Fyzika a aplikace interakcí intenzivních femtosekundových laserových impulsů

Rozměr: px
Začít zobrazení ze stránky:

Download "Fyzika a aplikace interakcí intenzivních femtosekundových laserových impulsů"

Transkript

1 Fakultní kolokvium FJFI ČVUT 26. října 2011 Fyzika a aplikace interakcí intenzivních femtosekundových laserových impulsů J. Limpouch České vysoké učení technické v Praze, Fakulta jaderná a fyzikálně inženýrská, katedra fyzikální elektroniky

2 Obsah Vývoj intenzity laserového záření Princip zesilování femtosekundových impulsů Výkonové fs lasery, projekt ELI Ionizace optickým polem Generace vysokých harmonických, attosekundové impulsy K-α záření a rtg. difrakce s vysokým časovým rozlišením Urychlování elektronů, zdroje XUV a rtg. záření Urychlování iontů (protonů) Protonová deflektometrie, jaderné reakce Generace pozitronů Extrémní intenzity a nelineární QED

3 Vývoj intenzity laserového záření dnes 1 PeV Kvarková éra 1 TeV Pozitronelektronová éra 1 MeV Plazmová éra 1 ev Atomová éra Plná čára - vývoj intenzity dosažitelné fokuzací svazku o průřezu 1 cm 2, čárkovaná čára - intenzita dosažitelná zvětšením průřezu laserového svazku Limity při I L = W/cm 2 je elektrické pole rovné poli působícímu na elektron v atomu vodíku ( V/m) I L λ 2 = W/cm 2 μm 2 relativistická intenzita hybnost oscilujícího elektronu = m e c, amplituda a 0 = ee L /m e ωc 2 relativistic γ = 1+ a 0 Schwingerův limit - průraz vakua = tvorba párů elektronpozitron - I L = W/cm 2 (tunelování I L ~ W/cm 2 )

4 CPA = Chirped Pulse Amplification D. Strickland, G. Mourou 1985 zesilování čirpovaného pulsu mřížka Carrier : ω=ω 0 +βt mřížka Mřížky způsobí zpoždění závislé na frekvenci čirp = lineární změna frekvence, dω/dt = β (zde β <0) 100 fs STRETCHER kladný čirp čirpovaný výkonový laser na Nd:skle Minimální délka laserového pulsu: τ 1/Δν = 1/(2.5 THz) 400 fs KOMPRESOR záporný čirp ~400 fs 500 ps výkonový zesilovač kratší pulsy Titan-safírový laser - (λ 790 nm) - Δν=100 THz (Δν/ν= 0.1) minimální délka pulsu ~ 5 fs ~ 2 periody (obvykle u výkonových 30 fs)

5 OPCPA = Optical Parametric CPA Novější metoda generace femtosekundových impulsů - kombinace parametrického zesilování (OPA) a zesilování čirpovaného impulsu (CPA) Poprvé demonstrovaná v Litvě (Piskarkas et al., 1991), dále rozvíjena v RAL, UK I. Ross, P. Matoušek (absolvent KFE FJFI, fellow of RSC) OPA Čerpací vlna (pump) + signál se směšují na idler ω i =ω p -ω s ω pump ω signal e.g. BBO, LBO, KDP ω idler ω signal ω p = ω s + ω i jak signál tak i idler získávají energii (idler se využívá pro IČ λ 2 μm; 4 μm) OPA + CPA ω pump ω signal e.g. BBO, LBO, KDP ω idler ω signal velmi široké frekvenční pásmo (Δν 100 THz τ 10 fs) λ pump a λ signal jsou nezávislé žádná energie se neukladá v OPA mediu velmi kvaliní výstupní svazek KDP: lze velký krystal pro velké výkony

6 Titan-safírové lasery Malé fs lasery T 3 (table-top TW) Velký Ti:safírový fs laser 2x0.5 PW (RAL, UK) Lasery do 1 TW se vejdou na laboratorní stůl vlevo 0.1 TW / 10 Hz laser na KFE FJFI 3 krabice 120 x 60 cm, 2 zdroje pod stolem Lasery až 1 TW/1 khz, 10 TW/10 Hz či 100 TW/0.1 Hz Vpravo laserová místnost laseru Astra Gemini v RAL, UK, 2 svazky po 0.5 PW/ 0.05 Hz + lab. Astra + místnost napájení + lab. interakce

7 Fs neodymové lasery Petawatt laser 1 svazek laseru NOVA LLNL, 680 J/600 fs, 1x za 8 hodin, rok 1999 (rozebrán 2001) VULCAN petawatt RAL, UK, 500 J/500 fs FIREX-I Osaka, Japonsko, 4 svazky po 1 PW NIF 1 quad (4 svazky) plán fs pulsu (ARC advanced radiografic capability) Petal 1 PW quad, původně plán u laseru LIL, teď u LMJ Francie Projekt VULCAN 10 PW OPCPA čerpání Ti:safírového laseru energií laseru VULCAN pozastaven kvůli vládním škrtům Projekt HiPER přípravná fáze, rychlé zapálení inerciální fúze Laser NOVA Kompresor PW svazku laseru VULCAN

8 Extreme Light Infrastructure Evropský projekt (ESFRI) cílem použití extrémně výkonných laserů pro materiálový a fyzikální výzkum 4 pilíře ELI Beamlines Facility zdroje záření a částic Dolní Břežany (u Prahy), ČR, investice 270 M ELI Attosecond Physics Szeged, Maďarsko ELI Nuclear Physics Rumunsko ELI Extreme Physics rozhodnutí odloženo ERIC European Research Infrastructure Consortium nový typ Evropské právnické osoby

9 Schéma laboratoře ELI Beamlines Facility

10 Laser ELI-Beamlines Přesněji Dr. G. Korn, Kolokvium 9. listopadu kj/130 fs nebo 300J/30 fs Inovované schéma laseru obsahuje i svazek o vysoké energii 1.5 kj v 130 fs (případně 300 J/30 fs = 10 PW)

11 Ionizace optickým polem U ns laserových impulsů je rozhodujícím mechanismem srážková ionizace prostředí U fs laserových impulsů je podstatná ionizace optickým polem Energie fotonu hν << U i - 3 režimy mnohofotonová ionizace, tunelová ionizace, nadbariérová ionizace Keldyšův parametr K = U i /2U p, ponderomotorický potenciál U p = E osc = (ee 0 ) 2 /(4m e ω 2 ) Malé pole K>>1 mnohofotonová ionizace, velká pole K<<1 tunelová ionizace velmi rychlá Nadbariérová ionizace důležitá jen u impulsů < 10 fs Lineární (LP) polarizace elektron s E << U p, kruhová (CP) E ~ U p Schéma hladin atomu (iontu) (a) bez vnějšího pole (b) s elektrickým polem laseru - tunelová ionizace a nadbariérová (BSI) ionizace

