4. Elektronické logické členy. Elektronické obvody pro logické členy
|
|
- Tadeáš Špringl
- před 6 lety
- Počet zobrazení:
Transkript
1 4. Elektronické logické členy Kombinační a sekvenční logické funkce a logické členy Elektronické obvody pro logické členy Polovodičové paměti 1
2 Kombinační logické obvody Způsoby zápisu logických funkcí: Pravdivostní tabulka Graficky v rovině Matematický aparát Booleova algebra nauka o operacích na množině 0,1 Booleova algebra užívá tři základní operace: Logický (Booleův) součin AND. Logický (Booleův) součet OR + Negace NOT 2
3 Pravdivostní tabulka a b a + b a. b NOT a
4 Pravdivostní tabulka obecná funkce tří proměnných a b c y
5 Karnaughova mapa 5
6 Zápis obecné funkce v Karnaughově mapě a b c y a 1 0 c 0 0 b 6
7 Zákony Booleovy algebry komutativní a + b = b + a, a.b = b.a asociativní (a + b) + c = a + (b + c), (a.b).c = a.(b.c) distributivní (a + b).c = a.c + b.c, a.b + c = (a + c).(b + c) o vyloučeném třetím a + a = 1, a.a = 0 o neutrálnosti nuly a + 0 = a o neutrálnosti jedničky a.1 = a agresivity nuly a.0 = 0 agresivity jedničky a + 1 = 1 7
8 Zákony Booleovy algebry o idempotenci prvků a + a = a, a.a = a absorpce a + a.b = a absorpce negace a + a.b = a + b, a.(a + b) = a.b dvojité negace a = a De Morganovy zákony a.b = a + b, a + b = (a.b) 8
9 Rovnice Booleovy algebry a b c y a. a. a.b. y = a.b.c+a.b.c+a.b.c+a.b.c = (a+a).b.c+(b+b).a.c+(c+c).a.b = = b.c + a.b + a.c a. 9
10 Logické členy a y = a a y = a a y = a.b a y = a.b b b AND NAND y = a + b y = a + b y = a.b + a.b y = a.b + a.b a a a a b b b b OR NOR EXOR EXNOR 10
11 Realizace obecné funkce negacemi, součty a součiny, resp. podle De Morganových zákonů pouze obvody NAND y = a.b.c+a.b.c+a.bc+a.b.c = (a+a).b.c+(b+b).a.c+(c+c).a.b = = b.c + a.b + a.c a a b b b.c b c c a.b y c a.c 11
12 Integrované kombinační logické funkce A B C D O0 O1 O2 O3 O4 O5 O6 O7 O8 O9 A B C D OA OB OC OD OE OF OG A1 A2 A3 A4 B1 B2 B3 B4 C0 S1 Y0 S2 Y1 S3 Y2 S4 Y3 C4 A0 LP A1 RP A2 EN A3 B0 X B1 OE B2 B3 A B C D O0 O1 O2 O3 O4 O5 O6 O7 O8 O9 A B C D OA OB OC OD OE OF OG A1 A2 A3 A4 B1 B2 B3 B4 C0 S1 S2 S3 S4 C4 Multiplexer Dekodér 1 z 10 Binární sčítačka Dekodér displeje 12
13 Činnost dekodéru 1 z 10 (s aktivní nulou na výstupu) A B C D O0 O1 O2 O3 O4 O5 O6 O7 O8 O9 13
14 Činnost úplné dvojkové sčítačky (jeden bit ve čtyřbitovém členu) =0 A1 A2 A3 A4 B1 B2 B3 B4 C0 S1 S2 S3 S4 C4 14
15 Sekvenční logické obvody Vlastnosti sekvenční funkce Elementární struktury sekvenčních obvodů Registry dat Dvojčinné klopné obvody Synchronní sekvenční obvody 16
16 Kombinační a sekvenční funkce a obvod a a a a b b b b c c c c d d d d e e e e f f f f g g g g h h h h y y y y t takt y komb (t) = f(a(t),... h(t) y sekv (t) = f(a(t),... h(t), y(t 1), a(t 1),... h(t 1),... //... y(t i), a(t i),... h(t i)) 17
17 Struktura sekvenčního obvodu t, t + 1, t + 2,... VSTUP KOMBINAÈNÍ OBVOD PAMÌ VÝSTUP 18
18 Binární pamět ové elementy klopný obvod RS sestavený z logických členů NAND S X1 Q S 1 R 1 Q Q Q Q X R Q
19 Binární pamět ové elementy klopný obvod D řízený logickou úrovní D Q D 0 T 0 Q Q Q Q T Q Q 1 Q 0 20
20 Binární pamět ové elementy klopný obvod D řízený přechodem mezi logickými úrovněmi (dvojčinný obvod) D S1 Q1 S3 Q2 T S2 S4 21
21 Schématické značky klopných obvodů D Řízený úrovní S hranou S D Q D Q T T Q Q R R 22
22 Posuvný registr SI CLK QA QB QC QD SI CLK QA QB QC QD CLK SI QA QB QC QD. 23
23 Obecný synchronní obvod s klopnými obvody D (generátor tří fází pro střídač) Zadání CLK Q1 Q2 Q3 24
24 Obecný synchronní obvod s klopnými obvody D (generátor tří fází pro střídač) Tabulka přechodů předpis pro vstupy D stav t stav t+ 1 Q1 Q2 Q3 D1 D2 D D1 = Q1.Q2.Q3 + Q1.Q2.Q3 + Q1.Q2.Q3 = Q2.(Q1 + Q3) D2 = Q3.(Q2 + Q1), D3 = Q1.(Q2 + Q3) 25
25 Obecný synchronní obvod s klopnými obvody D (generátor tří fází pro střídač) Obvod s klopnými obvody D LOG1 D S Q D S Q D S Q R R R TAKT RESET 0-> 1 Q1 Q2 Q3 26
