Jak se pozorují černé díry? - část 4. Současné otevřené problémy
|
|
- Vendula Novotná
- před 6 lety
- Počet zobrazení:
Transkript
1 Jak se pozorují černé díry? - část 4. Současné otevřené problémy Jiří Svoboda Astronomický ústav Akademie věd ČR Vybrané kapitoly z astrofyziky, Astronomický ústav UK, prosinec 2013
2 Osnova přednáškového cyklu Úvodní přednáška popularizační přednáška z Týdne vědy a techniky jak a kde pozorujeme černé díry ve vesmíru? metody detekce černých děr současné i budoucí Rentgenová astronomie proces redukce dat a spektrální analýza astrofyzikální modely pro rentgenová spektra Otevřené problémy současné astrofyziky akrečních disků okolo černých děr Závěr, diskuze, sepisování návrhu na pozorování,...
3 Co si pamatujeme z minulé přednášky? teplota akrečního disku T(r) ~ r-3/4 (Shakura-Sunyaev) termální spektrum je složeno z mnoha jednotlivých příspěvků z různých poloměrů nejvyšší teplota je poblíž vnitřního okraje disku termální spektrum se rozptyluje v horké koróně inversním Comptonovým rozptylem se původně ultrafialové (aktivní galaxie) nebo měkké rtg záření (rentgenové dvojhvězdy) posouvá do tvrdého rentgenu teplota na r = rin = 1-6 rg (pro spin a = 1-0) závisí na skutečné vzdálenosti od centra a tedy na hmotnosti černé díry (R ~ M): T ~ M-1/4 výsledkem je netermální mocninné spektrum (power law) odražené záření vzniká interakcí rtg záření s okolní hmotou
4 Co si pamatujeme z minulé přednášky? měření spinu černé díry z rentgenových spekter termální záření odražené záření (fluorescenční čára železa) spin se měří z vysoko-energetického konce termálního spektra (nejvyšší efektivní teplota) spin se měří z maximálního gravitačního rudého posuvu základní idea obou metod je určení polohy poslední stabilní dráhy
5 Program dnešní přednášky současné otevřené problémy týkající se akreujících černých děr vznik a udržení relativistických výtrysků hmoty (jetů) souvislost se spinem černé díry? dichotomie rádiově silných a slabých galaxií souvislost se spektrálním stavem akreujícího objektu spojitosti a odlišnosti aktivních galaxiích a rentgenových dvojhvězd fundamentální schéma Blandford-Znajekův efekt vztah rádiové a rentgenové luminosity a hmotnosti evoluční diagramy spektrálních stavů závěr, shrnutí přednáškového cyklu
6 1.téma jety jety jsou kolimované polární výtrysky hmoty, které se pozorují u celé řady astronomických objektů vznikající hvězdy (akrece protoplanetárního disku) kataklyzmické proměnné hvězdy (bílý trpaslík) planetární mlhoviny neutronové hvězdy černé díry ve dvojhvězdách i v galaxiích záblesky gamma společné prvky objektů s jety disková akrece přítomnost magnetického pole
7 Relativistické výtrysky hmoty (jety) jety z černých děr dosahují relativistických rychlostí jet v GRS (rentgenová dvojhv.) jet v M87 (blízká aktivní galaxie) Dopplerův beaming způsobuje, že je výtrysk mířící k pozorovateli jasnější
8 Vznik a udržení jetu roli hraje magnetické pole fokusace a urychlení částic v jetu magnetohydrodynamické simulace relativistické 3D simulace např. McKinney, 06 jety vytvářejí pouze tlusté disky L LEdd L < několik procent LEdd v horizontální oblasti turbulentní, ve vertikální organizované prostředí zářivý výkon jetu silně závisí na intenzitě magnetického pole a spinu černé díry
9 Efekt spinu černé díry Blandford-Znajekův mechanismus energie se do jetu dostává na úkor rotační energie černé díry (jet se utváří v oblasti ergosféry) síla jetu: 2 mag P jet Φ 2 H Ω /c úhlová rotační rychlost horizontu černé díry Komissarov-McKinney, numerical sim., 2007 Blandford-Znajek, 1977
10 Pozorování rentgenové dvojhvězdy není zcela jasný vztah mezi zářivým výkonem jetu a spinem černé díry odhadovaný zářivý výkon jetu spin černé díry Fender+, 2010
11 Výskyt jetu v závislosti na spektrálním stavu jety se pozorují téměř výhradně v rentgenově tvrdých stavech velmi malé nebo žádné záření z akrečního disku rentgenové záření je tvrdé (nízký index mocninného záření) Malzac, 2006 tvrdost rentgenového záření intenzita záření v rádiové oblasti
12 Evoluční diagram Fender, 2004
13 Evoluční diagram nejen pro černé díry
14 Pozorování rentgenové dvojhvězdy není zcela jasný vztah mezi zářivým výkonem jetu a spinem černé díry korelace v případě balistického jetu (Narayan+ 2012, Steiner+ 2013)
15 Pozorování aktivní galaxie dichotomie rádiově silných a slabých galaxií asi 10% galaxií jsou silné rádiové zdroje jedna z prvních objevených zvláštností aktivních galaxií (quasar = quasi-stellar radio source) rádiově silné galaxie Balokovic+, 2012, z dat SDSS (Sloan Digital Sky Survey) současná měření spinu však jen výhradně u rádiově slabých zdrojů
16 Měření spinu v AGN
17 Otevřené otázky okolo jetů jak jety vznikají? jaký je jejich vzájemný vztah s akrečním diskem? jaké jsou podmínky pro magnetické pole, akreční tok,... kde jety vznikají? jakým procesem je plazma v jetu urychlováno? závisí zářivý výkon jetu na rotaci černé díry? funguje Blandford-Znajekův mechanismus? souvisí dichotomie rádiově silných a slabých galaxií s velikostí spinu centrální černé díry? jak ustálený/variabilní je vtok hmoty do jetu?