12 Zdroje XUV záření - HHG Generace vysokých harmonických frekvencí v plynu (1992) proces o 3 krocích tunelová ionizace, urychlení volného elektronu a zpětná rekombinace při nárazu elektronu na iont Nefunguje pro kruhovou (CP) polarizaci nulová pravděpodobnost návratu elektronu k iontu, optimální lineární (LP) polarizace Maximální energie elektronu při srážce s iontem je 3.17 U p a tedy hω max = I p U p = I p I 14 λ μ2 [ev] (I 14 v W/cm 2, λ μ v μm ) Vzhledem k symetrii problému jsou vyzařovány jen liché harmonické Harmonické jsou koherentní synchronizované navzájem

13 Attosekundová fyzika Výběrem určité spektrální oblasti (frekvenčním filtrem) je generována posloupnost (train) attosekundových impulsů Pro jednotlivý attosekundový impuls je potřeba velmi krátký laserový puls (standardně ~ 2 periody) Fáze vlny musí být sychronizována s obálkou (CEP stabilizace) ELI attosecond physics plánována Maďarsko, Szegéd

14 Generace K-α záření K-α záření vzniká při zaplnění vakance (vytvořené např. srážkou s elektronem) ve vnitřní K-slupce elektronového obalu atomu elektronem z L-slupky ~200 fs X-ray impuls J. Limpouch et al., LPB 22 (2004), příklad pro W/cm 2, 120 fs, NTT BRL Japonsko

15 Ultrarychlá rentgenová difrakce Sub-ps rtg. impuls Schéma excitačně-sondovacího (pump-probe) měření rentgenovou difrakcí Vlevo snímek z první publikace z UCSD - C.W. Siders et al., Science 268 (1999), 1340 rozlišení 5 ps/5μm (Cu K-α dublet) Nejlepší časové rozlišení - < 250 fs netermální tavení krystalu Díky možné khz opakovací frekvenci laseru lze i vratné změny

16 Urychlování elektronů Laserový svazek Elektronový svazek Nejběžnější wakefield urychlování (wake brázda vln za lodí) nutné relativistické intenzity První návrh T. Tajima, J.M. Dawson 1979 Urychlující elektrické pole 200 GV/m - v porovnání s 20 MV/m v konvenčních radiofrekvenčních urychlovačích - takže 1 m místo 10 km - CERN na stole Je možná větší hustota proudu, kratší puls Wakefield urychlovač Když se krátký laserový puls šíří v řídkém (podkritickém) plazmatu, elektrony jsou posunuty ponderomotorickou silou od iontů a tak po průchodu laserového pulsu zůstává silná podélná plazmová vlna, elektrony letící rychlostí blízkou fázové rychlosti plazmové vlny jsou urychlovány podélným elektrickým polem

17 Monoenergetické elektronové svazky Urychlovací délka zvětšení samokanálováním laserového pulsu nebo externě například vedením v kapiláře Velmi dobré směrové charakteristiky, původně široké energetické spektrum Průlom bublinový (bubble) režim (předpovězený v 3D částicovými PIC simulacemi A. Pukhov) Nature 2004 Dream Beams - 3 nezávislé skupiny experimentálně vytvořily kvazimonoenergetické elektronové svazky urychlené laserem Dnes až ~1 GeV, rozptyl energie ~ 1%, > 10 nc, emittance π mm mrad, shluk (bunch) < 10 fs Nahoře schéma urychlování v bublině Uprostřed hustota elektronů 3D částicová simulace Dole vypočtené (zeleně) a naměřené (modře) spektrum urychlených elektronů - Laser 1J, W/cm 2, 30 fs, plynová tryska He, 20 nc v oblasti 170±20 MeV

18 Vizualizace laserové brázdy (wake) Holografie ve frekvenční doméně Donget al Ve směru průchodu čerpacího pulsu procházejí 2 čirpované pulsy referenční a se zpožděním Δτ shodný sondovací, na spektrometru vzniká síť proužků s rozestupem Δν = 1/Δτ, generace wake čerpacím pulsem způsobí deformaci proužků

19 Stolní laser na volných elektronech (laserem urychlených) Elektrony 5 pc Modrá spektrum urychlených elektronů, červená odezva magnet. čoček, zelená elektrony v undulátoru První experiment laser v XUV oblasti, 2009, M. Fuchs et al., Nature Phys. V budoucnu (ELI?) elektrony 2 GeV, 1 nc FEL s 5 kev fotony, 5 fs rentgenový impuls, ~ fotonů, špičkový jas ph/(s mm² mrad² 0.1% bw)

20 Stolní synchrotronový rtg. zdroj Elektrony v bublině kmitají i napříč betatronové oscilace Přímo v bublinovém režimu tedy vzniká wiggler Je vyzařováno prostorově koherentní tvrdé rentgenové záření se širokým spektrem Spektrum rentgenového záření pro laser 2 J, 30 fs fokuzovaný na plynovou trysku He produkující elektronový svazek 200 pc, 200 MeV, vpravo simulace bubliny a pohybu elektronů v ní, dole rentgenový snímek 20 μm Ag folie z 1 výstřelu rozlišení 3 μm

21 Zvýšení frekvence a intensity relativistickým plazmovým zrcadlem Návrh S.V. Bulanov et al., Phys. Rev. Lett. 91 (2003) Exp. - M. Kando et al., PRL 103 (2009) Wakefield jako fokusující plazmové zrcadlo

22 Urychlování iontů Pro urychlování iontů se většinou používají terče o hustotě pevné fáze Nejčastěji tenké folie, ale také mikrokapky, malé časti fólie, klastry apod. Vlevo princip TNSA (target normal sheath acceleration) urychlování kolmo k terči v elektrické dvojvrstvě intenzivní lineárně polarizované záření generuje na přední straně fólie rychlé elektrony, které proletí do vakua na zadní straně folie a vytváří silné elektrostatické pole urychlující ionty (protony) Vpravo urychlování radiačním tlakem družice hnaná tlakem záření slunce Projekt družice LightSail 1