26 Elektronické integrovené obvody pro logické členy Parametry integrovaných obvodů napájecí napětí, proudová spotřeba ze zdroje napájení napětí logických stavů na vstupu a výstupu obvodu proudová zatížitelnost výstupů elektrické parametry vstupů dynamické parametry zpoždění 28
27 Označení základních parametrů a jejich popis V CC napájecí napětí a jeho tolerance, V IH minimální napětí logické jedničky na vstupu, V IL maximální napětí logické nuly na vstupu, I OH maximální proud z výstupu logického členu do zátěže při výstupu v logické jedničce, I OL maximální proud ze zátěže do výstupu logického členu v logické nule, V OH minimální napětí logické jedničky na výstupu, V OL maximální napětí logické nuly na výstupu, C i vstupní kapacita jednoho vstupu, t pd doba zpoždění při přechodu z nuly do jedničky a naopak. 29
28 Napět ové úrovně pro logické stavy v logických členech (TTL s napájením 5 V, CMOS 5 V a CMOS 1,8 V). 5V V CC 5V V CC 4,44 V OH TTL 3,5 V IH CMOS 2,4 2,0 V OH V IH 1,8V V CC 0,8 0,4 0 V IL V OL 1,5 0,5 0 V IL V OL 1,2 1,17 0,7 0,45 0 V OH V IH V IL V OL. 30
29 Zatěžování výstupu logického členu 5,5 5,0 u OH [V] 4,5 4,0 3,5 3,0 0 7, , 5 u OL [V] 1,2 1,2 0,9 0,6 0, ,5 15 i OH [ma] 22, 5 i OL [ma] 31
30 Zpoždění výstupu logického členu + 5 V + 5 V u [V] 5,0 0,0 5,0 0,0 5,0 0, t t pdlh pdhl t pdlh t pdhl 0,0 20,0 40,0 60,0 80,0 t [ns] 32
31 Důsledky zpoždění v kombinačním obvodu a.b + c a.b a.b a b c y = a.b + c y 33
32 Vlastnosti obvodů v různých technologických rodinách bipolární technologie, CMOS technologie, BICMOS rodiny s různým napájecím napětím kompatibilita 34
33 Rodiny logicky ch obvodu 35
34 Vývoj napájecích napětí 5 V Logic 3.3 V Logic V Logic V Logic V Logic 1.2 V Logic 0.8 V Logic 36
35 Kompatibilita technologií 5V V CC 5V V CC 4.44 V OH 3.5 V IH 3.3V V CC 2.4 V OH 2.0 V IH 2.5 V t 2.4 V OH 2.0 V IH 2.5V V CC 2.3 V OH 1.8V V CC 1.5 V t 0.8 V IL 0.4 V OL 0 GND 1.7 V IH 1.5 V IL 1.5 V t 1.2 V OH 1.2 V 1.17 V t IH 0.9 V t 0.8 V IL 0.0 V 0.7 V IL IL O.5 V OL 0.4 V OL 0.45 V OL 0.2 V OL 0 GND 0 GND 0 GND 0 GND 5-V TTL 5-V CMOS 3.3-V LVTTL 2.5-V CMOS 1.8-V CMOS 37
36 Kompatibilita technologií Is V OH higher than V IH? Is V OL less than V IL? R D 5 TTL 5 CMOS 5 TTL Yes Yes 5 CMOS 3 LVTTL 2.5 CMOS 1.8 CMOS No Yes Yes* Yes* Yes* Yes* Yes* Yes* D R 3LVTTL 2.5 CMOS Yes Yes No No Yes Yes Yes* Yes Yes* Yes* 1.8 CMOS No No No No Yes* * Requires V IH Tolerance 38
37 Polovodičové paměti s adresovým přístupem Permanentní paměti ROM, PROM, EPROM, EEPROM, Flash Statické paměti RAM Dynamické paměti RAM Polovodičové paměti s časovým přístupem LIFO FIFO 39
38 40
39 Výběr pamět ového místa binární adresou sloupce (bitové vodiče) výběr řádku 1. část pamět o zesilovače 2. část adresa data 41
40 Výběr řádku a sloupce 42
41 43
42 ROM (PROM) a EPROM U+ U+ R R R R adresa x adresa x data data plovoucí hradlo 44
43 Konstrukce MOS struktury s plovoucím hradlem 45
44 Čtení dat z permanentní paměti V CC V PP 11 8 A0-A10 VALID A0-A10 tavqv taxqx Q0-Q7 EP EP M2716 tglqv tehqz G G telqv tghqz Q0-Q7 DATA OUT Hi-Z V SS 46
45 PAMĚTI RAM RWM Adresový přístup (RAM Random = nahodilý, libovolný, Access = přístup, Memory = pamět ) Zápis a čtení v elektronické pamět ové buňce (RWM Read, Write, Memory ) Pamět závislá na napájecím napětí (volatile data = prchavá data:-) PRINCIP ULOŽENÍ DAT statická RAM bistabilní klopný obvod dynamická RAM pamět ový kondenzátor 47
46 Pamět ová buňka statické paměti RAM bistabilní klopný obvod W U DD T2 T4 T5 Q Q T6 T1 T3 bit bit 48
47 Pamět ová buňka dynamické paměti RAM pamět ový kondenzátor se spínačem výběr C T data 49
48 Paměti s časovým (neadresovým) přístupem k datům 50
Struktura a architektura počítačů (BI-SAP) 10
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 10 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
Více12. Booleova algebra, logická funkce určitá a neurčitá, realizace logických funkcí, binární kódy pro algebraické operace.
