka
EXPERIMENTÁLNÍ METODY MECHANIKY 2. přednáška Petr Konvalinka Experimentální vyšetřování pevnostních vlastností betonu Nedestruktivní metody zkoušky pevnosti Schmidtovo kladívko odpor v otlačení pull-out
Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením.
Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Na čem závisí účinnost vedení? účinnost vedení závisí na činiteli útlumu β a na činiteli odrazu
elektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech
Jiří Petržela filtry založené na jiných fyzikálních principech piezoelektrický jev při mechanickém namáhání krystalu ve správném směru na něm vzniká elektrické napětí po přiložení elektrického napětí se
Vlnění. vlnění kmitavý pohyb částic se šíří prostředím. přenos energie bez přenosu látky. druhy vlnění: 1. a. mechanické vlnění (v hmotném prostředí)
Vlnění vlnění kmitavý pohyb částic se šíří prostředím přenos energie bez přenosu látky Vázané oscilátory druhy vlnění: Druhy vlnění podélné a příčné 1. a. mechanické vlnění (v hmotném prostředí) b. elektromagnetické
Rovinná harmonická elektromagnetická vlna
Rovinná harmonická elektromagnetická vlna ---- 1. příklad -------------------------------- 2 GHz prochází prostředím s parametry: r 5, r 1, 0.005 S / m. Amplituda intenzity magnetického pole je H m 0.25
1.8. Mechanické vlnění
1.8. Mechanické vlnění 1. Umět vysvětlit princip vlnivého pohybu.. Umět srovnat a zároveň vysvětlit rozdíl mezi periodickým kmitavým pohybem jednoho bodu s periodickým vlnivým pohybem bodové řady. 3. Znát
Jednotlivé body pouze kmitají kolem rovnovážných poloh. Tato poloha zůstává stálá.
MECHANICKÉ VLNĚNÍ Dosud jsme při studiu uvažovali pouze harmonický pohyb izolované částice (hmotného bodu nebo tělesa), která konala kmitavý pohyb kolem rovnovážné polohy Jestliže takový objekt bude součástí
ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0
Kmity základní popis kmitání je periodický pohyb, při kterém těleso pravidelně prochází rovnovážnou polohou mechanický oscilátor zařízení vykonávající kmity Základní veličiny Perioda T [s], frekvence f=1/t
TECHNICKÁ UNIVERZITA V LIBERCI FAKULTA STROJNÍ. Bakalářská práce VÝZKUM TLOUŠŤKOMĚRU DIO 570 V ULTRAZVUKOVÉ STRUKTUROSKOPII LITIN
TECHNICKÁ UNIVERZITA V LIBERCI FAKULTA STROJNÍ Bakalářská práce VÝZKUM TLOUŠŤKOMĚRU DIO 570 V ULTRAZVUKOVÉ STRUKTUROSKOPII LITIN RESEARCH OF THICKNESS METER DIO 570 FOR ULTRASONIC MEASUREMENTS IN STRUCTUROSCOPY
Optika pro mikroskopii materiálů I
Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických
MKP simulace integrovaného snímače
MKP simulace integrovaného snímače podélných a příčných vln Petr Hora Olga Červená Ústav termomechaniky AV ČR, v. v. i. Praha, CZ Inženýrská mechanika 2012 - Svratka Úvod nedestruktivní testování (NDT)
Základní otázky pro teoretickou část zkoušky.
Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.