18 2. Spojitosti a odlišnosti rentgenových dvojhvězd a aktivních galaxií rentgenové dvojhvězdy aktivní galaktická jádra (stelární černé díry) (super-hmotné černé díry) M ~ 10 MSlunce M ~ MSlunce
19 Rentgenová spektra existuje nápadná podobnost hlavní rozdíl je v teplotě akrečního disku aktivní galaxie rentgenová dvojhvězda? tepelné záření disku záření rozptýlené na horkých elektronech v atmosféře disku odraz rozptýleného záření na povrchu akrečního disku
20 Fundamentální vztah rádiové a rentgenové luminosity a hmotnosti Merloni+ 03
21 Časová proměnnost variabilita se popisuje pomocí tzv. PSD (power spectral density) diagramů McHardy+ 04,05
22 Porovnání AGN a XRB power spektra AGN jsou podobná rentgenovým dvojhvězdám v termálním stavu na nízkých frekvencích "bílý šum", který se zlomí na specifické frekvenci, od které power spektrum klesá jako 1/f 2 zlom je u AGN posunutý k nizším frekvencím v důsledku delší časové škály okolo hmotnější černé díry (R M) frekvence zlomu závisí nejen na hmotnosti ale také na akrečním toku (na hmotnosti však výrazněji)
23 Diagram hmotnosti a časové škály zlomu ve výkonových spektrech AGN extrapolace Cyg X-1 McHardy+ 04
24 Otevřené otázky týkající se analogie stelárních a supermasivních ČD probíhá akrece na černé díry různých hmotností stejným způsobem? rentgenová spektra časová proměnnost podobná výkonová spektra, ale proč se nepozorují u AGN kvazi-periodické oscilace? (jediná výjimka RE J ) jety podobné komponenty spektra; odlišnost spočívá zejméná v různé teplotě a hustotě akrečního disku důvod pro výskyt tzv. "soft excessu" u aktivních galaxií? jsou rádiově silné galaxie analogií tvrdých spektrálních stavů rentgenových dvojhvězd? probíhá vývoj AGN podobně jako u rentgenových dvojhvězd?
25 Spektrální stavy aktivních galaxií časová škála spektrálních změn rentgenových dvojhvězd je v řádech měsíců až roků u aktivních galaxií by to bylo miliony až miliardy let řešením je studium velkého souboru různých galaxií pro zařazení do spektrálního stavu je třebá znát poměr termálního záření k netermální složce u rentgenových dvojhvězd je vše v rentgenovém oboru u aktivních galaxií je v rentgenovém oboru pouze netermální část (s výjimkou málo hmotných ČD 106 M) tepelné záření akrečního disku je v ultrafialovém oboru v něm září i okolní hvězdy galaxie & absorpce mezihvězdnou látkou
26 AGN analogy to XRB states disc-fraction luminosity diagrams (Körding+ 2006) diagrams of log (LD+LPL) vs. LPL/(LD+LPL) where: disc luminosity: log LD = MB (empirical relation by Falcke+ 1995) power-law luminosity: LPL = 3 L0.5-10keV(extrapolated) based on SDSS (optical), ROSAT (X-ray) and FIRST (radio) surveys simulating AGN states by mass up-scaling the GRO J cycle (Sobolewska+ 2011)
27 low-luminosity AGN added manually from Ho et al., 97 hardness radio loudness total luminosity E.Körding's diagram
28 Hardness-Intensity diagram for stellar-mass black hole binaries Fender, 2004
29 Projekt s využitím XMM using simultaneous XMM-Newton UV (Optical Monitor) and X-ray (EPIC) measurements only strictly simultaneous UV and X-ray data => eliminate effect of the (X-ray) variability directly measured 2-10 kev X-ray flux instead of an extrapolated flux from kev (by ROSAT) => eliminate influence of the X-ray absorber UV flux instead of the optical magnitude to constrain the accretion-disc thermal emission
30 Instruments onboard XMM-Newton three European Photon Imaging Cameras (EPIC PN, MOS1, MOS2) operating in kev two reflection grating spectrometers (RGS) sensitive below 2 kev large collecting area (4300 cm2) useful for high resolution X-ray spectroscopy 30cm Ritchey-Chretien optical/uv telescope 3 ultraviolet filters 3 optical filters (U, B, V)
31 3XMM catalogue contains 7427 observations made between 2000 (Feb 3) and 2012 (Dec 8) more than half million of X-ray detections (with the total band kev likelihood values > 6) unique sources total sky area covered: 794 deg2 positional accuracy is less than 3'' (90% confidence level)
32 OM SUSS catalogue = Optical Monitor Serendipitous Ultraviolet Source Survey contains 2417 observations performed between 2000 (Feb 24) and 2007 (Mar 29) above 3/4 of million of UV detections (above 3σ signalto-noise ratio threshold), unique sources net sky area: deg2 (depending on filter) UV filters: Å, mab = Å, mab = Å, mab = 20.2
33 UV-X simultaneous observations cross-corelation of 3XMM and OMSUSS with the critical radius: 3'' simultaneousity (= the same ObsId) was required catalogue 3XMM OM SUSS number of entries cross-corelation with Véron AGN catalogue (13th 3XMM+OM simult Ed., VéronCetty & Véron, 2010, without blazars) => 1817 entries (dcr = 3'')
34 Final sample additional filtering: remove sources with an extended UV emission remove too obscured sources in X-rays (~ Γ < 1.2) selecting the best observation for each source (based on the UV significance and EPIC exposure time) final sample consists of ~ 1000 sources catalogue information number of sources UV and X 1017 UV, X and radio 219 UV, X, R +R slope* 73 * radio slope from SpecFind Catalogue (Vollmer et al., 2010)
35 Disc and Power-law Luminosity disc luminosity: LD= factoruv L2910Å power-law luminosity: LPow= factorpow L2-10keV the multiplicative factors were obtained by fitting the equation: LBOL = LD + LPow LBOL is the bolometric luminosity constrained for 15 sources by Vasudevan & Fabian (2009) => factoruv ~ 2, factorpow ~ 10 hardness: LPow / (LD+ LPow); radio loudness: LR / LTotal
36 radio loudness 'Raw' HID diagram
37 Low-Luminosity AGN UV flux dominated by the host galaxy only few sources have decomposed spectral energy distribution (Ho et al. 99, Maoz 07, Ho 08) Ho: LINERs and LLAGN lack a UV bump Maoz: some UV emission comes from the accretion disc AGN luminosity at 2500 Å 3 objects of the Maoz sample are present in our sample (M 87, NGC 3398, NGC 4579)
38 radio loudness 'Raw' HID diagram corr. accor. to Maoz
39 radio loudness HID diagram of all galaxies non-active galaxies
40 Correction for host galaxy optimally: using carefully extracted SEDs for lowluminosity AGN based on luminosities of non-active galaxies: crosscorrelate 3XMMOMC with non-active galaxies from 2MASS Redshift Survey (Huchra et al., 12) ~ 232 sources (after filtering) normal distributions of UV and X-ray luminosities => Monte-Carlo simulation of the AGN host-galaxy luminosity
41 radio loudness 'Corrected' HID diagram correction
42 radio loudness 'Corrected' HID diagram correction not enough...