12. Booleova algebra, logická funkce určitá a neurčitá, realizace logických funkcí, binární kódy pro algebraické operace. Logická proměnná - proměnná nesoucí logickou hodnotu Logická funkce - funkce přiřazující
VíceČíslicové obvody základní pojmy
Číslicové obvody základní pojmy V číslicové technice se pracuje s fyzikálními veličinami, které lze popsat při určité míře zjednodušení dvěma stavy. Logické stavy binární proměnné nabývají dvou stavů:
VíceDělení pamětí Volatilní paměti Nevolatilní paměti. Miroslav Flídr Počítačové systémy LS /11- Západočeská univerzita v Plzni
ělení pamětí Volatilní paměti Nevolatilní paměti Počítačové systémy Vnitřní paměti Miroslav Flídr Počítačové systémy LS 2006-1/11- Západočeská univerzita v Plzni ělení pamětí Volatilní paměti Nevolatilní
Více2. LOGICKÉ OBVODY. Kombinační logické obvody
Hardware počítačů Doc.Ing. Vlastimil Jáneš, CSc, K620, FD ČVUT E-mail: janes@fd.cvut.cz Informace a materiály ke stažení na WWW: http://www.fd.cvut.cz/personal/janes/hwpocitacu/hw.html 2. LOGICKÉ OBVODY
VíceArchitektura počítačů Logické obvody
Architektura počítačů Logické obvody http://d3s.mff.cuni.cz/teaching/computer_architecture/ Lubomír Bulej bulej@d3s.mff.cuni.cz CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics Digitální
VíceArchitektura počítačů Logické obvody
Architektura počítačů Logické obvody http://d3s.mff.cuni.cz/teaching/computer_architecture/ Lubomír Bulej bulej@d3s.mff.cuni.cz CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics 2/36 Digitální
VíceP4 LOGICKÉ OBVODY. I. Kombinační Logické obvody
P4 LOGICKÉ OBVODY I. Kombinační Logické obvody I. a) Základy logiky Zákony Booleovy algebry 1. Komutativní zákon duální forma a + b = b + a a. b = b. a 2. Asociativní zákon (a + b) + c = a + (b + c) (a.
VíceČíselné vyjádření hodnoty. Kolik váží hrouda zlata?
Čísla a logika Číselné vyjádření hodnoty Au Kolik váží hrouda zlata? Dekadické vážení Když přidám osmé závaží g, váha se převáží => závaží zase odeberu a začnu přidávat závaží x menší 7 závaží g 2 závaží
VíceSylabus kurzu Elektronika
Sylabus kurzu Elektronika 5. ledna 2004 1 Analogová část Tato část je zaměřena zejména na elektronické prvky a zapojení v analogových obvodech. 1.1 Pasivní elektronické prvky Rezistor, kondenzátor, cívka-
VíceZpůsoby realizace této funkce:
KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je výstup určen jen výhradně kombinací vstupních veličin. Hodnoty výstupních veličin nezávisejí na předcházejícím stavu logického obvodu, což znamená, že kombinační
VíceODBORNÝ VÝCVIK VE 3. TISÍCILETÍ MEII KOMBINAČNÍ LOGICKÉ OBVODY
Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Téma: MEII - 5.4.1 KOMBINAČNÍ LOGICKÉ OBVODY Obor: Mechanik elektronik Ročník: 2. Zpracoval(a): Jiří Kolář Střední průmyslová škola Uherský Brod, 2010 Projekt je
VíceObsah DÍL 1. Předmluva 11
DÍL 1 Předmluva 11 KAPITOLA 1 1 Minulost a současnost automatizace 13 1.1 Vybrané základní pojmy 14 1.2 Účel a důvody automatizace 21 1.3 Automatizace a kybernetika 23 Kontrolní otázky 25 Literatura 26
VíceLOGICKÉ ŘÍZENÍ. Matematický základ logického řízení
Měřicí a řídicí technika bakalářské studium - přednášky LS 28/9 LOGICKÉ ŘÍZENÍ matematický základ logického řízení kombinační logické řízení sekvenční logické řízení programovatelné logické automaty Matematický
VíceBinární logika Osnova kurzu
Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) Stabilita
VíceOVLÁDACÍ OBVODY ELEKTRICKÝCH ZAŘÍZENÍ
OVLÁDACÍ OBVODY ELEKTRICKÝCH ZAŘÍZENÍ Odlišnosti silových a ovládacích obvodů Logické funkce ovládacích obvodů Přístrojová realizace logických funkcí Programátory pro řízení procesů Akční členy ovládacích
VíceLogické proměnné a logické funkce
Booleova algebra Logické proměnné a logické funkce Logická proměnná je veličina, která může nabývat pouze dvou hodnot, označených 0 a I (tedy dvojková proměnná) a nemůže se spojitě měnit Logická funkce
VíceBooleova algebra. ZákonyBooleovy algebry Vyjádření logických funkcí