Základy ultrazvuku. Tab. 6.1
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
Daniel Tokar tokardan@fel.cvut.cz
České vysoké učení technické v Praze Fakulta elektrotechnická Katedra fyziky A6M02FPT Fyzika pro terapii Fyzikální principy, využití v medicíně a terapii Daniel Tokar tokardan@fel.cvut.cz Obsah O čem bude
Fyzika II. Marek Procházka Vlnová optika II
Fyzika II Marek Procházka Vlnová optika II Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení složek vlnění s různou
MĚŘENÍ RYCHLOSTI ŠÍŘENÍ ZVUKU V PLYNECH
Úloha č. 6 MĚŘENÍ RYCHLOSTI ŠÍŘENÍ ZVUKU V PLYNECH ÚKOL MĚŘENÍ: 1. V zapojení dvou RC generátorů nalezněte na obrazovce osciloskopu Lissajousovy obrazce pro frekvence 1:1, 2:1, 3:1, 2:3 a 1:4 a zakreslete
TEST PRO VÝUKU č. UT 1/1 Všeobecná část QC
TEST PRO VÝUKU č. UT 1/1 Všeobecná část QC Otázky - fyzikální základy 1. 25 milionů kmitů za sekundu se dá také vyjádřit jako 25 khz. 2500 khz. 25 MHz. 25000 Hz. 2. Zvukové vlny, jejichž frekvence je nad
Kmity a mechanické vlnění. neperiodický periodický
rozdělení časově proměnných pohybů (dějů): Mechanické kmitání neperiodický periodický ne(an)harmonický harmonický vlastní kmity nucené kmity - je pohyb HB (tělesa), při němž HB nepřekročí konečnou vzdálenost
Fyzikální podstata zvuku
Fyzikální podstata zvuku 1. základní kmitání vzduchem se šíří tlakové vzruchy (vzruchová vlna), zvuk je systémem zhuštěnin a zředěnin podstatou zvuku je kmitání zdroje zvuku a tím způsobené podélné vlnění
Výukové texty. pro předmět. Měřící technika (KKS/MT) na téma
Výukové texty pro předmět Měřící technika (KKS/MT) na téma Tvorba grafické vizualizace principu měření akustických projevů (hluk, akustický tlak, šíření v prostředí Autor: Doc. Ing. Josef Formánek, Ph.D.
Ultrazvuková defektoskopie. M. Kreidl, R. Šmíd, V. Matz, S. Štarman
Ultrazvuková defektoskopie M. Kreidl, R. Šmíd, V. Matz, S. Štarman Praha 2011 ISBN 978-80-254-6606-3 2 OBSAH 1. Předmluva 7 2. Základní pojmy 9 2.1. Fyzikální základy ultrazvuku a akustické veličiny 9
Elektromagnetický oscilátor
Elektromagnetický oscilátor Již jsme poznali kmitání mechanického oscilátoru (závaží na pružině) - potenciální energie pružnosti se přeměňuje na kinetickou energii a naopak. T =2 m k Nejjednodušší elektromagnetický
Co se skrývá v ultrazvukové vyšetřovací sondě?
Co se skrývá v ultrazvukové vyšetřovací sondě? Ultrazvukové vlnění o frekvencích, které jsou používány v medicíně, je generováno pomocí piezoelektrických měničů. Piezoelektrický jev objevili v roce 1880
2. Vlnění. π T. t T. x λ. Machův vlnostroj
2. Vlnění 2.1 Vlnění zvláštní případ pohybu prostředí Vlnění je pohyb v soustavě velkého počtu částic navzájem vázaných, kdy částice kmitají kolem svých rovnovážných poloh. Druhy vlnění: vlnění příčné
Akustické vlnění
1.8.3. Akustické vlnění 1. Umět vysvětlit princip vzniku akustického vlnění.. Znát základní rozdělení akustického vlnění podle frekvencí. 3. Znát charakteristické veličiny akustického vlnění a jejich jednotky:
Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí
Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí Rovinné vlny 1 Při diskusi o řadě jevů je výhodné vycházet z rovinných vln. Vlny musí splňovat Maxwellovy rovnice
Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední
Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední a ta jej zase předá svému sousedovi. Částice si tedy
Zvuk. 1. základní kmitání. 2. šíření zvuku
Zvuk 1. základní kmitání - vzduchem se šíří tlakové vzruchy (vzruchová vlna), zvuk je systémem zhuštěnin a zředěnin - podstatou zvuku je kmitání zdroje zvuku a tím způsobené podélné vlnění elastického
Interference vlnění
8 Interference vlnění Umět vysvětlit princip interference Umět vysvětlit pojmy interferenčního maxima a minima 3 Umět vysvětlit vznik stojatého vlnění 4 Znát podobnosti a rozdíly mezi postupnýma stojatým
Techniky detekce a určení velikosti souvislých trhlin
Techniky detekce a určení velikosti souvislých trhlin Přehled Byl-li podle obecných norem nebo regulačních směrnic detekovány souvislé trhliny na vnitřním povrchu, musí být následně přesně stanoven rozměr.