43 radio loudness HID histogram
44 HID diagram with X-ray hardness X-ray hardness Γ=1. 6 Γ=3
45 Conclusions AGNs qualitatively evolve in a similar way as the stellar-mass black hole binaries (confirming the previous results by Körding and Sobolewska) Radio Loudness seems to be a good indicator for an AGN evolutionary track, hard sources are RL the X-ray spectral slope steeper for soft states
46 Issues & Future work low-luminosity AGNs sample biases & effects study sub-samples according to redshift and mass radio properties of AGNs the host galaxy subtraction... only a few sources with a confirmed radio morphology... X-ray variability
47 Shrnutí přednáškového cyklu o čem jsme si povídali? černé díry kde se vyskytují, jak vznikají, co nás na nich zajímá? jak se pozorují? rentgenová astronomie interakce silného záření s elektrony v atomových obalech různé způsoby detekce rentgenového záření ve vesmíru současné a plánované rentgenové laboratoře redukce rentgenových spekter spektrální stavy tvrdé (převládá koróna) vs. měkké (převládá disk)
48 Shrnutí - pokračování astrofyzikální modely akreujících černých děr termální záření akrečních disků odraz záření na akrečním disku, vznik fluorescenčních čar relativistické efekty na vyzářené spektrum měření spinu černé díry současné otevřené problémy týkající se akreujících černých děr vznik a zánik jetů, vztah k akrečnímu toku dichotomie rádiového záření aktivních galaxií vývoj akrece na černou díru univerzální pro aktivní galaxie a rentgenové dvojhvězdy?
49 Závěr studium černých děr nám umožňuje pochopit fyzikální procesy v oblasti velmi silné gravitace a vysokých rychlostí aplikace speciální a obecné teorie relativity (ověření platnosti?) způsob akrece hmoty relativistické výtrysky hmoty (jety), větry z akrečních disků - akreční disky (tenké, tlusté) vznik, vztah k akrečnímu toku dopad na okolní galaxii (tvorba hvězd) slapové trhání hmoty v blízkosti černé díry vývoj a formaci galaktických jader a jejich superhmotných černých děr vývoj velmi hmotných hvězd
Jak se pozorují černé díry? - část 3. Astrofyzikální modely pro rentgenová spektra
Jak se pozorují černé díry? - část 3. Astrofyzikální modely pro rentgenová spektra Jiří Svoboda Astronomický ústav Akademie věd ČR Vybrané kapitoly z astrofyziky, Astronomický ústav UK, prosinec 2013 Osnova
Jak se pozorují černé díry?
Vybrané kapitoly z astrofyziky díl 30. Jak se pozorují černé díry? Jiří Svoboda Astronomický ústav Akademie věd ČR Vybrané kapitoly z astrofyziky, Astronomický ústav UK, prosinec 2013 Osnova přednáškového
Urychlení KZ. Obecné principy, Fermiho urychlení, druhý řád, první řád, spektrum
Urychlení KZ Obecné principy, Fermiho urychlení, druhý řád, první řád, spektrum Obecné principy Netermální vznik nekompatibilní se spektrem KZ nerealistické teploty E k =3/2 k B T, Univerzalita tvaru spektra
Extragalaktická astrofyzika. Aktivní galaktická jádra, Jety
Extragalaktická astrofyzika Aktivní galaktická jádra, Jety Aktivní Galaktická Jádra Úvod Pro AGN je charakteristické, že emitují velké množství energie z velmi malé oblasti. Obecně se má za to, že centrálním
ZÁŘENÍ V ASTROFYZICE
ZÁŘENÍ V ASTROFYZICE Plazmový vesmír Uvádí se, že 99 % veškeré hmoty ve vesmíru je v plazmovém skupenství (hvězdy, mlhoviny, ) I na Zemi se vyskytuje plazma, např. v podobě blesků, polárních září Ve sluneční
Základy spektroskopie a její využití v astronomii
Ing. Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Základy spektroskopie a její využití v astronomii Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Světlo x záření Jak vypadá spektrum?
