Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 2, rok 2012, ročník XII, řada stavební článek č.
|
|
- Kristýna Štěpánková
- před 6 lety
- Počet zobrazení:
Transkript
1 Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 2, rok 2012, ročník XII, řada stavební článek č. 9 Jiří ŠČUČKA 1, Eva HRUBEŠOVÁ 2, Petr MARTINEC 3, Tomáš PETŘÍK 4 PÍSEK INJEKTOVANÝ POLYURETANEM - ANALÝZA NAPĚŤO-DEFORMAČNÍHO STAVU GEOKOMPOZITNÍHO MATERIÁLU S ANOMÁLNÍ STRUKTUROU POLYURETHANE-GROUTED SAND - ANALYSIS OF STRESS-STRAIN STATE OF GEOCOMPOSITE MATERIAL WITH ANOMALOUS STRUCTURE Abstrakt Při tlakové injektáži napěňující polyuretanové pryskyřice do prostředí písčitých nebo písčitoštěrkovitých zemin může docházet ke vzniku materiálu s plastickou konzistencí v blízkém okolí injektážní trubky. V příspěvku je tato nežádoucí strukturní anomálie popsána na příkladu geokompozitního tělesa vzniklého při realizaci konkrétního geotechnického projektu a je provedena modelová analýza napěťo-deformačního stavu takto ovlivněného materiálu. Klíčová slova Polyuretan, písek, injektáž, plastická konzistence, strukturní anomálie, napěťodeformační stav. Abstract Material of plastic consistency can be created around the grouting pipe when a foaming polyurethane resin is grouted into sands or sandy gravels. This undesirable structural anomaly is described in the paper on an example of geocomposite material formed during realization of particular geotechnical project. Model analysis of stress-strain state of material affected in this way is also provided. Keywords Polyurethane, sand, grouting, plastic consistency, structural anomaly, stress-strain state. 1 ÚVOD Tvar, struktura a vlastnosti geokompozitních těles, vznikajících tlakovou injektáží chemických hmot do písčitých nebo písčito-štěrkovitých zemin, jsou ovlivněny řadou faktorů [1,2,3]. Primární vliv mají vlastnosti nezpolymerovaného injektážního média (především jeho viskozita v závislosti na 1 Doc. Ing. Jiří Ščučka, Ph.D., Katedra stavebních hmot a hornického stavitelství, Fakulta stavební, VŠB- Technická univerzita Ostrava, Ludvíka Podéště 1875/17, Ostrava-Poruba, tel.: (+420) , e- mail: jiri.scucka@vsb.cz. 2 Doc. RNDr. Eva Hrubešová, Ph.D., Katedra geotechniky a podzemního stavitelství, Fakulta stavební, VŠB- Technická univerzita Ostrava, Ludvíka Podéště 1875/17, Ostrava-Poruba, tel.: (+420) , e- mail: eva.hrubesova@vsb.cz. 3 Prof. Ing. Petr Martinec, CSc., Oddělení laboratorního výzkumu geomateriálů, Ústav geoniky AV ČR, v.v.i. Institut čistých technologií těžby a užití energetických surovin, Ostrava, Studentská 1768, Ostrava- Poruba, tel.: (+420) , petr.martinec@ugn.cas.cz. 4 Ing. Tomáš Petřík, Katedra geotechniky a podzemního stavitelství, Fakulta stavební, VŠB-Technická univerzita Ostrava, Ludvíka Podéště 1875/17, Ostrava-Poruba, tel.: (+420) , tomas.petrik@vsb.cz. 59
2 teplotě a reologii tuhnutí), parametry injektáže (injektážní tlak, rychlost a doba vtláčení, množství pojiva a kvalita směšování vstupních komponent) a vlastnosti injektovaného zeminového prostředí (složení zemin, tvar a velikost částic, mezerovitost, vrstevnatost, propustnost, vlhkost, proudění vody, teplota prostředí a další). Vlivem charakteru zeminového prostředí na morfologii vznikajících injektážních těles se zabýval např. Karol [3], který na základě laboratorních experimentů popsal základní formy injektážních těles vznikajících chemickou injektáží homogenního a vrstevnatého zeminového prostředí s různou propustností. Karol [3] se zabýval také vlivem vlhkosti a proudění podzemní vody na morfologii těles vznikajících použitím různých typů chemických injektážních hmot. Aldorf a Vymazal [4] popsali zonální heterogenitu stavby těles, vzniklých PUR injektáží v málo propustných píscích, Ščučka [5] vypracoval metodiku pro vizualizaci a kvantifikaci stavby injektovaných písků a popsal změny charakteru pórů a stupně napěnění PUR pojiva v kompozitu v závislosti na vzdálenosti od injektážní trubky. Při injektáži pěnící polyuretanové pryskyřice do písčitého prostředí může docházet k významné strukturní anomálii ve vzniklém kompozitním tělese, která se projevuje plastickou konzistencí materiálu v blízkém okolí injektážní trubky (obecně v okolí vstupu injektážního média do zeminového masivu). Tento jev je údajně v geotechnické praxi znám; v odborné literatuře však dosud nebyl publikován a nebyly vysvětleny příčiny jeho vzniku. V tomto příspěvku je zmíněný jev popsán na příkladu geokompozitního tělesa získaného při realizaci