23 Lineární x kruhová polarizace záření Lineární polarizace (LP) Kruhová polarizace (CP) 1D3V PIC simulace, 1, W/cm 2, λ = 0,8 μm, délka na ½ maxima 100 fs (= 37,5τ), max. v 40τ, kolmý dopad, 32 nm fólie, C 6+, iontová hustota 3, cm -3 O. Klimo, J. Psikal, J. Limpouch, V.T. Tikhonchuk, Phys. Rev. ST-Accel.&Beams 11 (2008) U CP chybí 2ω 0 komponenta ponderomotorické síly LP elektrony až 10 MeV vedou k expanzi fólie až k transparentnosti CP elektrony do 0,5 MeV, fólie urychlována jako celek

24 Urychlování radiačním tlakem Generace monoenergetických iontových svazků CP laserem simulace 3 skupiny 2008 Robinson et al. (UK), Klimo et al., Phys. Rev. ST- AB, 108 citací ve WoS a Yan et al. (Čína) Folie musí být tenká (~ 10 nm), a tedy kontrast laseru velký (2x plazmové zrcadlo) Všechny ionty urychlovány na stejnou rychlost (výhodné pro těžší ionty) Energie iontů E ion ~(I L τ) 2, tedy velké I L výhodou, účinnost - η =2β/(1+β) 1 pro v c Problém okraje laserového svazku Experiment obtížný částečný úspěch Henig et al. 2009, MBI Berlín, 5x10 19 W/cm 2, 45 fs, k>10 11, 5.3 nm DLC fólie Monoenergetický svazek

25 Urychlování iontů -TNSA Libovolný terč - jsou urychlovány především protony z nečistot na povrchu terče, protože proton má největší q/m (náboj na jednotku hmoty) Široké spektrum s maximální energií, max. energie protonů 60 MeV (2000) nedávno 75 MeV, max. energie ~I L 1/2 Úhlový rozptyl klesá s energií (0.004 mm mrad), malá účinnost urychlování do nejvyšších energií (~10-4 ) Monoenergetické spektrum 2 skupiny Nature 2006 Schwoerer (Jena) PMMA tečka ( ,5 μm) na zadní straně fólie, W/cm 2, 80 fs

26 Zvýšení účinnosti TNSA Terče s omezenou hmotou Experiment kousky Au fólie 2 μm s proměnnou plochou, 350 fs, λ=529 nm, I L = W/cm 2, 6 μm, 45 S. Buffechoux, J. Psikal et al., Phys.Rev.Lett constant thickness variable surface (a) RCF with hole Magnetic spectrometer Terče s nanostrukturou na povrchu zvýší absorpci Simulace a návrh terčů O. Klimo et al., New J. Phys Terče příprava KFE FJFI (J. Proška) Exp. Probíhají v GIST, Korea a čas přidělen v CEA, Saclay 2012 laser 15 Au 2 µm thick Au 2 µm thick + 10 µm thick 0.1 n c nanofoam upfront 10 5 (b) Surface (mm²) Au 2 µm thick Au 2 µm thick + 10 µm thick 0.1 n c nanocloth upfront Surface (mm²) 1 10 Monovrstva nanokuliček 900 a 266 nm na 0.1 μm fólii Simulace závislost max. energie protonů a účinnosti urychlení na poloměru kuliček

27 Protonová deflektometrie Elektrická a magnetická pole v plazmatu jsou detegována pomocí laserem urychlených protonů s rozlišením ~1 ps, 1 μm (M. Borghesi, QUB) V dané desce protony o dané energii a tedy s daným zpožděním

28 Aplikace urychlených iontů Generace horké husté hmoty (Warm Dense Matter) a její výzkum Studium brždění iontů v hustém plazmatu Intenzivní zdroj pro materiálový a biologický výzkum Příprava radioizotopů pro PET, jaderná fyzika Hadronová terapie v onkologii (extrémní nároky na iontový svazek) Neutronový bodový zdroj >10 9 s -1 Příprava PET izotopu 11 C laserem

29 Generace pozitronů Bethe-Heitlerův proces γ-fotony brzdného záření generují při srážce s těžkým jádrem elektron-pozitronový pár Trojný (trident) proces elektron-pozitronový pár je generován přímo při srážce elektronu s Coulombovým polem těžkého jádra Schéma Bethe-Heitlerova procesu Elektronové a pozitronové spektrum při interakci 1 ps impulsu o intenzitě W/cm 2 s ~mm tlustým Au terčem (laser Titan, LLNL), hustota pozitronů cm -3 (ELI cm -3 )

30 Extrémní intenzity a NL QED NL rozptyl fotonu na fotonu 1997 generace párů při interakci 46 GeV e - svazku SLAC s TW laserem inverzní Comptonův rozptyl + reakce γ + n ν L e - + e + Radiační útlum (I L > W/cm 2 ) oscilace elektronů v poli laseru tlumeny vyzařováním LAD rovnice (Landau- Lifšicova) rovnice Dvojlomnost vakua v přítomnosti magnetického pole se lineární polarizace změní na eliptickou ( T) 4-vlnová interkce ve vakuu Generace Unruhova záření Prověrka existence hypotetických částic axionů (v magnetickém poli se fotony mění na axiony, ty projdou tlustou vrstvou a změní se na registrovatelné fotony)

31 Závěr Intenzivní femtosekundové lasery otevírají nové možnosti pro fyzikální výzkum a aplikace Výstavba laboratoře ELI-Beamlines Facility je atraktivní příležitostí pro český výzkum a pro absolventy FJFI (kolokvium dr. G. Korn, FzÚ AV ČR) Děkuji za pozornost

Ultrakrátké intenzivní laserové impulzy. Týden vědy na FJFI, v Praze

Ultrakrátké intenzivní laserové impulzy. Týden vědy na FJFI, v Praze Ultrakrátké intenzivní laserové impulzy ELI BEAMLINES aneb co se skrývá za projektem ELI Jan Pšikal (jan.psikal@fjfi.cvut.cz) Týden vědy na FJFI, 20. 6. 2018 v Praze Fakulta jaderná a fyzikálně inženýrská

Více

Generace vysocevýkonných laserových impulzů a jejich aplikace

Generace vysocevýkonných laserových impulzů a jejich aplikace Generace vysocevýkonných laserových impulzů a jejich aplikace J. Pšikal FJFI ČVUT v Praze, katedra fyzikální elektroniky FZÚ AV ČR, projekt ELI-Beamlines jan.psikal@fjfi.cvut.cz Obsah přednášky: 1. Elektromagnetické