Zkoušení heterogenních a austenitických svarů technikou Phased Array a technikou TOFD
Zkoušení heterogenních a austenitických svarů technikou Phased Array a technikou TOFD Ing. Miloš Kováčik, SlovCert s. r. o. Bratislava, Jan Kolář ČEZ JE Temelín Úvod V jaderné energetice a těžkých chemických
ELEKTROMAGNETICKÉ KMITÁNÍ A VLNĚNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D18_Z_OPAK_E_Elektromagneticke_kmitani_a_ vlneni_t Člověk a příroda Fyzika Elektromagnetické
Využití komplementarity (duality) štěrbiny a páskového dipólu M
Přechodné typy antén a) štěrbinové antény - buzení el. polem napříč štěrbinou (vlnovod) z - galvanicky generátor mezi hranami - zdrojem záření - pole ve štěrbině (plošná a.) nebo magnetický proud (lineární
Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
L a b o r a t o r n í c v i č e n í z f y z i k y
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE K ATEDRA FYZIKY L a b o r a t o r n í c v i č e n í z f y z i k y Jméno TUREČEK Daniel Datum měření 15.11.2006 Stud. rok 2006/2007 Ročník 2. Datum odevzdání 29.11.2006
Hodnocení parametrů signálu AE při únavovém zatěžování tří typů konstrukčních materiálů. Vypracoval: Kolář Lukáš
Hodnocení parametrů signálu AE při únavovém zatěžování tří typů konstrukčních materiálů Vypracoval: Kolář Lukáš Cíl práce: Analýza současného stavu testování metodou AE Návrh experimentálního zajištění
4. Akustika. 4.1 Úvod. 4.2 Rychlost zvuku
4. Akustika 4.1 Úvod Fyzikálními ději, které probíhají při vzniku, šíření či vnímání zvuku, se zabývá akustika. Lidské ucho je schopné vnímat zvuky o frekvenčním rozsahu 16 Hz až 16 khz. Mechanické vlnění
Rovinná monochromatická vlna v homogenním, neabsorbujícím, jednoosém anizotropním prostředí
Rovinná monochromatická vlna v homogenním, neabsorbujícím, jednoosém anizotropním prostředí r r Další předpoklad: nemagnetické prostředí B = µ 0 H izotropně. Veškerá anizotropie pochází od interakce elektrických
Fyzika II, FMMI. 1. Elektrostatické pole
Fyzika II, FMMI 1. Elektrostatické pole 1.1 Jaká je velikost celkového náboje (kladného i záporného), který je obsažen v 5 kg železa? Předpokládejme, že by se tento náboj rovnoměrně rozmístil do dvou malých
MOŽNOSTI VYUŽITÍ ULTRAZVUKOVÉ IMPULSNÍ METODY VE STAVEBNÍ PRAXI POSSIBILITIES OF THE ULTRASONIC PULSE METHODS IN CONSTRUCTION PRACTICE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV STAVEBNÍHO ZKUŠEBNICTVÍ FACULTY OF CIVIL ENGINEERING INSTITUTE OF BUILDING TESTING MOŽNOSTI VYUŽITÍ ULTRAZVUKOVÉ IMPULSNÍ
Akustické vlnění. Akustická výchylka: - vychýlení objemového elementu prostředí ze střední polohy při vlnění
Zvukové (akustické) vlny: Akustické vlnění elastické podélné vlny s frekvencí v intervalu 16Hz-kHz objektivní fyzikální příčina (akustická vlna) vyvolá subjektivní vjem (vnímání zvuku) člověk tyto vlny
Ultrazvukové diagnostické přístroje. X31LET Lékařskátechnika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz
Ultrazvukové diagnostické přístroje X31LET Lékařskátechnika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Ultrazvukové diagnostické přístroje 1. Ultrazvuková diagnostika v medicíně 2. Fyzikální
UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie
PŘEDMĚT: FYZIKA ROČNÍK: SEXTA VÝSTUP UČIVO MEZIPŘEDM. VZTAHY, PRŮŘEZOVÁ TÉMATA, PROJEKTY, KURZY POZNÁMKY Zná 3 základní poznatky kinetické teorie látek a vysvětlí jejich praktický význam Vysvětlí pojmy
ULTRASONIC TESTING ÚVOD DOPORUČENÉ MATERIÁLY DEFINICE URČENÍ DÉKLA ŠKOLENÍ. Sylabus pro kurzy ultrazvukové metody dle systému ISO / 3
ULTRASONIC TESTING Sylabus pro kurzy ultrazvukové metody dle systému ISO 9712 UT PROCES SYSTÉM METODA ÚVOD STUPEŇ / TECHNIKA SEKTOR CODE PLATNÉ OD ZPRACOVAL NDT 9712 UT 1, 2, 3 MS, w, c, t - 4 / 2015 ŽBÁNEK
Akustooptický modulátor s postupnou a stojatou akustickou vlnou
Úloha č. 8 pro laserová praktika KFE, FJFI, ČVUT v Praze, verze 2010/1 Akustooptický modulátor s postupnou a stojatou akustickou vlnou Akustooptické modulátory (AOM), někdy též nazývané Braggovské cely,
Ultrazvuková kontrola obvodových svarů potrubí
Ultrazvuková kontrola obvodových svarů potrubí Úlohou automatického ultrazvukového zkoušení je zejména nahradit rentgenové zkoušení, protože je rychlejší, bezpečnější a podává lepší informace o velikosti
Základní otázky ke zkoušce A2B17EPV. České vysoké učení technické v Praze ID Fakulta elektrotechnická
Základní otázky ke zkoušce A2B17EPV Materiál z přednášky dne 10/5/2010 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2. Coulombův zákon, orientace vektorů
Charakteristiky optického záření
Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární
Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9
Obsah 1 Kmitavý pohyb 1 Kinematika kmitavého pohybu 3 Skládání kmitů 6 4 Dynamika kmitavého pohybu 7 5 Přeměny energie v mechanickém oscilátoru 9 6 Nucené kmity. Rezonance 10 1 Kmitavý pohyb Typy pohybů
Ultrazvukové diagnostické přístroje. X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz
Ultrazvukové diagnostické přístroje X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Ultrazvuková diagnostika v medicíně Ultrazvuková diagnostika diagnostická zobrazovací
Autor: Bc. Tomáš Zavadil Vedoucí práce: Ing. Jaroslav Pitter, Ph.D. ATG (Advanced Technology Group), s.r.o
Autor: Bc. Tomáš Zavadil Vedoucí práce: Ing. Jaroslav Pitter, Ph.D. ATG (Advanced Technology Group), s.r.o. www.atg.cz 2011-06-02 1. Motivace 2. Cíl práce 3. Zbytková životnost 4. Nedestruktivní zkoušení
Ultrazvuk Principy, základy techniky Petr Nádeníček1, Martin Sedlář2 1 Radiologická klinika, FN Brno 2 Biofyzikální ústav, LF MU Brno Čejkovice 2011
Ultrazvuk Principy, základy techniky Petr Nádeníček 1, Martin Sedlář 2 1 Radiologická klinika, FN Brno 2 Biofyzikální ústav, LF MU Brno zdroj UZ vlnění piezoelektrický efekt rozkmitání měniče pomocí vysokofrekvenčního
Kmitání mechanického oscilátoru Mechanické vlnění Zvukové vlnění
Mechanické kmitání a vlnění Kmitání mechanického oscilátoru Mechanické vlnění Zvukové vlnění Kmitání mechanického oscilátoru Kmitavý pohyb Mechanický oscilátor = zařízení, které kmitá bez vnějšího působení
(test version, not revised) 9. prosince 2009
Mechanické kmitání (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 9. prosince 2009 Obsah Kmitavý pohyb Kinematika kmitavého pohybu Skládání kmitů Dynamika kmitavého pohybu Přeměny energie
Jak se měří rychlost toku krve v cévách?