konkrétního geotechnického projektu a je provedena modelová analýza napěťodeformačního stavu takto ovlivněného materiálu v podmínkách in situ. 2 MATERIÁL INJEKTOVANÉHO TĚLESA Byla provedena analýza monolitického geokompozitního tělesa elipsoidního tvaru o celkové délce 74 cm a maximální šířce 32 cm (obr. 1a). Těleso kompozitu vzniklo tlakovou injektáží dvousložkové polyuretanové pryskyřice do písků a břidlicových písčitých brekcií při ražbě kolektoru pro inženýrské sítě. V části raženého díla byla bezpečnost ražby zajištěna vytvořením ochranného deštníku nad budoucím výrubem pomocí tlakové chemické injektáže přes zarážené perforované ocelové trubky. Těleso kompozitu pro analýzu bylo vyjmuto z masivu bez poškození i s částí ocelové injektážní trubky, procházející tělesem v celé jeho délce. Hmotnost tělesa včetně injektážní trubky byla 60 kg. Kompozitní materiál tělesa byl podrobně analyzován, klasifikován a kvantifikován z hlediska strukturně-texturních parametrů a byl podroben laboratorním zkouškám pevnostních a přetvárných vlastností [5]. Významným zjištěním je především anomálie v konzistenci materiálu v blízkém okolí injektážní trubky. V okrajových partiích tělesa převládá tuhý materiál s voštinovou texturou typu I. [6], kdy částice zeminy jsou hojně obklopeny pojivem, které je k povrchu částic dobře přilnuto (obr. 2a). Pevnost v prostém tlaku kompozitu dosahuje v průměru 22 MPa (min. 14 MPa, max. 28,4 MPa). V okolí injektážní trubky však materiál vykazuje kombinaci pórové textury a povlakové struktury [6], kdy malé množství nezpěněné pojivové hmoty tvoří povlaky kolem zeminových zrn (obr. 2b). Materiál má v těchto partiích měkkou, tvárlivou konzistenci a pevnost v tlaku dosahuje v průměru pouze 3 MPa (min. 1,5 MPa, max. 3,6 MPa). Ovlivněná oblast je makroskopicky patrná z příčného řezu geokompozitním tělesem na obr. 1b. Autoři předpokládali, že měkká konzistence materiálu je způsobena nedostatečnou polymerací polyuretanového pojiva, buď z důvodu nekvalitního promísení vstupních složek injektážní hmoty, nebo vlivem tlakových podmínek během injektáže. Vzorky materiálu byly proto analyzovány metodami FTIR spektroskopie a termické analýzy a detailní struktura materiálu byla zobrazena skenovací elektronovou mikroskopií (SEM). Srovnání získaných infračervených spekter s referenčními spektry polyuretanu však prokázalo, že pojivo v kompozitu je shodně polymerované. Mikroskopická analýza následně ukázala, že plastická konzistence je způsobena samotným specifickým strukturně-texturním charakterem materiálu v postižených partiích tělesa. 60
3 a) b) Obr. 1: Analyzované geokompozitní těleso: a) těleso odkopané z masivu po provedení tlakové injektáže, b) příčný řez tělesem s vyznačenou makroskopicky patrnou anomální oblastí (tmavší, hnědě zbarvené partie) v okolí injektážní trubky 61
4 a) b) Obr. 2: Mikroskopická stavba geokompozitu: a) voštinová textura tuhého materiálu v okrajových partiích tělesa s částicemi písku hojně obklopenými pojivem, které je k povrchu částic dobře přilnuto, b) anomální stavba materiálu v okolí injektážní trubky s pórovou texturou, povlakovou strukturou a měkkou tvárlivou konzistencí 3 ANALÝZA NAPĚŤO-DEFORMAČNÍHO STAVU INJEKTOVANÉHO TĚLESA Pro posouzení rozdílů mezi anomálním geokompozitním tělesem s plastickým jádrem a "zdravým" geokompozitem s homogenní stavbou, byla provedena analýza napěťo-deformačního stavu injektovaného tělesa. Bylo použito softwaru MIDAS GTS, založeného na metodě konečných prvků. Bylo uvažováno oválné těleso o poloměru 25 cm a délce 1 m, uložené v hloubce 10 m. Modelově bylo analyzováno jednak referenční homogenní těleso tvořené tuhým, pevným, soudržným geokompozitem (geokompozit A) a jednak nehomogenní těleso, jehož vnitřní jádro je tvořeno měkkým kompozitem s tvárlivou konzistencí (geokompozit B) a vnější obal tloušťky 5 cm je pak tvořen geokompozitem A (obr. 3a). Uložení injektovaných těles bylo uvažováno v hloubce 10 m v pískovém masívu, a to rovněž variantně horizontálně a vertikálně. Obr. 3b ukazuje základní geometrické schéma modelu při vertikálním uložení tělesa v modelovém kvádru výšky 15 m s podstavou m. 62