Booleova algebra ZákonyBooleovy algebry Vyjádření logických funkcí pravdivostní tabulka logický výraz seznam indexů vstupních písmen mapa vícerozměrná krychle 30-1-13 O. Novák 1 Booleova algebra Booleova
VíceZpůsoby realizace paměťových prvků
Způsoby realizace paměťových prvků Interní paměti jsou zapojeny jako matice paměťových buněk. Každá buňka má kapacitu jeden bit. Takováto buňka tedy může uchovávat pouze hodnotu logická jedna nebo logická
VíceLogické funkce a obvody, zobrazení výstupů
Logické funkce a obvody, zobrazení výstupů Digitální obvody (na rozdíl od analogových) využívají jen dvě napěťové úrovně, vyjádřené stavy logické nuly a logické jedničky. Je na nich založeno hodně elektronických
VíceKOMBINAČNÍ LOGICKÉ OBVODY
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je vstup určen jen výhradně kombinací vstupních veličin. Hodnoty
VíceParametry pamětí vybavovací doba (tj. čas přístupu k záznamu v paměti) = 10 ns ms rychlost toku dat (tj. počet přenesených bitů za sekundu)
Paměti Parametry pamětí vybavovací doba (tj. čas přístupu k záznamu v paměti) = 10 ns...100 ms rychlost toku dat (tj. počet přenesených bitů za sekundu) kapacita paměti (tj. počet bitů, slabik, slov) cena
VíceZáklady číslicové techniky. 2 + 1 z, zk
Základy číslicové techniky 2 + 1 z, zk Ing. Vít Fábera, K614 e-mail: fabera@fd.cvut.cz K508, 5. patro, laboratoř, 2 2435 9555 Ing. Tomáš Musil, Ph.D., K620 e-mail: musil@asix.cz K508, 5. patro, laboratoř,
VíceLOGICKÉ ŘÍZENÍ. Matematický základ logického řízení. N Měřicí a řídicí technika 2012/2013. Logické proměnné
N4444 Měřicí a řídicí technika 22/23 LOGICKÉ ŘÍZENÍ matematický základ logického řízení kombinační logické řízení sekvenční logické řízení programovatelné logické automat Matematický základ logického řízení
VíceDigitální obvody. Doc. Ing. Lukáš Fujcik, Ph.D.
Digitální obvody Doc. Ing. Lukáš Fujcik, Ph.D. Základní invertor v technologii CMOS dva tranzistory: T1 vodivostní kanál typ N T2 vodivostní kanál typ P při u VST = H nebo L je klidový proud velmi malý
VícePaměti počítače ROM, RAM
Paměti počítače ROM, RAM Paměť je zařízení, které slouží k ukládání programů a dat, s nimiž počítač pracuje. Paměti počítače lze rozdělit do tří základních skupin: registry paměťová místa na čipu procesoru
VícePaměti. Paměť je zařízení, které slouží k ukládání programů a dat, s nimiž počítač pracuje
Paměti Paměť je zařízení, které slouží k ukládání programů a dat, s nimiž počítač pracuje Paměti počítače lze rozdělit do tří základních skupin: registry paměťová místa na čipu procesoru jsou používány
VíceStruktura a architektura počítačů (BI-SAP) 4
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 4 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
VícePaměť počítače. 0 (neprochází proud) 1 (prochází proud)
Paměť počítače Paměť je nezbytnou součástí jakéhokoli počítače. Slouží k uložení základních informací počítače, operačního systému, aplikačních programů a dat uživatele. Počítače jsou vybudovány z bistabilních
VíceMultimetr: METEX M386OD (použití jako voltmetr V) METEX M389OD (použití jako voltmetr V nebo ampérmetr A)
2.10 Logické Obvody 2.10.1 Úkol měření: 1. Na hradle NAND změřte tyto charakteristiky: Převodní charakteristiku Vstupní charakteristiku Výstupní charakteristiku Jednotlivá zapojení nakreslete do protokolu
VícePROGRAMOVATELNÉ LOGICKÉ OBVODY
PROGRAMOVATELNÉ LOGICKÉ OBVODY (PROGRAMMABLE LOGIC DEVICE PLD) Programovatelné logické obvody jsou číslicové obvody, jejichž logická funkce může být programována uživatelem. Výhody: snížení počtu integrovaných
VíceCílem kapitoly je seznámit studenta s pamětmi. Jejich minulostí, současností a hlavnímu parametry.
Paměti Cílem kapitoly je seznámit studenta s pamětmi. Jejich minulostí, současností a hlavnímu parametry. Klíčové pojmy: paměť, RAM, rozdělení pamětí, ROM, vnitřní paměť, vnější paměť. Úvod Operační paměť
VíceVY_32_INOVACE_CTE_2.MA_04_Aritmetické operace v binární soustavě Střední odborná škola a Střední odborné učiliště, Dubno Ing.