Více

Základy fyziky laserového plazmatu. Lekce 1 -lasery

Základy fyziky laserového plazmatu. Lekce 1 -lasery Základy fyziky laserového plazmatu Lekce 1 -lasery Co je světlo a co je laser? Laser(akronym Light Amplification by Stimulated EmissionofRadiation česky zesilování světla stimulovanou emisí záření) Je

Více

Interakce laserového impulsu s plazmatem v souvislosti s inerciální fúzí zapálenou rázovou vlnou

Interakce laserového impulsu s plazmatem v souvislosti s inerciální fúzí zapálenou rázovou vlnou Interakce laserového impulsu s plazmatem v souvislosti s inerciální fúzí zapálenou rázovou vlnou Autor práce: Petr Valenta Vedoucí práce: Ing. Ondřej Klimo, Ph.D. Konzultanti: prof. Ing. Jiří Limpouch,

Více

Mezinárodní laserové centrum. ELI Beamlines. Ing. Martin Přeček, Ph.D. Fyzikální ústav AV ČR, v. v. i. Date:

Mezinárodní laserové centrum. ELI Beamlines. Ing. Martin Přeček, Ph.D. Fyzikální ústav AV ČR, v. v. i. Date: Mezinárodní laserové centrum ELI Beamlines Ing. Martin Přeček, Ph.D. Fyzikální ústav AV ČR, v. v. i. Nejmodernější laserové technologie na světě Výzkumné a aplikační projekty zahrnující interakci světla

Více

Urychlovače částic principy standardních urychlovačů částic

Urychlovače částic principy standardních urychlovačů částic Urychlovače částic principy standardních urychlovačů částic Základní info technické zařízení, které dodává kinetickou energii částicím, které je potřeba urychlit nabité částice jsou v urychlovači urychleny

Více

Světlo jako elektromagnetické záření

Světlo jako elektromagnetické záření Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti

Více

Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou?

Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? 10/20/2004 1 Bethe Blochova formule (1) je maximální možná předaná energie elektronu N r e - vogadrovo čislo - klasický poloměr elektronu

Více

Bedřich Rus Fyzikální ústav AVČR, v.v.i. Praha 8. Mezinárodní laserové centrum ELI (Extreme Light Infrastrucure)

Bedřich Rus Fyzikální ústav AVČR, v.v.i. Praha 8. Mezinárodní laserové centrum ELI (Extreme Light Infrastrucure) Bedřich Rus Fyzikální ústav AVČR, v.v.i. Praha 8 Mezinárodní laserové centrum ELI (Extreme Light Infrastrucure) ELI: projekt nejintenzivnějšího laseru na světě Světeln telné pulsy s energií ~kj a délced

Více

Nepředstavitelně krátké laserové impulsy

Nepředstavitelně krátké laserové impulsy Nepředstavitelně krátké laserové impulsy (pokračování článku z Vesmír 92, 2/80, 2013) Hana Turčičová V tomto dodatečném článku si přiblížíme další fyzikální metody, které postupem let vedly ke zkrácení

Více

Theory Česky (Czech Republic)

Theory Česky (Czech Republic) Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider

Více

Zdroje optického záření

Zdroje optického záření Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon

Více

Návrh stínění a témata k řešení

Návrh stínění a témata k řešení Výzkumné laserové centrum ELI Beamlines Návrh stínění a témata k řešení Veronika Olšovcová, Mike Griffiths, Richard Haley, Lewis McFarlene, Bedřich Rus a ELI team Plánované pilíře ELI Site to be determined

Více

Optické spektroskopie 1 LS 2014/15

Optické spektroskopie 1 LS 2014/15 Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)

Více

Tajemství ELI - nejintenzivnějšího laseru světa

Tajemství ELI - nejintenzivnějšího laseru světa Tajemství ELI - nejintenzivnějšího laseru světa František Batysta Fakulta jaderná a fyzikálně inženýrská ČVUT Fyzikální ústav AV ČR 17. leden 2013 František Batysta Tajemství ELI - nejintenzivnějšího laseru

Více

Stručný úvod do spektroskopie

Stručný úvod do spektroskopie Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,

Více

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření Elektromagnetické záření lineárně polarizované záření Cirkulárně polarizované záření Levotočivé Pravotočivé 1 Foton Jakékoli elektromagnetické vlnění je kvantováno na fotony, charakterizované: Vlnovou

Více

TEZE K DISERTAČNÍ PRÁCI ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. Ing. Ondřej Novák

TEZE K DISERTAČNÍ PRÁCI ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. Ing. Ondřej Novák ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAE Ing. Ondřej Novák Optické parametrické zesilování čerpovaných impulsů v nelineárních krystalech čerpaných jódovým fotodisociačním laserem TEE K DISERTAČNÍ PRÁCI České

Více

Využití laserů ve vědě. Vojtěch Krčmarský

Využití laserů ve vědě. Vojtěch Krčmarský Využití laserů ve vědě Vojtěch Krčmarský Spektroskopie Vědní obor zabývající se měřením emise a absorpce záření Zakladatelé: Jan Marek Marci, Isaac Newton Spektroskopické metody poskytují informaci o struktuře

Více

Jaderná fúze. Jednotka pro globální spotřebu energie 1Q = 1.05 10 21 J 2000 Q ročně (malá hustota) Σ 1850 1950 - Σ 1950 2050 -

Jaderná fúze. Jednotka pro globální spotřebu energie 1Q = 1.05 10 21 J 2000 Q ročně (malá hustota) Σ 1850 1950 - Σ 1950 2050 - Jaderná fúze Problém energie Jednotka pro globální spotřebu energie 1Q = 1.05 10 21 J Slunce zem Světová spotřeba energie 2000 Q ročně (malá hustota) Zásoby uhlí ~100 Q, zásoby ropy do 1850 0.004 Q/rok

Více

INTERAKCE IONTŮ S POVRCHY II.

INTERAKCE IONTŮ S POVRCHY II. Úvod do fyziky tenkých vrstev a povrchů INTERAKCE IONTŮ S POVRCHY II. Metody IBA (Ion Beam Analysis): pružný rozptyl nabitých částic (RBS), detekce odražených atomů (ERDA), metoda PIXE, Spektroskopie rozptýlených

Více

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu Úvod do moderní fyziky lekce 3 stavba a struktura atomu Vývoj představ o stavbě atomu 1904 J. J. Thomson pudinkový model atomu 1909 H. Geiger, E. Marsden experiment s ozařováním zlaté fólie alfa částicemi

Více

Fyzika laserů. 4. dubna Katedra fyzikální elektroniky.