5 V prostředí programového systému Midas GTS byl vytvořen model z čtyřstěnových prostorových konečných prvků. Byl uvažován Mohr-Coulombův konstitutivní model. Vstupní charakteristiky materiálů v modelu jsou uvedeny v tabulce 1. Střední hodnoty pevnosti v tlaku a modulu přetvárnosti byly stanoveny experimentálně v laboratorním mechanickém lisu na krychlových a válcových zkušebních tělesech, připravených z kompozitu řezáním a jádrovým vrtáním. Poissonovo číslo bylo stanoveno odborným odhadem. Pro účely modelování byly odvozeny hodnoty pevnosti v tahu jako 1/10 tlakové pevnosti a následně určeny charakteristiky Mohrovy obalové čáry. 10 m a) b) Obr. 3: Vertikálně uložené modelové nehomogenní injektované těleso (a) a základní geometrické schéma modelu při vertikálním uložení tělesa (b) Tab. 1: Vstupní charakteristiky materiálů v modelu Objemová tíha [kn/m 3 ] Modul přetvárnosti [MPa] Poissonovo číslo [ - ] Pevnost v tlaku [MPa] Soudržnost [kpa] Úhel vnitřního tření [ ] geokompozit A 22 17, ,4 (homogenní, pevný) geokompozit B 3 (heterogenní s 18, , tvárlivým jádrem) písek ,28-0,1 37 Modelový výpočet zahrnoval stanovení primárního napěťového stavu a následné zabudování injektovaného tělesa (variantně v poloze horizontální resp. vertikální). Modelově byly vyhodnoceny celkové posuny a hlavní napětí P1 a P3 v injektovaném tělese a bylo provedeno grafické porovnání výsledků jednotlivých geometrických i materiálových variant. 63
6 4 VÝSLEDKY A DISKUZE Grafické výsledky modelování jsou uvedeny na obr. 4 až 7. Rozdíly v redistribuci hlavních napětí a celkových posunů mezi tělesem s homogenním rozložením polyuretanového pojiva a nehomogenním tělesem při obou variantách uložení (horizontální a vertikální) ukazují grafy na obr. 8 a 9. Poměr maximálních hodnot hlavních napětí P1 a P3 ve vnější vrstvě (plášti) a vnitřní vrstvě (jádru) tělesa z nehomogenního geokompozitu přináší tab. 2. Tab. 2: Poměr maximálních hodnot hlavních napětí P1 a P3 ve vnější vrstvě (plášti) a vnitřní vrstvě (jádru) tělesa nehomogenního geokompozitu s materiálovými charakteristikami dle tab. 1 Napětí max. hlavní napětí P1 max. hlavní napětí P3 Orientace injektovaného tělesa horizontální 2,46 vertikální 2,68 horizontální 2,56 vertikální 3,32 Poměr mezi hodnotami ve vnější vrstvě (plášti) a vnitřní vrstvě (jádru) tělesa a) b) Obr. 4: Těleso homogenního geokompozitu - horizontální uložení: a) hlavní napětí P1, b) hlavní napětí P3 a) b) Obr. 5: Těleso nehomogenního geokompozitu s tvárlivým jádrem - horizontální uložení: a) hlavní napětí P1, b) hlavní napětí P3 64
7 Z grafů na obr. 8 a 9 je zřejmý rozdíl v distribuci hlavních napětí P1 a P3 u tělesa z nehomogenního geokompozitu s pevným pláštěm a tvárlivým jádrem, a to pro obě varianty uložení. Poměr mezi hodnotami hlavních napětí v plášti a jádře (tab. 2) je pro napětí P1 2,46 (horizontální uložení) a 2,68 (vertikální uložení). Pro napětí P3 je tento poměr 2,56 (horizontální uložení) a 3,32 (vertikální uložení). Poměr hodnot hlavních napětí v tělese homogenního geokompozitu bez tvárlivého jádra je blízký 1. Tyto rozdíly jsou vyvolány přerozdělením napětí mezi tužším pláštěm a tvárlivým jádrem geokompozitního tělesa. Míra přerozdělení bude závislá na mocnosti pevnějšího pláště tělesa a rozdílu v hodnotách pevnostních a přetvárných parametrů. Rozdíly mezi oběma typy stavby geokompozitu jsou tedy významné z hlediska rozdělení hlavních napětí, přičemž absolutní hodnoty posunů z deformací lze považovat za nevýznamné. a) b) Obr. 6: Těleso homogenního geokompozitu - vertikální uložení: a) hlavní napětí P1, b) hlavní napětí P3 a) b) Obr. 7: Těleso nehomogenního geokompozitu s tvárlivým jádrem - vertikální uložení: a) hlavní napětí P1, b) hlavní napětí P3 65
8 a) b) c) Obr. 8: Srovnání maximálních hlavních napětí P1 (a) a P3 (b) a maximálních celkových posunů (c) u injektovaného tělesa homogenního a nehomogenního s tvárlivým jádrem. Je srovnávána vnější a vnitřní zóna tělesa. Vertikální uložení tělesa. 66
9 a) b) c) Obr. 9: Srovnání maximálních hlavních napětí P1 (a) a P3 (b) a maximálních celkových posunů (c) u injektovaného tělesa homogenního a nehomogenního s tvárlivým jádrem. Je srovnávána vnější a vnitřní zóna tělesa. Horizontální uložení tělesa. 67