Stručný úvod do spektroskopie
Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,
Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15
Proč studovat hvězdy? 9 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů.... 13 1.3 Model našeho Slunce 15 2 Záření a spektrum 21 2.1 Elektromagnetické záření
KATAKLYZMICKÉ UDÁLOSTI. 10. lekce Bára Gregorová a Vašek Glos
KATAKLYZMICKÉ UDÁLOSTI 10. lekce Bára Gregorová a Vašek Glos Kataklyzma Překlad z řečtiny = potopa, ničivá povodeň Živelná pohroma, velká přírodní katastrofa, rozsáhlý přírodní děj spojený s velkými změnami
Slunce zdroj energie pro Zemi
Slunce zdroj energie pro Zemi Josef Trna, Vladimír Štefl Zavřete oči a otočte tvář ke Slunci. Co na tváři cítíte? Cítíme zvýšení teploty pokožky. Dochází totiž k přenosu tepla tepelným zářením ze Slunce
Galaxie Vesmír velkých měřítek GALAXIE. Základy astronomie Galaxie 1/47
GALAXIE Základy astronomie 2 16.4.2014 Galaxie 1/47 Galaxie 2/47 Galaxie 3/47 Hubbleův systém klasifikace 1936 1924 Hubble rozlišil okraje blízkých galaxií, identifikoval v nich hvězdy klasifikace zároveň
Batse rozložení gama záblesků gama záblesků detekovaných družicí BATSE v letech Rozložení je isotropní.
GRB Gama Ray Burst Úvod Objevení a pozorování Lokalizace a hledání optických protějšků Vzdálenosti a rozložení Typy gama záblesků Možné vysvětlení Satelit Fermi Objev gama záblesků Gama záření je zcela
Fyzické proměnné hvězdy (intrinsic variable star)
Fyzické proměnné hvězdy (intrinsic variable star) fyzické proměnné hvězdy reálné změny charakteristik v čase: v okolí hvězdy v povrchových vrstvách, většinou projevy hvězdné aktivity, astroseismologie
Urychlování částic ve vesmíru aneb záhadné extrémně energetické kosmické záření
Urychlování částic ve vesmíru aneb záhadné extrémně energetické kosmické záření Pozorování kosmického záření Kosmické záření je proud převážně nabitých částic, které dopadá na zeměkouli z kosmického prostoru.
O tom, co skrývají centra galaxíı. F. Hroch. 26. březen 2015
Kroužíme kolem černé díry? O tom, co skrývají centra galaxíı F. Hroch ÚTFA MU, Brno 26. březen 2015 Kroužíme kolem černé díry? Jak zkoumat neviditelné objekty? Specifika černých děr Objekty trůnící v centrech
Obecná teorie relativity pokračování. Petr Beneš ÚTEF
Obecná teorie relativity pokračování Petr Beneš ÚTEF Dilatace času v gravitačním poli Díky principu ekvivalence je gravitační působení zaměnitelné mechanickým zrychlením. Dochází ke stejným jevům jako
VÍTR MEZI HVĚZDAMI Daniela Korčáková kor@sunstel.asu.cas.cz Astronomický ústav AV ČR horké hvězdy hvězdy podobné Slunci chladné hvězdy co se stane, když vítr potká vítr? co způsobil vítr? HORKÉ HVĚZDY
Chemické složení vesmíru
Společně pro výzkum, rozvoj a inovace - CZ/FMP.17A/0436 Chemické složení vesmíru Jak sledujeme chemické složení ve vesmíru? Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Mendelova univerzita v Brně,
O původu prvků ve vesmíru
O původu prvků ve vesmíru prof. Mgr. Jiří Krtička, Ph.D. Ústav teoretické fyziky a astrofyziky Masarykova univerzita, Brno Odkud pochází látka kolem nás? Odkud pochází látka kolem nás? Z čeho je svět kolem
B. Hvězdy s větší hmotností spalují termojaderné palivo pomaleji,
HVĚZDY 1. Většina hvězd se při pozorování v průběhu noci pohybuje od A. Západu k východu, B. Východu k západu, C. Severu k jihu, D. Jihu k severu. 2. Ve většině hvězd se energie uvolňuje A. Prudkou rotací
Černé díry: brány k poznávání našeho Vesmíru
Jihlavská astronomická společnost, 9. února 2017, Muzeum Vysočina. Černé díry: brány k poznávání našeho Vesmíru Ing. Petr Dvořák petr.dvorak@ceitec.vutbr.cz Ústav fyzikálního inženýrství, FSI VUT v Brně
Virtual Universe Future of Astrophysics?
Future of Astrophysics? Robert Klement a Pet oš 8. Listopadu 2009 1 Virtuální Observatoře: Co to je a k čemu jsou? 2 Pár slov k 3 Jak se s pracuje 4 5 6 Vlastní článek Vědecké metody Proč VO? Každé tři
Jak se pozorují černé díry? - část 2. Základy rentgenové astronomie
Jak se pozorují černé díry? - část 2. Základy rentgenové astronomie Jiří Svoboda Astronomický ústav Akademie věd ČR Vybrané kapitoly z astrofyziky, Astronomický ústav UK, prosinec 2013 Osnova přednáškového
Objev gama záření z galaxie NGC 253
Objev gama záření z galaxie NGC 253 Dalibor Nedbal ÚČJF, Kosmické záření (KZ) Otázky Jak vzniká? Kde vzniká? Jak se šíří? Vysvětlení spektra? Paradigma KZ ze supernov (SN) Pokud platí, lze očekávat velké
Kosmické záření. Dalibor Nedbal ÚČJF nedbal(at)ipnp.troja.mff.cuni.cz.