Číslo projektu Číslo materiálu Náev škol Autor Tematická oblast Ročník CZ..7/.5./34.58 VY_32_INOVACE_CTE_2.MA_4_Aritmetické operace v binární soustavě Střední odborná škola a Střední odborné učiliště,
VíceVÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu
VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632
VíceY36SAP 2007 Y36SAP-4. Logické obvody kombinační a sekvenční používané v číslicovém počítači Sčítačka, půlsčítačka, registr, čítač
Y36SAP 27 Y36SAP-4 Logické obvody kombinační a sekvenční používané v číslicovém počítači Sčítačka, půlsčítačka, registr, čítač 27-Kubátová Y36SAP-Logické obvody typické Často používané funkce Majorita:
VícePaměti počítače 9.přednáška
Paměti počíta tače 9.přednáška Paměť Paměť je zařízení, které slouží k ukládání programů a dat, s nimiž počítač pracuje Paměti počítače lze rozdělit do tří základních skupin: registry paměťová místa na
VíceKlopný obvod typu D, dělička dvěma, Johnsonův kruhový čítač
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Klopný obvod typu D, dělička dvěma, Johnsonův kruhový čítač (Řídící elektronika BREB) Autoři textu: doc. Dr. Ing. Miroslav
VíceZkouškové otázky z A7B31ELI
Zkouškové otázky z A7B31ELI 1 V jakých jednotkách se vyjadřuje napětí - uveďte název a značku jednotky 2 V jakých jednotkách se vyjadřuje proud - uveďte název a značku jednotky 3 V jakých jednotkách se
VíceStruktura a architektura počítačů (BI-SAP) 3
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 3 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
VíceKOMBINAČNÍ LOGICKÉ OBVODY
KOMBINAČNÍ LOGICKÉ OBVODY Použité zdroje: http://cs.wikipedia.org/wiki/logická_funkce http://www.ibiblio.org http://martin.feld.cvut.cz/~kuenzel/x13ups/log.jpg http://www.mikroelektro.utb.cz http://www.elearn.vsb.cz/archivcd/fs/zaut/skripta_text.pdf
VícePaměťové prvky. ITP Technika personálních počítačů. Zdeněk Kotásek Marcela Šimková Pavel Bartoš
Paměťové prvky ITP Technika personálních počítačů Zdeněk Kotásek Marcela Šimková Pavel Bartoš Vysoké učení technické v Brně, Fakulta informačních technologií v Brně Božetěchova 2, 612 66 Brno Osnova Typy
VíceY36SAP Y36SAP-2. Logické obvody kombinační Formy popisu Příklad návrhu Sčítačka Kubátová Y36SAP-Logické obvody 1.
Y36SAP 26.2.27 Y36SAP-2 Logické obvody kombinační Formy popisu Příklad návrhu Sčítačka 27-Kubátová Y36SAP-Logické obvody Logický obvod Vstupy a výstupy nabývají pouze hodnot nebo Kombinační obvod popsán
VíceŽáci mají k dispozici pracovní list. Formou kolektivní diskuze a výkladu si osvojí způsoby algebraické minimalizace a využití Booleovy algebry
Číslo projektu Číslo materiálu Náev školy Autor Náev Téma hodiny Předmět Ročník /y/ CZ..07/.5.00/4.04 VY INOVACE_8_ČT_.08_ algebraická minimaliace Střední odborná škola a Střední odborné učiliště, Hustopeče,
Více1 z 16 11.5.2009 11:33 Test: "CIT_04_SLO_30z50" Otázka č. 1 U Mooreova automatu závisí okamžitý výstup Odpověď A: na okamžitém stavu pamětí Odpověď B: na minulém stavu pamětí Odpověď C: na okamžitém stavu
Vícemové techniky budov Osnova Základy logického Druhy signálů
Základy Systémov mové techniky budov Základy logického řízení Ing. Jan Vaňuš N 716 tel.: 59 699 1509 email: jan.vanus vanus@vsb.czvsb.cz http://sweb sweb.cz/jan.vanus Druhy signálů, Osnova, základní dělení
VíceSEKVENČNÍ LOGICKÉ OBVODY
Sekvenční logický obvod je elektronický obvod složený z logických členů. Sekvenční obvod se skládá ze dvou částí kombinační a paměťové. Abychom mohli určit hodnotu výstupní proměnné, je potřeba u sekvenčních
VíceHardware počítačů. Architektura počítačů Paměti počítačů Aritmetika - ALU Řadič
Hardware počítačů Architektura počítačů Paměti počítačů Aritmetika - ALU Řadič 5. Paměťový systém počítače Paměť je důležitou součástí počítače, procesor si s ní neustále vyměňuje data. vnitřní paměť =
VíceOtázka 10 - Y36SAP. Zadání. Logické obvody. Slovníček pojmů. Základní logické členy (hradla)
Otázka 10 - Y36SAP Zadání Logické obvody. Logické funkce, formy jejich popisu. Kombinační obvody a jejich návrh. Sekvenční systém jako konečný automat. Synchronní a asynchronní sekvenční obvody a jejich
VíceTechnická kybernetika. Obsah. Klopné obvody: Použití klopných obvodů. Sekvenční funkční diagramy. Programovatelné logické automaty.
Akademický rok 2016/2017 Připravil: adim Farana Technická kybernetika Klopné obvody, sekvenční funkční diagramy, programovatelné logické automaty 2 Obsah Klopné obvody:. D. JK. Použití klopných obvodů.