Fyzika laserů. 4. dubna Katedra fyzikální elektroniky. Fyzika laserů Přitahováni frekvencí. Spektrum laserového záření. Modelocking Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 4. dubna 2013 Program přednášek 1.

Více

Laserová technika prosince Katedra fyzikální elektroniky.

Laserová technika prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program

Více

Fyzika II, FMMI. 1. Elektrostatické pole

Fyzika II, FMMI. 1. Elektrostatické pole Fyzika II, FMMI 1. Elektrostatické pole 1.1 Jaká je velikost celkového náboje (kladného i záporného), který je obsažen v 5 kg železa? Předpokládejme, že by se tento náboj rovnoměrně rozmístil do dvou malých

Více

Základy spektroskopie a její využití v astronomii

Základy spektroskopie a její využití v astronomii Ing. Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Základy spektroskopie a její využití v astronomii Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Světlo x záření Jak vypadá spektrum?

Více

Za hranice současné fyziky

Za hranice současné fyziky Za hranice současné fyziky Zásadní změny na počátku 20. století Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Fyzika atomu - model atomu struktura elektronového obalu atomu z hlediska energie atomu - stavba atomového jádra; základní nukleony

Více

Princip metody Transport částic Monte Carlo v praxi. Metoda Monte Carlo. pro transport částic. Václav Hanus. Koncepce informatické fyziky, FJFI ČVUT

Princip metody Transport částic Monte Carlo v praxi. Metoda Monte Carlo. pro transport částic. Václav Hanus. Koncepce informatické fyziky, FJFI ČVUT pro transport částic Koncepce informatické fyziky, FJFI ČVUT Obsah Princip metody 1 Princip metody Náhodná procházka 2 3 Kódy pro MC Příklady použití Princip metody Náhodná procházka Příroda má náhodný

Více

1 Zadání. 2 Úvod. Název a číslo úlohy 9 - Nelineární jevy v ultrarychlé optice. Měření provedli Jan Fait, Marek Vlk Vypracoval

1 Zadání. 2 Úvod. Název a číslo úlohy 9 - Nelineární jevy v ultrarychlé optice. Měření provedli Jan Fait, Marek Vlk Vypracoval Název a číslo úlohy 9 - Nelineární jevy v ultrarychlé optice Datum měření 30.11.2015 Měření provedli Jan Fait, Marek Vlk Vypracoval Marek Vlk Datum 19.12.2015 Hodnocení 1 Zadání 1. Naladění systému; Naved

Více

Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory.

Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích

Více

LEPTONY. Elektrony a pozitrony a elektronová neutrina. Miony a mionová neutrina. Lepton τ a neutrino τ

LEPTONY. Elektrony a pozitrony a elektronová neutrina. Miony a mionová neutrina. Lepton τ a neutrino τ LEPTONY Elektrony a pozitrony a elektronová neutrina Pozitronium, elektronové neutrino a antineutrino Beta rozpad nezachování parity, měření helicity neutrin Miony a mionová neutrina Lepton τ a neutrino

Více

Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113

Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113 Sluneční energie, fotovoltaický jev Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113 1 Osnova přednášky Slunce jako zdroj energie Vlastnosti slunečního

Více

Přednáška IX: Elektronová spektroskopie II.

Přednáška IX: Elektronová spektroskopie II. Přednáška IX: Elektronová spektroskopie II. 1 Försterův resonanční přenos energie Pravděpodobnost (rychlost) přenosu je určená jako: k ret 1 = τ 0 D R r 0 6 0 τ D R 0 r Doba života donoru v excitovaném

Více

Laserové a optické technologie ELI Beamlines

Laserové a optické technologie ELI Beamlines Projekt: Výzkum a vývoj femtosekundových laserových systému a pokročilých optických technologií (CZ.1.07/2.3.00/20.0091) Laserové a optické technologie ELI Beamlines UPOL 22/2/12 Daniel Kramer za ELI beamlines

Více

Prověřování Standardního modelu

Prověřování Standardního modelu Prověřování Standardního modelu 1) QCD hluboce nepružný rozptyl, elektron (mion) proton, strukturní funkce fotoprodukce γ proton produkce gluonů v e + e produkce jetů, hadronů 2) Elektroslabá torie interference

Více

1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin.

1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 1 Pracovní úkoly 1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 2. Proměřte úhlovou závislost intenzity difraktovaného rentgenového záření při pevné orientaci

Více

Standardní model a kvark-gluonové plazma

Standardní model a kvark-gluonové plazma Standardní model a kvark-gluonové plazma Boris Tomášik Fakulta jaderná a fyzikálně inženýrská, ČVUT International Particle Physics Masterclasses 2012 7.3.2012 Struktura hmoty molekuly atomy jádra a elektrony

Více

ATOMOVÁ SPEKTROMETRIE

ATOMOVÁ SPEKTROMETRIE ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.

Více

České vysoké učení technické v Praze. Fakulta jaderná a fyzikálně inženýrská. Katedra fyziky DIPLOMOVÁ PRÁCE. Karel Boháček 2013

České vysoké učení technické v Praze. Fakulta jaderná a fyzikálně inženýrská. Katedra fyziky DIPLOMOVÁ PRÁCE. Karel Boháček 2013 České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Katedra fyziky DIPLOMOVÁ PRÁCE Návrh a optimalizace produkce svazků gama záření inverzním Comptonovým rozptylem femtosekundového

Více

Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm

Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.

Více

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm

Více

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II FOTOELEKTRICKÝ JEV VNĚJŠÍ FOTOELEKTRICKÝ JEV na intenzitě záření závisí jen množství uvolněných elektronů, ale nikoliv energie jednotlivých elektronů energie elektronů

Více

MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA

MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA MAKRO- A MIKRO- MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA STAV... (v dřívějším okamţiku)...... info o vnějším působení STAV... (v určitém okamţiku) ZÁKLADNÍ INFO O... (v tomto okamţiku) VŠCHNY DALŠÍ

Více

Zajímavosti z konference. Ing. Petr Paluska, Klinika onkologie a radioterapie, FN Hradec Králové

Zajímavosti z konference. Ing. Petr Paluska, Klinika onkologie a radioterapie, FN Hradec Králové Zajímavosti z konference Ing. Petr Paluska, Klinika onkologie a radioterapie, FN Hradec Králové Novel technologies in radiation therapy Hadron therapy Prospects in detectors and medical imaging Imaging