10 5 ZÁVĚR V praxi se při polyuretanové injektáži písčitých zemin obvykle předpokládá sice zonální, ale relativně homogenní stavba vzniklého injektážního tělesa. Provedené analýzy však ukázaly na strukturní anomálii, která se při injektáži může objevovat a která vede ke kontrastnímu rozložení napětí ve vytvořeném kompozitu. Přestože pro dané modelové podmínky je testované strukturně anomální těleso stabilní, nelze vyloučit lokální nestabilitu nebo porušení geotechnické konstrukce zatížené zemním tlakem (ve větších hloubkách) nebo dodatečným přitížením (zejména při injektáži kotevních systémů, u kterých se očekává dlouhodobá funkce). Při interpretaci modelu je nutno také počítat s vyšší heterogenitou stavby a variabilitou pevnostně-přetvárných parametrů v takto anomálních geokompozitech, než byla uvažována v předloženém příspěvku. V praxi to znamená věnovat zvýšenou pozornost analýze vnitřní stavby monolitických těles získaných z pokusných injektáží in situ. PODĚKOVÁNÍ Článek byl vypracován v rámci projektu Institut čistých technologií těžby a užití energetických surovin, reg. č. CZ.1.05/2.1.00/ podporovaného Operačním programem Výzkum a vývoj pro Inovace, financovaného ze strukturálních fondů EU a ze státního rozpočtu ČR a projektu CZ.1.07/2.3.00/ Tvorba a internacionalizace špičkových vědeckých týmů a zvyšování jejich excelence na Fakultě stavební VŠB-TUO. LITERATURA [1] KUTZNER, CH. Grouting of rock and soil. Rotterdam : AA Balkema, pp. ISBN [2] ŠŇUPÁREK, R. & SOUČEK, D. Laboratory testing of chemical grouts. Tunelling and Underground Space Technology. 2000, XV. Nr. 2, pp [3] KAROL, R. H. Chemical grouting and soil stabilization. 3rd ed. New York : M Dekker Inc, pp. ISBN [4] ALDORF, J. & VYMAZAL, J. Příspěvek ke studiu pevnostních a přetvárných vlastností písků, zpevněných injektážními hmotami na bázi polyuretanových a akrylátových pryskyřic. In Aplikace PUR v hornictví a podzemním stavitelství. Ostrava : VŠB-TU, 1996, pp [5] ŠČUČKA, J. Studium stavby geokompozitů a kompozitních stavebních materiálů typu kamenivo + pojivo metodami zpracování a analýzy obrazu. Docentská habilitační práce. Ostrava : VŠB-TU, [6] BODI, J., BODI, Z., SCUCKA, J., MARTINEC, P. Polyurethane Grouting Technologies. In Polyurethane. 1st ed. Rijeka : INTECH, pp ISBN Oponentní posudek vypracoval: Doc. Ing. Lumír Míča, Ph.D., Ústav geotechniky, Fakulta stavební, VUT v Brně. Doc. RNDr. František Staněk, Ph.D., Institut geologického inženýrství, HGF, VŠB-TU Ostrava. 68
VIZUALIZACE A KVANTIFIKACE STRUKTURNĚ-TEXTURNÍCH PARAMETRŮ POLYURETANOVÝCH GEOKOMPOZITNÍCH MATERIÁLŮ
Ing. Jiří Ščučka, Ph.D., Ing. Kamil Souček, Ph.D. Ústav geoniky AV ČR, v.v.i., Studentská 1768, 708 00 Ostrava-Poruba tel.: 59 69 79 111, fax. 59 69 19 452, scucka@ugn.cas.cz VIZUALIZACE A KVANTIFIKACE
SANAČNÍ A VÝPLŇOVÉ SMĚSI PŘIPRAVENÉ PRO KOMPLEXNÍ ŘEŠENÍ PROBLEMATIKY METANU VE VAZBĚ NA STARÁ DŮLNÍ DÍLA
Vysoká škola báňská Technická univerzita Ostrava Hornicko-geologická fakulta Institut čistých technologií těžby a užití energetických surovin SANAČNÍ A VÝPLŇOVÉ SMĚSI PŘIPRAVENÉ PRO KOMPLEXNÍ ŘEŠENÍ PROBLEMATIKY
Katedra geotechniky a podzemního stavitelství
Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Modelování zatížení tunelů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2011, ročník X1, řada stavební článek č.
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2011, ročník X1, řada stavební článek č. 16 Karel VOJTASÍK 1, Eva HRUBEŠOVÁ 2, Marek MOHYLA 3, Jana STAŇKOVÁ 4 ZÁVISLOST
OVĚŘENÍ PŘÍTOMNOSTI INJEKTÁŽNÍHO MÉDIA V INJEKTOVANÝCH HORNINÁCH - DŮKAZNÍ METODY
Ing. Jiří Ščučka, Ing. Lenka Vaculíková, Ph.D. Ústav geoniky AV ČR, Studentská 1768, 708 00 Ostrava-Poruba tel.: 59 69 79 111, fax. 59 69 19 452 scucka@ugn.cas.cz, vaculikova@ugn.cas.cz OVĚŘENÍ PŘÍTOMNOSTI
2 VLIV POSUNŮ UZLŮ V ZÁVISLOSTI NA TVARU ZTUŽENÍ
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2010, ročník X, řada stavební článek č. 6 Marie STARÁ 1 PŘÍHRADOVÉ ZTUŽENÍ PATROVÝCH BUDOV BRACING MULTI-STOREY BUILDING
Katedra geotechniky a podzemního stavitelství
Katedra geotechniky a podzemního stavitelství (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního oboru Geotechnika CZ.1.07/2.2.00/28.0009. Tento
Pilotové základy úvod
Inženýrský manuál č. 12 Aktualizace: 04/2016 Pilotové základy úvod Program: Pilota, Pilota CPT, Skupina pilot Cílem tohoto inženýrského manuálu je vysvětlit praktické použití programů GEO 5 pro výpočet
VYUŽITÍ VÝSLEDKŮ MATEMATICKÉHO MODELOVÁNÍ PRO NÁVRH NOVÝCH KONSTRUKCÍ BEZPEČNOSTNÍCH HRÁZÍ
Doc. RNDr. Eva Hrubešová, PhD., Prof. Ing. Josef Aldorf, DrSc. Katedra geotechniky a podzemního stavitelství Fakulta stavební VŠB-TU Ostrava L. Podéště 1875, Ostrava-Poruba tel.: +420596991373, +420596991944
Příspěvek ke stanovení bezpečné mocnosti nadloží při protlačování ve zvodnělém horninovém prostředí
Příspěvek ke stanovení bezpečné mocnosti nadloží při protlačování ve zvodnělém horninovém prostředí Josef Aldorf 1 a Hynek Lahuta 1 A contribution to the determination of the safe overburden thickness
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2012, ročník XII, řada stavební článek č.