Jak se měří rychlost toku krve v cévách? Princip této vyšetřovací metody je založen na Dopplerově jevu, který spočívá ve změně frekvence ultrazvukového vlnění při vzájemném pohybu zdroje a detektoru vlnění.
Příklady kmitavých pohybů. Mechanické kmitání (oscilace)
Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje
Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření vibrací a tlumicích vlastností
Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření vibrací a tlumicích vlastností Autor: Doc. Ing. Josef Formánek, Ph.D. Podklady k principu měření vibrací a tlumicích
B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ
B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ I. MECHANICKÉ KMITÁNÍ 8.1 Kmitavý pohyb a) mechanické kmitání (kmitavý pohyb) pohyb, při kterém kmitající těleso zůstává stále v okolí určitého bodu tzv. rovnovážné polohy
c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky
Harmonický kmitavý pohyb a) vysvětlení harmonického kmitavého pohybu b) zápis vztahu pro okamžitou výchylku c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky d) perioda
CZ.1.07/1.5.00/
Střední odborná škola elektrotechnická, Centrum odborné přípravy Zvolenovská 537, Hluboká nad Vltavou Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/34.0448 CZ.1.07/1.5.00/34.0448 1 Číslo projektu
Radiologická fyzika. Zvuk a ultrazvuk
Radiologická fyzika Zvuk a ultrazvuk 1.12.2014 Biofyzikální ústav LF MU Časová střední hodnota Z různých důvodů není zajímavá a mnohdy ani dobře měřitelná okamžitá hodnota fyzikální veličiny F(t), ale
Ultrasonografická diagnostika v medicíně. Daniel Smutek 3. interní klinika 1.LF UK a VFN
Ultrasonografická diagnostika v medicíně Daniel Smutek 3. interní klinika 1.LF UK a VFN frekvence 2-15 MHz rychlost šíření vzduch: 330 m.s -1 kost: 1080 m.s -1 měkké tkáně: průměrně 1540 m.s -1 tuk: 1450
ZVUKOVÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie
ZVUKOVÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Odraz zvuku Vznik ozvěny Dozvuk Několikanásobný odraz Ohyb zvuku Zvuk se dostává za překážky Překážka srovnatelná s vlnovou délkou Pružnost Působení
Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření akustických projevů (hluk, akustický tlak, šíření v prostředí
Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření akustických projevů (hluk, akustický tlak, šíření v prostředí Autor: Doc. Ing. Josef Formánek, Ph.D. Podklady k principu
P5: Optické metody I
P5: Optické metody I - V klasické optice jsou interferenční a difrakční jevy popisovány prostřednictvím ideálně koherentních, ideálně nekoherentních, později také částečně koherentních světelných svazků
Fázová a grupová rychlost ultrazvuku v kapalinách
Fázová a grupová rychlost ultrazvuku v kapalinách Klíčové pojmy: podélné (longitudinální) vlnění, rychlost zvuku v kapalinách, vlnová délka, frekvence, piezoelektrický efekt, piezoelektrický ultrazvukový
Akustooptický modulátor s postupnou a stojatou akustickou vlnou
Úloha č. 8 pro laserová praktika (ZPLT) KFE, FJFI, ČVUT, Praha v. 2017/2018 Akustooptický modulátor s postupnou a stojatou akustickou vlnou Akustooptické modulátory (AOM), někdy též nazývané Braggovské
Akustický přijímač přeměňuje energii akustického pole daného místa na energii elektrického pole