Kosmické záření Dalibor Nedbal ÚČJF nedbal(at)ipnp.troja.mff.cuni.cz http://www-ucjf.troja.mff.cuni.cz/~nedbal/cr Shrnutí E pole poh. náboje má dvě složky 1 E vel R [ závisí na Dominuje pro R ~ E rad n
Hvězdy se rodí z mezihvězdné látky gravitačním smrštěním. Vlastní gravitací je mezihvězdný oblak stažen do poměrně malého a hustého objektu
Hvězdy se rodí z mezihvězdné látky gravitačním smrštěním. Vlastní gravitací je mezihvězdný oblak stažen do poměrně malého a hustého objektu kulovitého tvaru. Tento objekt je nazýván protohvězda. V nitru
Vesmír. Studijní text k výukové pomůcce. Helena Šimoníková D07462 9.6.2009
2009 Vesmír Studijní text k výukové pomůcce Helena Šimoníková D07462 9.6.2009 Obsah Vznik a stáří vesmíru... 3 Rozměry vesmíru... 3 Počet galaxií, hvězd a planet v pozorovatelném vesmíru... 3 Objekty ve
V říši galaxií. velké množství galaxií => každý má aspoň jednu (ultra)hluboký pohled do vesmíru
V říši galaxií velké množství galaxií => každý má aspoň jednu (ultra)hluboký pohled do vesmíru galaxie rozdíly velikost, stavba => klasifikace - Edwin Hubble (1926, 1936) Hubble ultra deep field Hubbleova
Hvězdný diagram. statistika nuda je, má však cenné údaje. náhodný vzorek skupina osob. obdobně i ve světě hvězd!
Hvězdný diagram statistika nuda je, má však cenné údaje náhodný vzorek skupina osob obdobně i ve světě hvězd! Trocha historie 1889 Carl Vilhelm Ludvig Charlier první tabulka Plejády 1910 Hans Oswald Rosenberg
Hvězdný diagram. statistika nuda je, má však cenné údaje. obdobně i ve světě hvězd! náhodný vzorek skupina osob. sportovci na ZOH 2018
Hvězdný diagram statistika nuda je, má však cenné údaje náhodný vzorek skupina osob sportovci na ZOH 2018 obdobně i ve světě hvězd! Trocha historie 1889 Carl Vilhelm Ludvig Charlier první tabulka Plejády
ČLOVĚK A ROZMANITOST PŘÍRODY VESMÍR A ZEMĚ. GRAVITACE
ČLOVĚK A ROZMANITOST PŘÍRODY VESMÍR A ZEMĚ. GRAVITACE Sluneční soustava Vzdálenosti ve vesmíru Imaginární let fotonovou raketou Planety, planetky Planeta (oběžnice) ve sluneční soustavě je takové těleso,
Aneb galaxie pod pláštíkem temnoty. Filip Hroch
Mrtvé oázy vesmíru Aneb galaxie pod pláštíkem temnoty. Filip Hroch ASTRO@BRNO.2006 Spirální galaxie NGC 1309 Eri, 2 2 Hubble Heritage Spirální galaxie s příčkou NGC 1300, Eri, 7 4 Hubble Heritage Nepravidelná
Urychlené částice z pohledu sluneční rentgenové emise
Urychlené částice z pohledu sluneční rentgenové emise Jana Kašparová Astronomický ústav AV ČR, Ondřejov kasparov@asu.cas.cz Vybrané kapitoly z astrofyziky, MFF UK, 25. října 2006 sluneční erupce stručný
Hvězdy a černé díry. Zdeněk Kadeřábek
Hvězdy a černé díry Zdeněk Kadeřábek Osnova Vznik a vývoj hvězd Protohvězda Hvězda hlavní posloupnosti Červený obr Vývoj Slunce Bílý trpaslík Neutronová hvězda Supernovy Pulzary Černé díry Pád do černé
VY_32_INOVACE_FY.19 VESMÍR
VY_32_INOVACE_FY.19 VESMÍR Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Vesmír je souhrnné označení veškeré hmoty, energie
Koróna, sluneční vítr
Koróna, sluneční vítr Sluneční fyzika ZS 2011/2012 Michal Švanda Astronomický ústav MFF UK Astronomický ústav AV ČR Přechodová oblast Změna teplotní režimu mezi chromosférou (104 K) a korónou (106 K) Nehomogenní,
Sluneční dynamika. Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK
Sluneční dynamika Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK Slunce: dynamický systém Neměnnost Slunce Iluze Slunce je proměnná hvězda Sluneční proměny Díky vývoji Dynamika hmoty Magnetická
Koróna, sluneční vítr. Michal Švanda Sluneční fyzika LS 2014/2015
Koróna, sluneční vítr Michal Švanda Sluneční fyzika LS 2014/2015 Přechodová oblast Změna teplotní režimu mezi chromosférou (10 4 K) a korónou (10 6 K) Nehomogenní, pohyby (doppler-shift), vývoj S výškou
Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ
Hvězdy zblízka Složení hvězdy Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Plazma zcela nebo částečně ionizovaný plyn,
V říši galaxií. pouhýma očima na celé hvězdné obloze M31, SMC, LMC velké množství galaxií => každý má aspoň jednu ; (ultra)hluboký pohled do vesmíru
V říši galaxií pouhýma očima na celé hvězdné obloze M31, SMC, LMC velké množství galaxií => každý má aspoň jednu ; (ultra)hluboký pohled do vesmíru galaxie rozdíly velikost, stavba => klasifikace - Edwin
O tom, co skrývají centra galaxíı. F. Hroch. 10. duben 2009
Kroužíme kolem černé díry? O tom, co skrývají centra galaxíı F. Hroch ÚTFA MU, Brno 10. duben 2009 F. Hroch (ÚTFA MU, Brno) Kroužíme kolem černé díry? 10. duben 2009 1 / 22 Před lety... pohyb objektů kolem
Příklady Kosmické záření
Příklady Kosmické záření Kosmické částice 1. Jakou kinetickou energii získá proton při pádu z nekonečné výšky na Zem? Poloměr Zeměje R Z =637810 3 maklidováenergieprotonuje m p c 2 =938.3MeV. 2. Kosmickékvantum
Hvězdný diagram. statistika nuda je, má však cenné údaje. náhodný vzorek skupina osob. obdobně i ve světě hvězd!