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2012, ročník XII, řada stavební článek č. 10 Karel VOJTASÍK 1, Eva HRUBEŠOVÁ 2, Marek MOHYLA 3 DEFORMAČNÍ CHARAKTERISTIKA
MECHANIKAPODZEMNÍCH KONSTRUKCÍ KLASIFIKACE VÝPOČETNÍCH METOD STABILITY A ZATÍŽENÍ OSTĚNÍ
STUDIJNÍ PODPORY PRO KOMBINOVANOU FORMU STUDIA NAVAZUJÍCÍHO MAGISTERSKÉHO PROGRAMU STAVEBNÍ INŽENÝRSTVÍ -GEOTECHNIKA A PODZEMNÍ STAVITELSTVÍ MECHANIKAPODZEMNÍCH KONSTRUKCÍ KLASIFIKACE VÝPOČETNÍCH METOD
1 TECHNICKÁ ZPRÁVA KE STATICKÉMU VÝPOČTU
TECHNICKÁ ZPRÁVA KE STATICKÉMU VÝPOČTU ÚVOD Předmětem tohoto statického výpočtu je návrh opěrných stěn, které budou realizovány v rámci projektu Chodník pro pěší Pňovice. Statický výpočet je zpracován
NÁVRH NETRADIČNÍHO POSTUPU ZPEVNĚNÍ NÁSYPOVÉHO TĚLESA ŽELEZNIČNÍ TRATI
Prof.Ing. Josef Aldorf, DrSc. VŠB-TU Ostrava, Fakulta stavební, katedra geotechniky e-mail: josef.aldorf@vsb.cz Ing. Jaroslav Ryšávka UNIGEO a.s. Ostrava e-mail: rysavka.jaroslav@unigeo.cz NÁVRH NETRADIČNÍHO
STABILITA PROTIPOVODŇOVÝCH HRÁZÍ ŘEKY DUNAJE NA OSTROVĚ SZENTENDRE
Prof. Ing. Josef Aldorf, DrSc., RNDr. Eva Hrubešová, Ph.D. VŠB-TU Ostrava, Fakulta stavební, L. Podéště 1758, 708 00 Ostrava-Poruba tel.: 59 7321944, fax: 59 7321943, e-mail: josef.aldorf@vsb.cz Dr. Ing.
Kancelář stavebního inženýrství s.r.o. Statický výpočet
231/2018 Strana: 1 Kancelář stavebního inženýrství s.r.o. Botanická 256, 362 63 Dalovice - Karlovy Vary IČO: 25 22 45 81, mobil: +420 602 455 293, +420 602 455 027, =================================================
Laboratorní testování rázové þÿ h o u~ e v n a t o s t i dy e v a
DSpace VSB-TUO http://www.dspace.vsb.cz þÿx a d a s t a v e b n í / C i v i l E n g i n e e r i n g S e r i e s þÿx a d a s t a v e b n í. 2 0 1 0, r o. 1 0 / C i v i l E n g i n e e r i n g Laboratorní
Katedra geotechniky a podzemního stavitelství
Katedra geotechniky a podzemního stavitelství Geotechnický monitoring učební texty, přednášky Monitoring přehradních hrází doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního oboru Geotechnika CZ.1.07/2.2.00/28.0009.
Mechanika hornin a zemin Cvičení. Marek Mohyla LPOC 315 Tel.: 1362 ( ) homel.vsb.cz/~moh050 geotechnici.
Mechanika hornin a zemin Cvičení Marek Mohyla LPOC 315 Tel.: 1362 (59 732 1362) marek.mohyla@vsb.cz homel.vsb.cz/~moh050 geotechnici.cz Podmínky udělení zápočtu: docházka do cvičení 75% (3 neúčasti), docházka
Zakládání staveb Cvičení. Marek Mohyla LPOC 315 Tel.: 1362 ( ) homel.vsb.cz/~moh050 geotechnici.cz
Zakládání staveb Cvičení Marek Mohyla LPOC 315 Tel.: 1362 (59 732 1362) marek.mohyla@vsb.cz homel.vsb.cz/~moh050 geotechnici.cz Podmínky udělení zápočtu: docházka do cvičení 75% (3 neúčasti), včasné odevzdání
Posouzení stability svahu
Inženýrský manuál č. 25 Aktualizace 07/2016 Posouzení stability svahu Program: MKP Soubor: Demo_manual_25.gmk Cílem tohoto manuálu je vypočítat stupeň stability svahu pomocí metody konečných prvků. Zadání
Namáhání ostění kolektoru
Inženýrský manuál č. 23 Aktualizace 06/2016 Namáhání ostění kolektoru Program: MKP Soubor: Demo_manual_23.gmk Cílem tohoto manuálu je vypočítat namáhání ostění raženého kolektoru pomocí metody konečných
Katedra geotechniky a podzemního stavitelství
Katedra geotechniky a podzemního stavitelství Geotechnický monitoring učební texty, přednášky Monitoring původní napjatosti doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního oboru Geotechnika CZ.1.07/2.2.00/28.0009.
Výpočet konsolidace pod silničním náspem
Inženýrský manuál č. 11 Aktualizace: 02/2016 Výpočet konsolidace pod silničním náspem Program: Soubor: Sedání Demo_manual_11.gpo V tomto inženýrském manuálu je vysvětlen výpočet časového průběhu sedání
PŘÍSPĚVEK K PROBLEMATICE TĚSNĚNÍ DILATACÍ
Prof. Ing. Josef Aldorf, DrSc. RNDr. Eva Hrubešová, Ph.D. Ing. Lukáš Ďuriš, Dr. Ing. Hynek Lahuta VŠB-TU Ostrava, Fakulta stavební, L. Podéště 1875, 708 00 Ostrava-Poruba tel./fax: 597 321 944, e-mail:
1 Švédská proužková metoda (Pettersonova / Felleniova metoda; 1927)
Teorie K sesuvu svahu dochází často podél tenké smykové plochy, která odděluje sesouvající se těleso sesuvu nad smykovou plochou od nepohybujícího se podkladu. Obecně lze říct, že v nesoudržných zeminách
Násep vývoj sedání v čase (konsolidace) Program: MKP Konsolidace
Inženýrský manuál č. 37 Aktualizace: 9/2017 Násep vývoj sedání v čase (konsolidace) Program: MKP Konsolidace Soubor: Demo_manual_37.gmk Úvod Tento příklad ilustruje použití modulu GEO5 MKP Konsolidace
VÝPOČET ZATÍŽENÍ SNĚHEM DLE ČSN EN :2005/Z1:2006
PŘÍSTAVBA SOCIÁLNÍHO ZAŘÍZENÍ HŘIŠTĚ TJ MOŘKOV PŘÍPRAVNÉ VÝPOČTY Výpočet zatížení dle ČSN EN 1991 (730035) ZATÍŽENÍ STÁLÉ Střešní konstrukce Jednoplášťová plochá střecha (bez vl. tíhy nosné konstrukce)
ALTERNATIVNÍ MOŽNOSTI MATEMATICKÉHO MODELOVÁNÍ STABILITY SVAHŮ SANOVANÝCH HŘEBÍKOVÁNÍM
Prof. Ing. Josef Aldorf, DrSc. Ing. Lukáš Ďuriš, VŠB-TU Ostrava, Fakulta stavební, L. Podéště 1875, 708 00 Ostrava-Poruba tel./fax: 597 321 944, e-mail: josef.aldorf@vsb.cz, lukas.duris@vsb.cz, ALTERNATIVNÍ
Výpočet konsolidace pod silničním náspem
Inženýrský manuál č. 11 Aktualizace: 06/2018 Výpočet konsolidace pod silničním náspem Program: Soubor: Sedání Demo_manual_11.gpo V tomto inženýrském manuálu je vysvětlen výpočet časového průběhu sedání
NUMERICKÉ MODELOVÁNÍ A SKUTEČNOST. Alexandr Butovič Tomáš Louženský SATRA, spol. s r. o.