Akustické přijímače Akustický přijímač přeměňuje energii akustického pole daného místa na energii elektrického pole jeho součástí je elektromechanický měnič Při přeměně kmitů plynu = mikrofon Při přeměně
Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r
Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory
Mechanické kmitání (oscilace)
Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_F.6.20 Autor Stanislav Mokrý Vytvořeno 18.12.2013. Fyzika 2. - Mechanické kmitání a vlnění
Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_F.6.20 Autor Stanislav Mokrý Vytvořeno 18.12.2013 Předmět, ročník Tematický celek Téma Druh učebního materiálu Anotace (metodický pokyn, časová náročnost,
Obsah. 1 Vznik a druhy vlnění. 2 Interference 3. 5 Akustika 9. 6 Dopplerův jev 12. přenosu energie
Obsah 1 Vznik a druhy vlnění 1 2 Interference 3 3 Odraz vlnění. Stojaté vlnění 5 4 Vlnění v izotropním prostředí 7 5 Akustika 9 6 Dopplerův jev 12 1 Vznik a druhy vlnění Mechanické vlnění vzniká v látkách
PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. XXVI Název: Vláknová optika Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009 Odevzdal dne: Možný počet bodů
TEST PRO VÝUKU č. UT 2/1 Všeobecná část
TEST PRO VÝUKU č. UT 2/1 Všeobecná část Otázky - fyzikální základy 1. Přes vodní předdráhu se má nastavit v hliníku úhel lomu příčné vlny α T, Al = 70. Úhel dopadu ve vodě α L,W ve stupních ( ) musí potom
OVMT Zkoušky bez porušení materiálu
Zkoušky bez porušení materiálu Materiál, hutní polotovary, strojní součásti i konstrukce obsahují většinou různé povrchové nebo vnitřní vady. Defekty vznikají již při výrobě nebo následně v průběhu provozu.
Vliv struktury materiálu na hodnotitelnost ultrazvukovou defektoskopií
Digitální knihovna Univerzity Pardubice DSpace Repository Univerzita Pardubice http://dspace.org þÿ V y s o k oa k o l s k é k v a l i f i k a n í p r á c e / T h e s e s, d i s s 2014 Vliv struktury materiálu
(test version, not revised) 16. prosince 2009
Mechanické vlnění (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 16. prosince 2009 Obsah Vznik a druhy vlnění Interference Odraz vlnění. Stojaté vlnění Vlnění v izotropním prostředí Akustika
Základy ultrazvuku A. ZÁKLADY ULTRAZVUKU 10
Richard Regazzo Marcela Regazzová ULTRAZVUK základy ultrazvukové defektoskopie Praha 2013 ÚVOD Tato knížka je napsána: 1) Jako skripta pro ultrazvukové kurzy k získání 1., 2. a 3. kvalifikaèního stupnì
Klasické a inovované měření rychlosti zvuku
Klasické a inovované měření rychlosti zvuku Jiří Tesař katedra fyziky, Pedagogická fakulta JU Klíčová slova: Rychlost zvuku, vlnová délka, frekvence, interference vlnění, stojaté vlnění, kmitny, uzly,
Kopírování pouze se souhlasem firmy Testima nebo Ing. Richarda Regazza
Výklad k tabulce dat v Datovém listu sond firmy Krautkrämer ERLÄUTERUNG ZU DEN DATENBLÄTTERN FÜR PRÜFKÖPFE Krautkrämer GmbH Ing.Richard Regazzo,CSc., Marcela Regazzová, Lubomír Bartulík, R & R NDT Zeleneč
NEDESTRUKTIVNÍ ZKOUŠKY SVARŮ
NEDESTRUKTIVNÍ ZKOUŠKY SVARŮ Mgr. Ladislav Blahuta Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci akce EU peníze středním školám - OP
Nízkofrekvenční (do 1 MHz) Vysokofrekvenční (stovky MHz až jednotky GHz) Generátory cm vln (až desítky GHz)