Více2.7 Binární sčítačka. 2.7.1 Úkol měření:
2.7 Binární sčítačka 2.7.1 Úkol měření: 1. Navrhněte a realizujte 3-bitovou sčítačku. Pro řešení využijte dílčích kroků: pomocí pravdivostní tabulky navrhněte a realizujte polosčítačku pomocí pravdivostní
Více4.2 Paměti PROM - 87 - NiCr. NiCr. Obr.140 Proudy v naprogramovaném stavu buňky. Obr.141 Princip PROM. ADRESOVÝ DEKODÉR n / 1 z 2 n
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
VíceDUM č. 10 v sadě. 31. Inf-7 Technické vybavení počítačů
projekt GML Brno Docens DUM č. 10 v sadě 31. Inf-7 Technické vybavení počítačů Autor: Roman Hrdlička Datum: 04.12.2013 Ročník: 1A, 1B, 1C Anotace DUMu: jak fungují vnitřní paměti, typy ROM a RAM pamětí,
VíceBDIO - Digitální obvody
BIO - igitální obvody Ústav Úloha č. 6 Ústav mikroelektroniky ekvenční logika klopné obvody,, JK, T, posuvný registr tudent Cíle ozdíl mezi kombinačními a sekvenčními logickými obvody. Objasnit principy
Více3. Sekvenční logické obvody
3. Sekvenční logické obvody 3. Sekvenční logické obvody - úvod Sledujme chování jednoduchého logického obvodu se zpětnou vazbou 3. Sekvenční logické obvody příklad sekv.o. Příklad sledování polohy vozíku
VíceÚvod do informačních technologií
Úvod do informačních technologií Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Binární logika Jan Outrata (Univerzita Palackého v Olomouci) Úvod do informačních technologií
VíceVyužití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/
Střední odborná škola elektrotechnická, Centrum odborné přípravy Zvolenovská 537, Hluboká nad Vltavou Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/34.0448 CZ.1.07/1.5.00/34.0448 1 Číslo projektu
VíceUniverzita Tomáše Bati ve Zlíně
Univerzita Tomáše Bati ve Zlíně Ústav elektrotechniky a měření Struktura logických obvodů Přednáška č. 10 Milan Adámek adamek@ft.utb.cz U5 A711 +420576035251 Struktura logických obvodů 1 Struktura logických
VíceMiroslav Flídr Počítačové systémy LS 2006-1/21- Západočeská univerzita v Plzni
Počítačové systémy Vnitřní paměti Miroslav Flídr Počítačové systémy LS 2006-1/21- Západočeská univerzita v Plzni Hierarchire pamětí Miroslav Flídr Počítačové systémy LS 2006-2/21- Západočeská univerzita
VíceCíle. Teoretický úvod. BDIO - Digitální obvody Ústav mikroelektroniky Základní logická hradla, Booleova algebra, De Morganovy zákony Student
Předmět Ústav Úloha č. DIO - Digitální obvody Ústav mikroelektroniky Základní logická hradla, ooleova algebra, De Morganovy zákony Student Cíle Porozumění základním logickým hradlům NND, NOR a dalším,
VíceMĚŘENÍ Laboratorní cvičení z měření Měření parametrů logického obvodu část Teoretický rozbor
MĚŘENÍ Laboratorní cvičení z měření část 3-6-1 Teoretický rozbor Výukový materiál Číslo projektu: CZ.1.07/1.5.00/34.0093 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 1 Číslo materiálu:
VíceBooleovská algebra. Booleovské binární a unární funkce. Základní zákony.
Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz
VíceMaturitní témata oboru: L/01 MECHANIK ELEKTROTECHNIK. Automatizované systémy řízení
Maturitní témata oboru: 26-41-L/01 MECHANIK ELEKTROTECHNIK Automatizované systémy řízení 1) PLC automaty a jejich druhy, smysl a funkce, nutný software 2) Propojení vstupních a výstupních prvků s PLC 3)
VíceÚvod do informačních technologií
Úvod do informačních technologií přednášky Jan Outrata září prosinec 2009 (aktualizace září prosinec 2012) Jan Outrata (KI UP) Úvod do informačních technologií září prosinec 2012 1 / 58 Binární logika
VícePaměti EEPROM (1) Paměti EEPROM (2) Paměti Flash (1) Paměti EEPROM (3) Paměti Flash (2) Paměti Flash (3)
Paměti EEPROM (1) EEPROM Electrically EPROM Mají podobné chování jako paměti EPROM, tj. jedná se o statické, energeticky nezávislé paměti, které je možné naprogramovat a později z nich informace vymazat
VíceNeuronové sítě Minimalizace disjunktivní normální formy
Neuronové sítě Minimalizace disjunktivní normální formy Zápis logické funkce Logická funkce f : {0, 1} n {0, 1} Zápis základní součtový tvar disjunktivní normální forma (DNF) základní součinový tvar konjunktivní
VíceZáklady číslicové techniky z, zk
Základy číslicové techniky 2 + 1 z, zk Doc. Ing. Vlastimil Jáneš, CSc., K620 e-mail: janes@fd.cvut.cz K508, 5. patro, laboratoř, 2 2435 9555 Ing. Vít Fábera, K614 e-mail: fabera@fd.cvut.cz K508, 5. patro,
VíceBISTABILNÍ KLOPNÉ OBVODY, ČÍTAČE
BISTABILNÍ KLOPNÉ OBVODY, ČÍTAČE Úvod Účelem úlohy je seznámení s funkcemi a zapojeními několika sekvenčních logických obvodů, s tzv. bistabilními klopnými obvody a čítači. U logických obvodů se často
VíceLogické řízení. Náplň výuky
Logické řízení Logické řízení Náplň výuky Historie Logické funkce Booleova algebra Vyjádření Booleových funkcí Minimalizace logických funkcí Logické řídicí obvody Blokové schéma Historie Číslicová technika
VíceODBORNÝ VÝCVIK VE 3. TISÍCILETÍ. MEIII Paměti konstant
Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Téma: MEIII - 1.5 Paměti konstant Obor: Mechanik elektronik Ročník: 3. Zpracoval(a): Jiří Kolář Střední průmyslová škola Uherský Brod, 2010 Projekt je spolufinancován
VícePROTOKOL O LABORATORNÍM CVIČENÍ
STŘENÍ PRŮMYSLOVÁ ŠKOL V ČESKÝH UĚJOVIÍH, UKELSKÁ 3 ÚLOH: ekodér binárního kódu na sedmisegmentový displej 0.. Zadání PROTOKOL O LORTORNÍM VIČENÍ Navrhněte a realizujte dekodér z binárního kódu na sedmisegmentovku.