NUMERICKÉ MODELOVÁNÍ A SKUTEČNOST Alexandr Butovič Tomáš Louženský SATRA, spol. s r. o. Obsah prezentace Návrh konstrukce Podklady pro návrh Návrhové přístupy Chování primárního ostění Numerické modelování
Smyková pevnost zemin
Smyková pevnost zemin 30. března 2017 Vymezení pojmů Smyková pevnost zemin - maximální vnitřní únosnost zeminy proti působícímu smykovému napětí Efektivní úhel vnitřního tření - část smykové pevnosti zeminy
Výpočet sedání terénu od pásového přitížení
Inženýrský manuál č. 21 Aktualizace 06/2016 Výpočet sedání terénu od pásového přitížení Program: Soubor: MKP Demo_manual_21.gmk V tomto příkladu je řešeno sednutí terénu pod přitížením pomocí metody konečných
Metoda konečných prvků Základy konstitutivního modelování (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)
Inovace studijního oboru Geotechnika Reg. č. CZ.1.7/2.2./28.9 Metoda konečných prvků Základy konstitutivního modelování (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Doc.
HUTNÍCÍ INJEKTÁŽE COMPACTION GROUTING
Doc.Ing.Karel Vojtasík, CSc., VŠB-TUO, FAST, Katedra geotechniky a podzemního stavitelství, Ludvíka Podéště 1875, 708 33 Ostrava Poruba, e-mail: karel.vojtasik@vsb.cz HUTNÍCÍ INJEKTÁŽE COMPACTION GROUTING
1 Úvod. Poklesová kotlina - prostorová úloha
Poklesové kotliny 1 Úvod Projekt musí obsahovat volbu tunelovací metody a případných sanačních opatření, vedoucích ke snížení deformací předpověď poklesu terénu nad výrubem stanovení mezních hodnot deformací
VLIV TECHNOLOGIE ŽÁROVÉHO ZINKOVÁNÍ NA VLASTNOSTI ŽÁROVĚ ZINKOVANÝCH OCELÍ
Transfer inovácií 2/211 211 VLIV TECHNOLOGIE ŽÁROVÉHO ZINKOVÁNÍ NA VLASTNOSTI ŽÁROVĚ ZINKOVANÝCH OCELÍ Ing. Libor Černý, Ph.D. 1 prof. Ing. Ivo Schindler, CSc. 2 Ing. Petr Strzyž 3 Ing. Radim Pachlopník
DRÁTKOBETON PRO PODZEMNÍ STAVBY
DRÁTKOBETON PRO PODZEMNÍ STAVBY ABSTRAKT Václav Ráček 1 Jan Vodička 2 Jiří Krátký 3 Matouš Hilar 4 V příspěvku bude uveden příklad návrhu drátkobetonu pro prefabrikované segmentové ostění tunelu. Bude
Katedra geotechniky a podzemního stavitelství
Katedra geotechniky a podzemního stavitelství Geotechnický monitoring učební texty, přednášky Extenzometrická měření doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního oboru Geotechnika CZ.1.07/2.2.00/28.0009.
Sendvičové panely smykový test výplňového materiálu čtyřbodovým ohybem
Sendvičové panely smykový test výplňového materiálu čtyřbodovým ohybem Protokol o zkoušce Výrobce a dodavatel: ISMAT solution, s.r.o. Dolení 184, 411 85 Horní Beřkovice Obchodní rejstřík vedený u Krajského
Sendvičové panely únosnost v osovém tlaku
Sendvičové panely únosnost v osovém tlaku Protokol o zkoušce Výrobce a dodavatel: ISMAT solution, s.r.o. Dolení 184, 411 85 Horní Beřkovice Obchodní rejstřík vedený u Krajského soudu v Ústí nad Labem,
Katedra geotechniky a podzemního stavitelství
Katedra geotechniky a podzemního stavitelství Geotechnický monitoring učební texty, přednášky Monitoring stavebních jam doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního oboru Geotechnika CZ.1.07/2.2.00/28.0009.
Parametrická studie vlivu vzájemného spojení vrstev vozovky
Konference ANSYS 2009 Parametrická studie vlivu vzájemného spojení vrstev vozovky M. Štěpánek a J. Pěnčík VUT v Brně, Fakulta stavební, Ústav stavební mechaniky Abstract: The testing of a cyclic-load performance
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2008, ročník VIII, řada stavební článek č.