Hvězdný diagram statistika nuda je, má však cenné údaje náhodný vzorek skupina osob obdobně i ve světě hvězd! Trocha historie Plejády 1889 Carl Vilhelm Ludvig Charlier první tabulka 1910 Hans Oswald Rosenberg
Všechny galaxie vysílají určité množství elektromagnetického záření. Některé vyzařují velké množství záření a nazývají se aktivní.
VESMÍR Model velkého třesku předpovídá, že vesmír vznikl explozí před asi 15 miliardami let. To, co dnes pozorujeme, bylo na začátku koncentrováno ve velmi malém objemu, naplněném hmotou o vysoké hustotě
Optické spektroskopie 1 LS 2014/15
Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)
Úvod do moderní fyziky. lekce 7 vznik a vývoj vesmíru
Úvod do moderní fyziky lekce 7 vznik a vývoj vesmíru proč nemůže být vesmír statický? Planckova délka, Planckův čas l p =sqrt(hg/c^3)=1.6x10-35 m nejkratší dosažitelná vzdálenost, za kterou teoreticky
Základy Mössbauerovy spektroskopie. Libor Machala
Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických
Jak se vyvíjejí hvězdy?
Jak se vyvíjejí hvězdy? tlak a teplota normální plyny degenerované plyny osud Slunce fáze červeného obra oblast horizontálního ramena oblast asymptotického ramena obrů planetární mlhovina bílý trpaslík
Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou?
Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? 10/20/2004 1 Bethe Blochova formule (1) je maximální možná předaná energie elektronu N r e - vogadrovo čislo - klasický poloměr elektronu
Úvod do fyziky plazmatu
Úvod do fyziky plazmatu Lenka Zajíčková, Ústav fyz. elektroniky Doporučená literatura: J. A. Bittencourt, Fundamentals of Plasma Physics, 2003 (3. vydání) ISBN 85-900100-3-1 Navazující a související přednášky:
Železné lijáky, ohnivé smrště. Zdeněk Mikulášek
Železné lijáky, ohnivé smrště Zdeněk Mikulášek Hnědí trpaslíci - nejdivočejší hvězdy ve vesmíru Zdeněk Mikulášek Historie 1963 Shiv Kumar: jak by asi vypadala tělesa s hmotnostmi mezi hvězdami a planetami
Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec
Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm
Přednáška IX: Elektronová spektroskopie II.
Přednáška IX: Elektronová spektroskopie II. 1 Försterův resonanční přenos energie Pravděpodobnost (rychlost) přenosu je určená jako: k ret 1 = τ 0 D R r 0 6 0 τ D R 0 r Doba života donoru v excitovaném
Identifikace vzdělávacího materiálu VY_52_INOVACE_F.9.A.34 EU OP VK
Identifikace vzdělávacího materiálu VY_52_INOVACE_F.9.A.34 EU OP VK Škola, adresa Autor ZŠ Smetanova 1509, Přelouč Mgr. Ladislav Hejný Období tvorby VM Červen 2012 Ročník 9. Předmět Fyzika Hvězdy Název,
VY_32_INOVACE_FY.20 VESMÍR II.
VY_32_INOVACE_FY.20 VESMÍR II. Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Galaxie Mléčná dráha je galaxie, v níž se nachází
Statistické zpracování družicových dat gama záblesků
Statistické zpracování družicových dat gama záblesků Statistické zpracování družicových dat gama záblesků obsah diplomové práce Předmluva 1. Úvod 2. Družice Fermi 2.1 Popis družice Fermi 2.2 GBM detektory
Charakterizace koloidních disperzí. Pavel Matějka
Charakterizace koloidních disperzí Pavel Matějka Charakterizace koloidních disperzí 1. Úvod koloidní disperze 2. Spektroskopie kvazielastického rozptylu 1. Princip metody 2. Instrumentace 3. Příklady použití
Extragalaktické novy a jejich sledování
Extragalaktické novy a jejich sledování Novy těsné dvojhvězdy v pokročilém stadiu vývoje přenos hmoty velikost bílého trpaslíka Spektrum klasické novy Objevy nov v ČR 1936 - Záviš Bochníček objevuje ve
Astronomie, sluneční soustava
Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267
Kosmické záření a astročásticová fyzika
Kosmické záření a astročásticová fyzika Jan Řídký Fyzikální ústav AV ČR Obsah Kosmické záření a současná fyzika. Historie pozorování kosmického záření. Současné znalosti o kosmickém záření. Jak jej pozorujeme?