VíceSekvenční logické obvody
Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory
VíceDIGITÁLN LNÍ OBVODY A MIKROPROCESORY 1. ZÁKLADNÍ POJMY DIGITÁLNÍ TECHNIKY
DIGITÁLN LNÍ OBVODY A MIKROPROCESORY BDOM Prof. Ing. Radimír Vrba, CSc. Doc. Ing. Pavel Legát, CSc. Ing. Radek Kuchta Ing. Břetislav Mikel Ústav mikroelektroniky FEKT VUT @feec.vutbr.cz
VícePROTOKOL O LABORATORNÍM CVIČENÍ
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ Provedl: Jan Kotalík Datum: 3.1. 2010 Číslo: Kontroloval/a Datum: 1. ÚLOHA: Návrh paměti Pořadové číslo žáka:
VícePaměti Josef Horálek
Paměti Josef Horálek Paměť = Paměť je pro počítač životní nutností = mikroprocesor z ní čte programy, kterými je řízen a také do ní ukládá výsledky své práce = Paměti v zásadě můžeme rozdělit na: = Primární
VíceMikroprocesorová technika a embedded systémy. doc. Ing. Tomáš Frýza, Ph.D.
Ústav radioelektroniky Vysoké učení technické v Brně Polovodičové paměti Mikroprocesorová technika a embedded systémy Přednáška 9 doc. Ing. Tomáš Frýza, Ph.D. listopad 2012 Obsah přednášky Dělení polovodičových
VíceÚloha 9. Stavové automaty: grafická a textová forma stavového diagramu, příklad: detektory posloupností bitů.
Úloha 9. Stavové automaty: grafická a textová forma ového diagramu, příklad: detektory posloupností bitů. Zadání 1. Navrhněte detektor posloupnosti 1011 jako ový automat s klopnými obvody typu. 2. Navržený
VíceNe vždy je sběrnice obousměrná
PAMĚTI Ne vždy je sběrnice obousměrná Paměti ROM (Read Only Memory) určeny pouze pro čtení informací. Informace jsou do těchto pamětí pevně zapsány při jejich výrobě a potom již není možné žádným způsobem
VíceMODERNIZACE VÝUKY PŘEDMĚTU ELEKTRICKÁ MĚŘENÍ
Projekt: MODERNIZCE VÝUK PŘEDMĚTU ELEKTRICKÁ MĚŘENÍ Úloha: Měření kombinačních logických funkcí kombinační logický obvod XOR neboli EXLUSIV OR Obor: Elektrikář slaboproud Ročník: 3. Zpracoval: Ing. Jiří
VíceProjekt Pospolu. Sekvenční logické obvody Klopné obvody. Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jiří Ulrych.
Projekt Pospolu Sekvenční logické obvody Klopné obvody Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jiří Ulrych. Rozlišujeme základní druhy klopných sekvenčních obvodů: Klopný obvod
VíceMĚŘENÍ HRADLA 1. ZADÁNÍ: 2. POPIS MĚŘENÉHO PŘEDMĚTU: 3. TEORETICKÝ ROZBOR. Poslední změna
MĚŘENÍ HRADLA Poslední změna 23.10.2016 1. ZADÁNÍ: a) Vykompenzujte sondy potřebné pro připojení k osciloskopu b) Odpojte vstupy hradla 1 na přípravku a nastavte potřebný vstupní signál (Umax, Umin, offset,
VíceCílem kapitoly je seznámit studenta s pamětmi. Jejich minulostí, současností, budoucností a hlavními parametry.
Paměti Cílem kapitoly je seznámit studenta s pamětmi. Jejich minulostí, současností, budoucností a hlavními parametry. Klíčové pojmy: paměť, RAM, rozdělení pamětí, ROM, vnitřní paměť, vnější paměť. Úvod
Více1 Paměť a číselné soustavy
Úvod 1 Paměť a číselné soustavy Počítač používá různé typy pamětí. Odlišují se svou funkcí, velikostí, rychlostí zápisu a čtení, schopností udržet data v paměti. Úkolem paměti je zpřístupňovat data dle
Více5. Sekvenční logické obvody
5. Sekvenční logické obvody 3. Sekvenční logické obvody - úvod Sledujme chování jednoduchého logického obvodu se zpětnou vazbou 3. Sekvenční logické obvody - příklad asynchronního sekvenčního obvodu 3.