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 28, ročník VIII, řada stavební článek č. 22 Roman MAREK 1, Eva HRUBEŠOVÁ 2, Robert KOŘÍNEK 3, Martin STOLÁRIK 4 VLIV
þÿ L a b o r a t o r n í t e s t o v á n í s p o jo k o l þÿ t y p u v c e m e n t oa t p k o v ý c h d e s k
DSpace VSB-TUO http://www.dspace.vsb.cz OpenAIRE þÿx a d a s t a v e b n í. 2 0 1 1, r o. 1 1 / C i v i l E n g i n e e r i n g þÿ L a b o r a t o r n í t e s t o v á n í s p o jo k o l þÿ t y p u v c
SILNICE I/42 BRNO, VMO DOBROVSKÉHO B, TUNEL II, ZPEVŇOVÁNÍ A ČÁSTEČNÉ UTĚSŇOVÁNÍ NESOUDRŽNÝCH ZEMIN V NADLOŽÍ ŠTOL IIa a IIb
Ing. Zdeněk Cigler Minova Bohemia s.r.o., divize Grouting, Lihovarská 10, Ostrava - Radvanice, 716 03 tel. 00420 596 232 803, fax. 00420 596 232 993 E-mail: cigler@minova.cz SILNICE I/42 BRNO, VMO DOBROVSKÉHO
Metody diagnostiky v laboratoři fyzikální vlastnosti. Ing. Ondřej Anton, Ph.D. Ing. Petr Cikrle, Ph.D.
Metody diagnostiky v laboratoři fyzikální vlastnosti Ing. Ondřej Anton, Ph.D. Ing. Petr Cikrle, Ph.D. OBSAH Vzorky betonu jádrové vývrty Objemová hmotnost Dynamické moduly pružnosti Pevnost v tlaku Statický
Výpočet sedání osamělé piloty
Inženýrský manuál č. 14 Aktualizace: 06/2018 Výpočet sedání osamělé piloty Program: Pilota Soubor: Demo_manual_14.gpi Cílem tohoto inženýrského manuálu je vysvětlit použití programu GEO 5 PILOTA pro výpočet
Mechanika zemin a zakládání staveb, 2 ročník bakalářského studia. Zemní tlaky
Mechanika zemin a zakládání staveb, 2 ročník bakalářského studia Zemní tlaky Rozdělení, aktivizace Výpočet pro soudržné i nesoudržné zeminy Tlaky zemin a vody na pažení Katedra geotechniky a podzemního
MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ
STUDIJNÍ PODPORY PRO KOMBINOVANOU FORMU STUDIA NAVAZUJÍCÍHO MAGISTERSKÉHO PROGRAMU STAVEBNÍ INŽENÝRSTVÍ -GEOTECHNIKA A PODZEMNÍ STAVITELSTVÍ MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ
Experimentální výzkum vlivu zesílení konstrukce valené klenby lepenou uhlíkovou výztuží
EXPERIMENTÁLNÍ VÝZKUM KLENEB Experimentální výzkum vlivu zesílení konstrukce valené klenby lepenou uhlíkovou výztuží 1 Úvod Při rekonstrukcích památkově chráněných a historických budov se často setkáváme
PŘÍSPĚVEK K STANOVENÍ ÚNOSNOSTI ZEMINOVÝCH KOTEV
Doc.Ing.Karel Vojtasík, CSc. Prof Ing.Josef Aldorf, DrSc. Dr.Ing.Hynek Lahuta Katedra geotechniky a podzemního stavitelství FAST VŠB-TU Ostrava Krásnopolská 86, 708 00 Ostrava Poruba, Česká republika Abstract:
Katedra geotechniky a podzemního stavitelství
Katedra geotechniky a podzemního stavitelství Modelování v geotechnice k programovému systému Plaxis (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního
Vlastnosti zemin Zatřídění zemin (vyhodnocení křivky zrnitosti, trojúhelníkový diagram).
2.cvičení Vlastnosti zemin Zatřídění zemin (vyhodnocení křivky zrnitosti, trojúhelníkový diagram). Složení zemin a hornin Fyzikální a popisné vlastnosti Porovitost Číslo pórovitosti V n V V e V p p s.100
2 ZHODNOCENÍ VÝSLEDKŮ MĚŘENÍ A STANOVENÍ VELIKOSTÍ VNI- TŘNÍCH SIL OD TEPLOTNÍHO ZATÍŽENÍ
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2008, ročník VIII, řada stavební článek č. 20 Josef ALDORF 1, Lukáš ĎURIŠ 2, Eva HRUBEŠOVÁ 3, Karel VOJTASÍK 4, Jiří
TA Sanace tunelů - technologie, materiály a metodické postupy Zesilování Optimalizace
Jaroslav Lacina, Martin Zlámal SANACE TUNELŮ TECHNOLOGIE A MATERIÁLY, SPÁROVACÍ HMOTY PRO OSTĚNÍ TA03030851 Sanace tunelů - technologie, materiály a metodické postupy Zesilování Optimalizace Petr ŠTĚPÁNEK,
STATICKÝ VÝPOČET. Zpracování PD rekonstrukce opěrné zdi 2.úsek Starý Kopec. V&V stavební a statická kancelář, spol. s r. o.
Zpracování PD rekonstrukce opěrné zdi 2.úsek Starý Kopec V&V stavební a statická kancelář, spol. s r. o. Havlíčkovo nábřeží 38 702 00 Ostrava 1 Tel.: 597 578 405 E-mail: vav@vav-ova.cz Zak. číslo: DE-5116
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 2, rok 2012, ročník XII, řada stavební článek č.