Více

Relativistická dynamika

Relativistická dynamika Relativistická dynamika 1. Jaké napětí urychlí elektron na rychlost světla podle klasické fyziky? Jakou rychlost získá při tomto napětí elektron ve skutečnosti? [256 kv, 2,236.10 8 m.s -1 ] 2. Vypočtěte

Více

Chemie a fyzika pevných látek l

Chemie a fyzika pevných látek l Chemie a fyzika pevných látek l p2 difrakce rtg.. zářenz ení na pevných látkch,, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie

Více

Osnova. Stimulovaná emise Synchrotroní vyzařování Realizace vyzařování na volných elektronech FLASH XFEL

Osnova. Stimulovaná emise Synchrotroní vyzařování Realizace vyzařování na volných elektronech FLASH XFEL Osnova 1 2 Stimulovaná emise Synchrotroní vyzařování Realizace vyzařování na volných elektronech 3 FLASH XFEL 4 Diagnostika Rozpoznávání obrazu Medicína Vysoko parametrové plazma 5 Laserový svazek fokusovaný

Více

ELI BEAMLINES VÝSTAVBA NEJINTENZIVNĚJŠÍHO LASERU SVĚTA

ELI BEAMLINES VÝSTAVBA NEJINTENZIVNĚJŠÍHO LASERU SVĚTA ELI BEAMLINES VÝSTAVBA NEJINTENZIVNĚJŠÍHO LASERU SVĚTA HRADEC KRÁLOVÉ CÍL PROJEKTU Hlavním cílem ELI Beamlines je: vybudování nejintenzivnějšího laserového zařízení na světě. V něm budou realizovány výzkumné

Více

Kosmické záření. Dalibor Nedbal ÚČJF nedbal(at)ipnp.troja.mff.cuni.cz.

Kosmické záření. Dalibor Nedbal ÚČJF nedbal(at)ipnp.troja.mff.cuni.cz. Kosmické záření Dalibor Nedbal ÚČJF nedbal(at)ipnp.troja.mff.cuni.cz http://www-ucjf.troja.mff.cuni.cz/~nedbal/cr Shrnutí E pole poh. náboje má dvě složky 1 E vel R [ závisí na Dominuje pro R ~ E rad n

Více

Úvod do laserové techniky

Úvod do laserové techniky Úvod do laserové techniky Látka jako soubor kvantových soustav Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze petr.koranda@gmail.com 18. září 2018 Světlo jako elektromagnetické

Více

MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5

MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5 MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5 Ondřej Votava J. Heyrovský Institute of Physical Chemistry AS ČR Opakování z minula Light Amplifier by Stimulated

Více

Fyzika pro chemiky II

Fyzika pro chemiky II Fyzika pro chemiky II P. Klang, J. Novák, R. Štoudek, Ústav fyziky kondenzovaných látek, PřF MU Brno 18. února 2004 1 Optika 1. Rovinná elektromagnetická vlna o frekvenci f = 5.45 10 14 Hz polarizovaná

Více

OPVK CZ.1.07/2.2.00/

OPVK CZ.1.07/2.2.00/ 18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti

Více

Chemie a fyzika pevných látek p2

Chemie a fyzika pevných látek p2 Chemie a fyzika pevných látek p2 difrakce rtg. záření na pevných látkch, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie Kratochvíl

Více

Vznik a šíření elektromagnetických vln

Vznik a šíření elektromagnetických vln Vznik a šíření elektromagnetických vln Hlavní body Rozšířený Coulombův zákon lektromagnetická vlna ve vakuu Zdroje elektromagnetických vln Přehled elektromagnetických vln Foton vlna nebo částice Fermatův

Více

Elementární částice. 1. Leptony 2. Baryony 3. Bosony. 4. Kvarkový model 5. Slabé interakce 6. Partonový model

Elementární částice. 1. Leptony 2. Baryony 3. Bosony. 4. Kvarkový model 5. Slabé interakce 6. Partonový model Elementární částice 1. Leptony 2. Baryony 3. Bosony 4. Kvarkový model 5. Slabé interakce 6. Partonový model I.S. Hughes: Elementary Particles M. Leon: Particle Physics W.S.C. Williams Nuclear and Particle

Více

Měření absorbce záření gama

Měření absorbce záření gama Měření absorbce záření gama Úkol : 1. Změřte záření gama přirozeného pozadí. 2. Změřte záření gama vyzářené gamazářičem. 3. Změřte záření gama vyzářené gamazářičem přes absorbátor. 4. Naměřené závislosti

Více

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura

Více

METODY ANALÝZY POVRCHŮ

METODY ANALÝZY POVRCHŮ METODY ANALÝZY POVRCHŮ (c) - 2017 Povrch vzorku 3 definice IUPAC: Povrch: vnější část vzorku o nedefinované hloubce (Užívaný při diskuzích o vnějších oblastech vzorku). Fyzikální povrch: nejsvrchnější

Více

Laserové chlazení atomů. Magneto-optická past

Laserové chlazení atomů. Magneto-optická past Laserové chlazení atomů Magneto-optická past Zařízení držící chladné atomy v malé oblasti za použití elektrických a magnetických polí (zpravidla ve vakuu) Atomová past Laserové chlazení Způsob jak chladit

Více

= , = (1) (2)

= , = (1) (2) Název a číslo úlohy Nelineární jevy v ultrarychlé optice úloha č. 9 Datum měření 30. 11. 2015 Měření provedli Jan Fait, Marek Vlk Vypracoval Jan Fait Datum 4. 12. 2015 Hodnocení Během úlohy jsme se seznámili

Více

Plazmové metody. Základní vlastnosti a parametry plazmatu

Plazmové metody. Základní vlastnosti a parametry plazmatu Plazmové metody Základní vlastnosti a parametry plazmatu Atom je základní částice běžné hmoty. Částice, kterou již chemickými prostředky dále nelze dělit a která definuje vlastnosti daného chemického prvku.

Více

Na základě toho vysvětlil Eisnstein vnější fotoefekt, kterým byla platnost tohoto vztahu povrzena.