Vybrané spektroskopické metody
Vybrané spektroskopické metody a jejich porovnání s Ramanovou spektroskopií Předmět: Kapitoly o nanostrukturách (2012/2013) Autor: Bc. Michal Martinek Školitel: Ing. Ivan Gregora, CSc. Obsah přednášky
F7030 Rentgenový rozptyl na tenkých vrstvách
F7030 Rentgenový rozptyl na tenkých vrstvách O. Caha PřF MU Prezentace k přednášce Numerické simulace Příklady experimentů Vybrané vztahy Sylabus Elementární popis vlnového pole: Rtg vlna ve vakuu; Greenova
Urychlené částice z pohledu sluneční rentgenové emise Elektronová spektra
Urychlené částice z pohledu sluneční rentgenové emise Elektronová spektra Jana Kašparová Astronomický ústav AV ČR, Ondřejov kasparov@asu.cas.cz Vybrané kapitoly z astrofyziky, MFF UK, 8. listopadu 2006
Nová zařízení pro měření, kalibraci popř. řízení měření Zařízení konstruovaná pro fluorescenční detektory (FD) projektu PAO Fungující na principu detekce optického žáření Cloud camera (us University of
DZDDPZ1 - Fyzikální základy DPZ (opakování) Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava
DZDDPZ1 - Fyzikální základy DPZ (opakování) Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava Elektromagnetické záření Nositelem informace v DPZ je EMZ elmag vlna zvláštní případ elmag pole,
Za hranice současné fyziky
Za hranice současné fyziky Zásadní změny na počátku 20. století Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie
Eruptivní procesy na Slunci a jejich optická, radiová a EUV diagnostika
Eruptivní procesy na Slunci a jejich optická, radiová a EUV diagnostika Miroslav Bárta Astronomický ústav AV ČR, Ondřejov barta@asu.cas.cz 26. prosince 2013 1. ČS setkání pozorovatelů Slunce, Valašské
Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 6.1Slunce, planety a jejich pohyb, komety Vesmír - Slunce - planety a jejich pohyb, - komety, hvězdy a galaxie 2 Vesmír či kosmos (z
školní vzdělávací program ŠKOLNÍ VZDĚLÁVACÍ PROGRAM DR. J. PEKAŘE V MLADÉ BOLESLAVI RVP G 8-leté gymnázium Fyzika II. Gymnázium Dr.
školní vzdělávací program PLACE HERE Název školy Adresa Palackého 211, Mladá Boleslav 293 80 Název ŠVP Platnost 1.9.2009 Dosažené vzdělání Střední vzdělání s maturitní zkouškou Název RVP Délka studia v
13. Spektroskopie základní pojmy
základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Korekce souřadnic. 2s [ rad] R. malé změny souřadnic, které je nutno uvažovat při stanovení polohy astronomických objektů. výška pozorovatele
OPT/AST L07 Korekce souřadnic malé změny souřadnic, které je nutno uvažovat při stanovení polohy astronomických objektů výška pozorovatele konečný poloměr země R výška h objektu závisí na výšce s stanoviště
Úvod do spektrálních metod pro analýzu léčiv
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz
Spektrum. Spektrum. zisk rozkladem bílého světla
Spektrum Spektrum zisk rozkladem bílého světla rozklad bílého světla pomocí mřížky rozklad bílého světla pomocí hranolu Spektrum Spektrum dějiny v kostce 1665 Isaac Newton - rozklad slunečního světla pomocí
ABSOLVENTSKÁ PRÁCE ZÁKLADNÍ ŠKOLA, ŠKOLNÍ 24, BYSTRÉ ROČNÍK. Astronomie - hvězdy. Michal Doležal
ABSOLVENTSKÁ PRÁCE ZÁKLADNÍ ŠKOLA, ŠKOLNÍ 24, BYSTRÉ 569 92 9.ROČNÍK Astronomie - hvězdy Michal Doležal Školní rok 2011/2012 Prohlašuji, že jsem absolventskou práci vypracoval samostatně a všechny použité
Vývoj Slunce v minulosti a budoucnosti
Vývoj Slunce v minulosti a budoucnosti Vjačeslav Sochora Astronomický ústva UK 9.5.2008 Obsah Úvod. Standartní model. Standartní model se započtením ztráty hmoty. Minulost a budoucnost Slunce. Reference.
WORKSHEET 1: LINEAR EQUATION 1
WORKSHEET 1: LINEAR EQUATION 1 1. Write down the arithmetical problem according the dictation: 2. Translate the English words, you can use a dictionary: equations to solve solve inverse operation variable
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 4. 3. 2013 Pořadové číslo 20 1 Černé díry Předmět: Ročník: Jméno autora: Fyzika
Reliktní záření a jeho polarizace. Ústav teoretické fyziky a astrofyziky
Reliktní záření a jeho polarizace Jiří Krtička Ústav teoretické fyziky a astrofyziky Proč je obloha temná? v hlubohém lese bychom v každém směru měli vidět kmen stromu. Proč je obloha temná? pokud jsou
Základní charakteristiky
Základní charakteristiky Vzdálenost Země-Slunce: 1.496 x 108 km (světlo letí ~ 8 min 19 s) Poloměr: 6.96342 x 105 km (109 x poloměr Země) Hmotnost: 1.9891 x 1030 kg (333000 x hmotnost Země) Hustota: Průměrná:
Interakce laserového impulsu s plazmatem v souvislosti s inerciální fúzí zapálenou rázovou vlnou
Interakce laserového impulsu s plazmatem v souvislosti s inerciální fúzí zapálenou rázovou vlnou Autor práce: Petr Valenta Vedoucí práce: Ing. Ondřej Klimo, Ph.D. Konzultanti: prof. Ing. Jiří Limpouch,
Astronomie. Astronomie má nejužší vztah s fyzikou.
Astronomie Je věda, která se zabývá jevy za hranicemi zemské atmosféry. Zvláště tedy výzkumem vesmírných těles, jejich soustav, různých dějů ve vesmíru i vesmírem jako celkem. Astronom, česky hvězdář,
11 milionů světelných let od domova...