VíceL A B O R A T O R N Í C V I Č E N Í
Univerzita Pardubice Ústav elektrotechniky a informatiky Pardubice, Studentská 95 L A B O R A T O R N Í C V I Č E N Í Příjmení Paar Číslo úlohy: 2 Jméno: Jiří Datum měření: 15. 5. 2007 Školní rok: 2006
VícePaměti EEPROM (1) 25/07/2006 1
Paměti EEPROM (1) EEPROM - Electrically EPROM Mají podobné chování jako paměti EPROM, tj. jedná se o statické, energeticky nezávislé paměti, které je možné naprogramovat a později z nich informace vymazat
VíceLOGICKÉ OBVODY J I Ř Í K A L O U S E K
LOGICKÉ OBVODY J I Ř Í K A L O U S E K Ostrava 2006 Obsah předmětu 1. ČÍSELNÉ SOUSTAVY... 2 1.1. Číselné soustavy - úvod... 2 1.2. Rozdělení číselných soustav... 2 1.3. Polyadcké číselné soustavy... 2
Více3. REALIZACE KOMBINAČNÍCH LOGICKÝCH FUNKCÍ
3. REALIZACE KOMBINAČNÍCH LOGICKÝCH FUNKCÍ Realizace kombinační logické funkce = sestavení zapojení obvodu, který ze vstupních proměnných vytvoří výstupní proměnné v souhlasu se zadanou logickou funkcí.
VíceSběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC
Informatika 2 Technické prostředky počítačové techniky - 2 Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Přednášky: středa 14 20 15 55 Spojení: e-mail: jan.skrbek@tul.cz 16 10 17 45 tel.: 48 535 2442 Obsah:
VíceRegistry a čítače část 2
Registry a čítače část 2 Vypracoval SOU Ohradní Vladimír Jelínek Aktualizace září 2012 Úvod Registry a čítače jsou častým stavebním blokem v číslicových systémech. Jsou založeny na funkci synchronních
VícePaměti Flash. Paměti Flash. Základní charakteristiky
Paměti Flash K.D. - přednášky 1 Základní charakteristiky (Flash EEPROM): Přepis dat bez mazání: ne. Mazání: po blocích nebo celý čip. Zápis: po slovech nebo po blocích. Typická životnost: 100 000 1 000
VíceSekvenční logické obvody
Sekvenční logické obvody Sekvenční logické obvody - úvod Sledujme chování jednoduchého logického obvodu se zpětnou vazbou Sekvenční obvody - paměťové členy, klopné obvody flip-flop Asynchronní klopné obvody
VíceČíselné soustavy: Druhy soustav: Počítání ve dvojkové soustavě:
Přednášející : Ing. Petr Haberzettl Zápočet : práce na doma hlavně umět vysvětlit Ze 120 lidí udělá maximálně 25 :D Literatura : Frištacký - Logické systémy Číselné soustavy: Nevyužíváme 10 Druhy soustav:
VíceVelmi zjednodušený úvod
Velmi zjednodušený úvod Výroková logika: A, B, C - výroky. Booleova algebra Výroky nabývají hodnot Pravdivý a Nepravdivý. C = A B A B Booleova algebra: a, b, c - logické (Booleovské) proměnné. Logické
Více1 z 9 9.6.2008 13:27
1 z 9 9.6.2008 13:27 Test: "TVY_KLO" Otázka č. 1 Převodníku je: kombinační logický obvod, který převádí jeden binární kód do druhého Odpověď B: obvod, pomocí kterého můžeme převádět číslo z jedné soustavy
VíceMinimalizace logické funkce
VYSOKÉ UČENÍ TEHNIKÉ V RNĚ FKULT ELEKTROTEHNIKY KOMUNIKČNÍH TEHNOLOGIÍ Ústav mikroelektroniky LORTORNÍ VIČENÍ Z PŘEDMĚTU Digitální integrované obvody Minimalizace logické funkce Michal Krajíček Martin
VíceInformační a komunikační technologie
Informační a komunikační technologie 7. www.isspolygr.cz Vytvořil: Ing. David Adamovský Strana: 1 Škola Integrovaná střední škola polygrafická Ročník Název projektu 1. ročník SOŠ Interaktivní metody zdokonalující
VíceDUM 02 téma: Elementární prvky logiky výklad
DUM 02 téma: Elementární prvky logiky výklad ze sady: 01 Logické obvody ze šablony: 01 Automatizační technika I Určeno pro 3. ročník vzdělávací obor: 26-41-M/01 Elektrotechnika ŠVP automatizační technika
VíceLOGICKÉ OBVODY 2 kombinační obvody, minimalizace
LOGICKÉ OBVODY 2 kombinační obvody, minimalizace logické obvody kombinační logické funkce a jejich reprezentace formy popisu tabulka, n-rozměrné krychle algebraický zápis mapy 9..28 Logické obvody - 2
VíceÚvod do počítačových architektur
Úvod do počítačových architektur T.Mainzer Úvod - analogový vs digitální počítač - analogový - (+) rychlost, (-) přesnost, opakovatelnost, specializovanost - digitální - (+) opakovatelnost, univerzálnost
Více