Na základě toho vysvětlil Eisnstein vnější fotoefekt, kterým byla platnost tohoto vztahu povrzena. Vlnově-korpuskulární dualismus, fotony, fotoelektrický jev vnější a vnitřní. Elmg. teorie záření vysvětluje dobře mnohé jevy v optice interference, difrakci, polarizaci. Nelze jí ale vysvětlit např. fotoelektrický

Více

Urychlovače nabitých částic

Urychlovače nabitých částic Urychlovače nabitých částic Osnova přednášky 1. Úvod, základní třídění urychlovačů, historie, 2. Pohyb částice v elektrickém a magnetickém poli, vedení svazků částic 3. Lineární urychlovače elektrostatické,

Více

Rozměr a složení atomových jader

Rozměr a složení atomových jader Rozměr a složení atomových jader Poloměr atomového jádra: R=R 0 A1 /3 R0 = 1,2 x 10 15 m Cesta do hlubin hmoty Složení atomových jader: protony + neutrony = nukleony mp = 1,672622.10 27 kg mn = 1,6749272.10

Více

Metody nelineární optiky v Ramanově spektroskopii

Metody nelineární optiky v Ramanově spektroskopii Metody nelineární optiky v Ramanově spektroskopii Využití optických nelinearit umožňuje přejít od tradičního studia rozptylu světla na fluktuacích, teplotních elementárních excitacích, ke studiu rozptylu

Více

Jak se pozorují černé díry? - část 3. Astrofyzikální modely pro rentgenová spektra

Jak se pozorují černé díry? - část 3. Astrofyzikální modely pro rentgenová spektra Jak se pozorují černé díry? - část 3. Astrofyzikální modely pro rentgenová spektra Jiří Svoboda Astronomický ústav Akademie věd ČR Vybrané kapitoly z astrofyziky, Astronomický ústav UK, prosinec 2013 Osnova

Více

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru Pracovní úkol: 1. Seznámit se s interaktivní verzí simulace 2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru 3. Kvantitativně srovnat energetické ztráty v kalorimetru pro různé

Více

Laserové technologie v praxi I. Přednáška č.1. Fyzikální princip činnosti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011

Laserové technologie v praxi I. Přednáška č.1. Fyzikální princip činnosti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Laserové technologie v praxi I. Přednáška č. Fyzikální princip činnosti laserů Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 0 LASER kvantový generátor světla Fyzikální princip činnosti laserů LASER zkratka

Více

Základní zákony a terminologie v elektrotechnice

Základní zákony a terminologie v elektrotechnice Základní zákony a terminologie v elektrotechnice (opakování učiva SŠ, Fyziky) Určeno pro studenty komb. formy FMMI předmětu 452702 / 04 Elektrotechnika Zpracoval: Jan Dudek Prosinec 2006 Elektrický náboj

Více

IONTOVÉ ZDROJE. Účel. Požadavky. Elektronové zdroje. Iontové zdroje. Princip:

IONTOVÉ ZDROJE. Účel. Požadavky. Elektronové zdroje. Iontové zdroje. Princip: Účel IONTOVÉ ZDROJE vyrobit svazek částic vytvarovat ho a dopravit do urychlovací komory předurychlit ho (10 kev) Požadavky intenzita svazku malá emitance svazku trvanlivost zdroje stabilita zdroje minimální

Více

Vybrané spektroskopické metody

Vybrané spektroskopické metody Vybrané spektroskopické metody a jejich porovnání s Ramanovou spektroskopií Předmět: Kapitoly o nanostrukturách (2012/2013) Autor: Bc. Michal Martinek Školitel: Ing. Ivan Gregora, CSc. Obsah přednášky

Více

Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz

Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Radioterapie X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Radioterapie je klinický obor využívající účinků ionizujícího záření v léčbě jak zhoubných, tak nezhoubných nádorů

Více

Urychlení KZ. Obecné principy, Fermiho urychlení, druhý řád, první řád, spektrum

Urychlení KZ. Obecné principy, Fermiho urychlení, druhý řád, první řád, spektrum Urychlení KZ Obecné principy, Fermiho urychlení, druhý řád, první řád, spektrum Obecné principy Netermální vznik nekompatibilní se spektrem KZ nerealistické teploty E k =3/2 k B T, Univerzalita tvaru spektra

Více

Praktikum III - Optika

Praktikum III - Optika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 13 Název: Vlastnosti rentgenového záření Pracoval: Matyáš Řehák stud.sk.: 13 dne: 3. 4. 2008 Odevzdal

Více

Karel Lemr. web: Karel Lemr Fotonové páry 1 / 26

Karel Lemr. web:     Karel Lemr Fotonové páry 1 / 26 Kvantové zpracování informace s fotonovými páry Karel Lemr Společná laboratoř optiky UP Olomouc a FzÚ AVČR web: http://jointlab.upol.cz/lemr email: lemr@jointlab.upol.cz Karel Lemr Fotonové páry 1 / 26

Více

Spektrální charakterizace mřížkového spektrografu

Spektrální charakterizace mřížkového spektrografu Spektrální charakterizace mřížkového spektrografu Vedoucí: prof. RNDr. Petr Němec, Ph.D. (nemec@karlov.mff.cuni.cz), KCHFO MFF UK Analýza spektrálního složení světla je nedílnou součástí života každého

Více

2. FYZIKÁLNÍ ZÁKLADY ANALYTICKÉ METODY RBS

2. FYZIKÁLNÍ ZÁKLADY ANALYTICKÉ METODY RBS RBS Jaroslav Král, katedra fyzikální elektroniky FJFI, ČVUT. ÚVOD Spektroskopie Rutherfordova zpětného rozptylu (RBS) umožňuje stanovení složení a hloubkové struktury tenkých vrstev. Na základě energetického

Více

Laserová technika prosince Katedra fyzikální elektroniky.

Laserová technika prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Šíření optických impulsů v aktivním prostředí Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz. prosince 016 Program přednášek

Více

Experiment ATLAS. Shluky protiběžných částic se srážejí každých 25 ns. tj. s frekvencí. Počet kanálů detektoru je 150 mil.