11 milionů světelných let od domova...... aneb tady je Kentaurovo Michal Vlasák (FJFI ČVUT) 11 milionů světelných let od domova... EJČF Workshop 2013 1 / 21 původ kosmického záření stále nejasný z interakce
Oxide, oxide, co po tobě zbyde
Oxide, oxide, co po tobě zbyde Měření oxidu uhličitého ve třídách naší školy CO2 Measurning in our school classes Petr Chromčák, Václav Opletal, Petr Hradil, Markéta Kopecká, Kristýna Kocůrková Obsah -
Uvádění pixelového detektoru experimentu ATLAS do provozu
Seminář ATLAS FZU AV ČR 28/3/2008 Uvádění pixelového detektoru experimentu ATLAS do provozu Pavel Jež FZU AVČR, v.v.i. FJFI ČVUT Pixelový detektor status Hlavní rozcestník: https://twiki.cern.ch/twiki/bin/
Gymnázium Dr. J. Pekaře Mladá Boleslav
Gymnázium Dr. J. Pekaře Mladá Boleslav Zeměpis I. ročník ČERNÉ DÍRY referát Jméno a příjmení: Oskar Šumovský Josef Šváb Třída: 5.0 Datum: 28. 9. 2015 Černé díry 1. Obecné informace a) Základní popis Černé
CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA
CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA &KDSWHUSUHVHQWVWKHGHVLJQDQGIDEULFDW LRQRIPRGLILHG0LQNRZVNLIUDFWDODQWHQQD IRUZLUHOHVVFRPPXQLFDWLRQ7KHVLPXODWHG DQGPHDVXUHGUHVXOWVRIWKLVDQWHQQDDUH DOVRSUHVHQWHG
Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření
Elektromagnetické záření lineárně polarizované záření Cirkulárně polarizované záření Levotočivé Pravotočivé 1 Foton Jakékoli elektromagnetické vlnění je kvantováno na fotony, charakterizované: Vlnovou
VY_32_INOVACE_06_III./19._HVĚZDY
VY_32_INOVACE_06_III./19._HVĚZDY Hvězdy Vývoj hvězd Konec hvězd- 1. možnost Konec hvězd- 2. možnost Konec hvězd- 3. možnost Supernova závěr Hvězdy Vznik hvězd Vše začalo už strašně dávno, kdy byl vesmír
9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km.
9. Astrofyzika 9.1 Uvažujme hvězdu, která je ve vzdálenosti 4 parseky od sluneční soustavy. Určete: a) jaká je vzdálenost této hvězdy vyjádřená v kilometrech, b) dobu, za kterou dospěje světlo z této hvězdy
Astrofyzika. 1. Sluneční soustava. Slunce. Sluneční atmosféra. Slunce 17.6.2013. Slunce planety planetky komety, meteoroidy prach, plyny
1. Sluneční soustava Astrofyzika aneb fyzika hvězd a vesmíru planety planetky komety, meteoroidy prach, plyny je dominantním tělesem ve Sluneční soustavě koule o poloměru 1392000 km, s průměrnou hustotou
Profily eliptických galaxíı
Profily eliptických galaxíı Pozorování a modely Filip Hroch, Kateřina Bartošková, Lucie Jílková ÚTFA, MU, Brno 26. říjen 2007 O galaxíıch Galaxie? gravitačně vázaný systém obsahuje hvězdy, hvězdokupy,
POZOROVÁNÍ SLUNCE VE SPEKTRÁLNÍCH ČARÁCH. Libor Lenža Hvězdárna Valašské Meziříčí, p. o.
POZOROVÁNÍ SLUNCE VE SPEKTRÁLNÍCH ČARÁCH Libor Lenža Hvězdárna Valašské Meziříčí, p. o. Obsah 1. Co jsou to spektrální čáry? 2. Historie a současnost (přístroje, družice aj.) 3. Význam pro sluneční fyziku
Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz
Radioterapie X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Radioterapie je klinický obor využívající účinků ionizujícího záření v léčbě jak zhoubných, tak nezhoubných nádorů
7. Rotace Slunce, souřadnice
7. Rotace Slunce, souřadnice Sluneční fyzika LS 2007/2008 Michal Švanda Astronomický ústav MFF UK Astronomický ústav AV ČR Sluneční rotace Pomalá ~měsíc, ~1610 podle pohybů skvrn, Galileo 1858, Carrington,
Urychlené částice z pohledu sluneční rentgenové emise Brzdné záření
Urychlené částice z pohledu sluneční rentgenové emise Brzdné záření Jana Kašparová Astronomický ústav AV ČR, Ondřejov kasparov@asu.cas.cz Vybrané kapitoly z astrofyziky, MFF UK, 1. listopadu 2006 Energie
Naše Galaxie dávná historie poznávání
Mléčná dráha Naše Galaxie dávná historie poznávání galaxie = gravitačně vázaný strukturovaný a organizovaný systém z řeckého γαλαξίας Galaxie x Mléčná dráha Mléčná dráha antika: Anaxagoras (cca 500 428
Fyzikální podstata DPZ
Elektromagnetické záření Vlnová teorie vlna elektrického (E) a magnetického (M) pole šíří se rychlostí světla (c) Charakteristiky záření: vlnová délka (λ) frekvence (ν) Fyzikální podstata DPZ Petr Dobrovolný
Numerické simulace v astrofyzice
Numerické simulace v astrofyzice Petr Jelínek Jihočeská univerzita, Přírodovědecká fakulta, České Budějovice, Česká republika Astronomický ústav, Akademie věd České republiky v.v.i., Ondřejov, Česká republika
Kosmické záření a Observatoř Pierra Augera. připravil R. Šmída
Kosmické záření a Observatoř Pierra Augera připravil R. Šmída Astročásticová fyzika Astronomie (makrosvět) Částicová fyzika (mikrosvět) Kosmické záření Objev kosmického záření 1896: Objev radioaktivity
Cesta do nitra Slunce
Cesta do nitra Slunce Jeden den s fyzikou MFF UK, 7. 2. 2013 Michal Švanda Astronomický ústav MFF UK Chytří lidé řekli Už na první pohled se zdá, že vnitřek Slunce a hvězd je méně dostupný vědeckému zkoumání