Provazník oscilatory.docx Oscilátory Oscilátory dělíme podle několika hledisek (uvedené třídění není zcela jednotné - bylo použito vžitých názvů, které vznikaly v různém období vývoje a za zcela odlišných
Mechanické kmitání a vlnění
Mechanické kmitání a vlnění Pohyb tělesa, který se v určitém časovém intervalu pravidelně opakuje periodický pohyb S kmitavým pohybem se setkáváme např.: Zařízení, které volně kmitá, nazýváme mechanický
Ultrazvukový keramický vysílač
Obj. č. 182281 Ultrazvukový keramický vysílač Tento návod k obsluze je součástí výrobku. Obsahuje důležité pokyny k uvedení do provozu a k obsluze. Jestliže výrobek předáte jiným osobám, dbejte na to,
Fyzika - Sexta, 2. ročník
- Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence
Měření a analýza mechanických vlastností materiálů a konstrukcí. 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály
FP 1 Měření a analýza mechanických vlastností materiálů a konstrukcí Úkoly : 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály 2. Určete moduly pružnosti vzorků nepřímo pomocí měření rychlosti
DUM č. 14 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia
projekt GML Brno Docens DUM č. 14 v sadě 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia Autor: Vojtěch Beneš Datum: 04.05.2014 Ročník: 1. ročník Anotace DUMu: Mechanické vlnění, zvuk Materiály
4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul
Fyzika 20 Otázky za 2 body. Celsiova teplota t a termodynamická teplota T spolu souvisejí známým vztahem. Vyberte dvojici, která tento vztah vyjadřuje (zaokrouhleno na celá čísla) a) T = 253 K ; t = 20
FYZIKA 2016 F.. Strana 1 (celkem 6)
FYZIKA 2016 F.. Strana 1 (celkem 6) 1 Prahu slyšení tónu o frekvenci 1 khz odpovídá intenzita zvuku A) 10-12 Wm -1 B) 10-12 Wm C) 10-12 Wm -2 D) 10-12 Wm 2 2 Elektrická práce v obvodu s konstantním proudem
ρ = 0 (nepřítomnost volných nábojů)
Učební text k přednášce UFY Světlo v izotropním látkovém prostředí Maxwellovy rovnice v izotropním látkovém prostředí: B rot + D rot H ( r, t) div D ρ rt, ( ) div B a materiálové vztahy D ε pro dielektrika
PSK1-5. Frekvenční modulace. Úvod. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka. Název školy: Vzdělávací oblast:
PSK1-5 Název školy: Autor: Anotace: Vzdělávací oblast: Předmět: Tematická oblast: Výsledky vzdělávání: Klíčová slova: Druh učebního materiálu: Vyšší odborná škola a Střední průmyslová škola, Božetěchova
Metoda akustické emise
P11: NDT metody 4/5 Princip metody - Uvolněné elastické vlny, které jako typický praskot sledoval Josef Kaiser během deformace cínové tyčinky, daly základ novému oboru testování materiálu a struktur. -
Lom světla na kapce, lom 1., 2. a 3. řádu Lom světla na kapce, jenž je reprezentována kulovou plochou rozhraní, je složitý mechanismus rozptylu dopada
Fázový Dopplerův analyzátor (PDA) Základy geometrické optiky Index lomu látky pro světlo o vlnové délce λ je definován jako poměr rychlosti světla ve vakuu k rychlosti světla v látce. cv n = [-] (1) c
frekvence f (Hz) perioda T = 1/f (s)
1.) Periodický pohyb - každý pohyb, který se opakuje v pravidelných intervalech Poet Poet cykl cykl za za sekundu sekundu frekvence f (Hz) perioda T 1/f (s) Doba Doba trvání trvání jednoho jednoho cyklu