Experiment ATLAS. Shluky protiběžných částic se srážejí každých 25 ns. tj. s frekvencí. Počet kanálů detektoru je 150 mil. Experiment ATLAS Shluky protiběžných částic se srážejí každých 25 ns tj. s frekvencí 40 MHz Počet srážek 40 MHz x 20 = 800 milionů / s Počet kanálů detektoru je 150 mil. Po 1. úrovni rozhodování (L1 trigger)

Více

Úvod do fyziky tenkých vrstev a povrchů. Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál

Úvod do fyziky tenkých vrstev a povrchů. Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál Úvod do fyziky tenkých vrstev a povrchů Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál ty i hlavní typy nepružných srážkových proces pr chodu energetických

Více

Fyzika atomového jádra

Fyzika atomového jádra Fyzika atomového jádra (NJSF064) František Knapp http://www-ucjf.troja.mff.cuni.cz/~knapp/jf/ frantisek.knapp@mff.cuni.cz Slupkový model jádra evidence magických čísel: hmoty, separační energie, vazbové

Více

Lineární urychlovače. Jan Pipek jan.pipek@gmail.com 24.11.2011 Dostupné na http://fjfi.vzdusne.cz/urychlovace

Lineární urychlovače. Jan Pipek jan.pipek@gmail.com 24.11.2011 Dostupné na http://fjfi.vzdusne.cz/urychlovace Lineární urychlovače Jan Pipek jan.pipek@gmail.com 24.11.2011 Dostupné na http://fjfi.vzdusne.cz/urychlovace Lineární urychlovače Elektrostatické urychlovače Indukční urychlovače Rezonanční urychlovače

Více

13. Spektroskopie základní pojmy

13. Spektroskopie základní pojmy základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

Zeemanův jev. Pavel Motal 1 SOŠ a SOU Kuřim, s. r. o. Miroslav Michlíček 2 Gymnázium Vyškov

Zeemanův jev. Pavel Motal 1 SOŠ a SOU Kuřim, s. r. o. Miroslav Michlíček 2 Gymnázium Vyškov Zeemanův jev Pavel Motal 1 SOŠ a SOU Kuřim, s. r. o. Miroslav Michlíček 2 Gymnázium Vyškov 1 Abstrakt Při tomto experimentu jsme zopakovali pokus Pietera Zeemana (nositel Nobelovy ceny v roce 1902) se

Více

POZOROVÁNÍ SLUNCE VE SPEKTRÁLNÍCH ČARÁCH. Libor Lenža Hvězdárna Valašské Meziříčí, p. o.

POZOROVÁNÍ SLUNCE VE SPEKTRÁLNÍCH ČARÁCH. Libor Lenža Hvězdárna Valašské Meziříčí, p. o. POZOROVÁNÍ SLUNCE VE SPEKTRÁLNÍCH ČARÁCH Libor Lenža Hvězdárna Valašské Meziříčí, p. o. Obsah 1. Co jsou to spektrální čáry? 2. Historie a současnost (přístroje, družice aj.) 3. Význam pro sluneční fyziku

Více

Emise vyvolaná působením fotonů nebo částic

Emise vyvolaná působením fotonů nebo částic Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová

Více

Příklady Kosmické záření

Příklady Kosmické záření Příklady Kosmické záření Kosmické částice 1. Jakou kinetickou energii získá proton při pádu z nekonečné výšky na Zem? Poloměr Zeměje R Z =637810 3 maklidováenergieprotonuje m p c 2 =938.3MeV. 2. Kosmickékvantum

Více

Přehled posledních experimentů skupiny kvantové a nelineární optiky v Olomouci

Přehled posledních experimentů skupiny kvantové a nelineární optiky v Olomouci Přehled posledních experimentů skupiny kvantové a nelineární optiky v Olomouci Jan Soubusta, Antonín Černoch, Karel Lemr, Karol Bartkiewicz, Radek Machulka, Společná laboratoř optiky Univerzity Palackého

Více

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e = Atom vodíku Nejjednodušší soustava: p + e Řešitelná exaktně Kulová symetrie Potenciální energie mezi p + e V 2 e = 4πε r 0 1 Polární souřadnice využití kulové symetrie atomu Ψ(x,y,z) Ψ(r,θ, φ) x =? y=?

Více

Úvod do spektrálních metod pro analýzu léčiv

Úvod do spektrálních metod pro analýzu léčiv Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz

Více

Světlo x elmag. záření. základní principy

Světlo x elmag. záření. základní principy Světlo x elmag. záření základní principy Jak vzniká a co je to duha? Spektrum elmag. záření Viditelné 380 760 nm, UV 100 380 nm, IR 760 nm 1mm Spektrum elmag. záření Harmonická vlna Harmonická vlna E =

Více

DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ

DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ T. Jeřábková Gymnázium, Brno, Vídeňská 47 ter.jer@seznam.cz V. Košař Gymnázium, Brno, Vídeňská 47 vlastik9a@atlas.cz G. Malenová Gymnázium Třebíč malena.vy@quick.cz

Více

Jana Nováková Proč jet do CERNu? MFF UK

Jana Nováková Proč jet do CERNu? MFF UK Jana Nováková MFF UK Proč jet do CERNu? Plán přednášky 4 krát částice kolem nás intermediální bosony mediální hvězdy hon na Higgsův boson - hit současné fyziky urychlovač není projímadlo detektor není

Více

Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie

Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. rentgenová spektroskopická metoda k určen

Více

PERIODICKÁ ZPRÁVA o řešení projektu LC528 - Centrum laserového plazmatu za rok 2009

PERIODICKÁ ZPRÁVA o řešení projektu LC528 - Centrum laserového plazmatu za rok 2009 PERIODICKÁ ZPRÁVA o řešení projektu LC528 - Centrum laserového plazmatu za rok 2009 4. Přílohy 4.1. ZPRÁVA O POSTUPU ŘEŠENÍ PROJEKTU - ROK 2009 4.1.1. POPIS ŘEŠENÍ PROJEKTU Experimentální a teoretické

Více

České vysoké učení technické v Praze. Katedra fyzikální elektroniky. Témata studentských prací pro školní rok 2014 15

České vysoké učení technické v Praze. Katedra fyzikální elektroniky. Témata studentských prací pro školní rok 2014 15 Rámcové téma práce č. 1: Diodově čerpaný Er:YAG oku-bezpečný laser Typ práce: DP Vedoucí práce: Ing. M. Němec, Ph.D. 1 Kozultant(i): prof. Ing. H. Jelínková, DrSc. 2 Student: L. Indra Obsahem práce je

Více

ZÁŘENÍ V ASTROFYZICE

ZÁŘENÍ V ASTROFYZICE ZÁŘENÍ V ASTROFYZICE Plazmový vesmír Uvádí se, že 99 % veškeré hmoty ve vesmíru je v plazmovém skupenství (hvězdy, mlhoviny, ) I na Zemi se vyskytuje plazma, např. v podobě blesků, polárních září Ve sluneční

Více

Balmerova série, určení mřížkové a Rydbergovy konstanty

Balmerova série, určení mřížkové a Rydbergovy konstanty Balmerova série, určení mřížkové a Rydbergovy konstanty V tomto laboratorním cvičení zkoumáme spektrální čáry 1. řádu vodíku a rtuti pomocí difrakční mřížky (mřížkového spektroskopu). Známé spektrální

Více