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 2, rok 2012, ročník XII, řada stavební článek č. 16 Tomáš PETŘÍK 1, Eva HRUBEŠOVÁ 2, Martin STOLÁRIK 3, Miroslav PINKA 4
STABILITA ZÁSYPU LIKVIDOVANÉ JÁMY VLIV ODTĚŽENÍ STAVEBNÍ JÁMY V JEJÍ BLÍZKOSTI
Prof. Ing. Josef Aldorf, DrSc., Ing. Lukáš Ďuriš VŠB-TU Ostrava, Fakulta stavební, Katedra geotechniky a podzemního stavitelství L. Podéště 1875, 708 00 Ostrava-Poruba, tel., fax: 597 321 944, josef.aldorf@vsb.cz
STUDIUM MECHANICKÝCH VLASTNOSTÍ A CHOVÁNÍ V OKOLÍ MAKROVTISKŮ NA SYSTÉMECH S TENKÝMI VRSTVAMI
STUDIUM MECHANICKÝCH VLASTNOSTÍ A CHOVÁNÍ V OKOLÍ MAKROVTISKŮ NA SYSTÉMECH S TENKÝMI VRSTVAMI EVALUATION OF MECHANICAL PROPERTIES AND BEHAVIOUR AROUND MACROINDENTS ON SYSTEMS WITH THIN FILMS Denisa Netušilová,
Posouzení piloty Vstupní data
Posouzení piloty Vstupní data Projekt Akce Část Popis Vypracoval Datum Nastavení Velkoprůměrová pilota 8..07 (zadané pro aktuální úlohu) Materiály a normy Betonové konstrukce Součinitele EN 99 Ocelové
Katedra geotechniky a podzemního stavitelství
Katedra geotechniky a podzemního stavitelství Zakládání staveb Vlastnosti zemin při zatěžování doc. Dr. Ing. Hynek Lahuta CZ.1.07/2.2.00/28.0009. Tento projekt je spolufinancován Evropským sociálním fondem
CARBOCRYL WV NĚKTERÉ VÝSLEDKY ZKOUŠEK MECHANICKÝCH VLASTNOSTÍ
Ing. Rudolf Ziegler, Ing. Adam Janíček Minova Bohemia s.r.o. Ostrava, Lihovarská 10, 716 03 Ostrava-Radvanice tel.: 596 232 801, fax: 596 232 994, e-mail: minova@minova.cz, www.minova.cz Prof. Ing. Josef
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2009, ročník IX, řada stavební článek č.4
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2009, ročník IX, řada stavební článek č.4 Kristýna VAVRUŠOVÁ 1, Antonín LOKAJ 2 POŽÁRNÍ ODOLNOST DŘEVĚNÝCH KONSTRUKCÍ
Porušení hornin. J. Pruška MH 7. přednáška 1
Porušení hornin Předpoklady pro popis mechanických vlastností hornin napjatost masivu je včase a prostoru proměnná nespojitosti jsou určeny pevnostními charakteristikami prostředí horniny ovlivňuje rychlost
SILNIČNÍ A GEOTECHNICKÁ LABORATOŘ
Inovace studijního oboru Geotechnika reg. č. CZ.1.07/2.2.00/28.0009 SILNIČNÍ A GEOTECHNICKÁ LABORATOŘ podklady do cvičení KALIFORNSKÝ POMĚR ÚNOSNOSTI Ing. Marek Mohyla Místnost: C 315 Telefon: 597 321
MOŽNOSTI VYUŽITÍ METODY LHS PŘI NUMERICKÉM MODELOVÁNÍ STABILITY TUNELU
IV. ročník celostátní konference SPOLEHLIVOST KONSTRUKCÍ Téma: Posudek - poruchy - havárie 173 3.až..3 Dům techniky Ostrava ISBN 8--1551-7 MOŽNOSTI VYUŽITÍ METODY LHS PŘI NUMERICKÉM MODELOVÁNÍ STABILITY
MECHANIKA HORNIN. Vyučující: Doc. Ing. Matouš Hilar, PhD. Kontakt: Mechanika hornin - přednáška 1 1
MECHANIKA HORNIN Vyučující: Doc. Ing. Matouš Hilar, PhD. Kontakt: matous.hilar@fsv.cvut.cz Mechanika hornin - přednáška 1 1 Doporučená literatura: Geomechanika Mechanika hornin, Pruška, ČVUT, 2002 Mechanika
Zakládání staveb 5 cvičení
Zakládání staveb 5 cvičení Únosnost základové půdy Mezní stavy Mezní stav použitelnosti (.MS) Stlačitelnost Voda v zeminách MEZNÍ STAVY I. Skupina mezní stav únosnosti (zhroucení konstrukce, nepřípustné
Posouzení mikropilotového základu
Inženýrský manuál č. 36 Aktualizace 06/2017 Posouzení mikropilotového základu Program: Soubor: Skupina pilot Demo_manual_36.gsp Cílem tohoto inženýrského manuálu je vysvětlit použití programu GEO5 SKUPINA
EXPERIMETÁLNÍ OVĚŘENÍ ÚNOSNOSTI DŘEVOBETONOVÝCH SPŘAŽENÝCH TRÁMŮ ZESÍLENÝCH CFRP LAMELAMI
19. Betonářské dny (2012) Sborník Sekce: Výzkum a technologie 2 ISBN 978-80-87158-32-6 EXPERIMETÁLNÍ OVĚŘENÍ ÚNOSNOSTI DŘEVOBETONOVÝCH SPŘAŽENÝCH TRÁMŮ ZESÍLENÝCH CFRP LAMELAMI David Horák 1 Hlavní autor
Katedra geotechniky a podzemního stavitelství
Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Stochastické modelování (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního
OBJEDNATEL Obec Běloky Běloky 19 273 53 Hostouň GEOTECHNICKÝ PRŮZKUM RENOVOVANÉ HRÁZE RYBNÍKA V OBCI
KOMPLEXNÍ GEOLOGICKÝ A GEOFYZIKÁLNÍ PRŮZKUM KONTAKTY: GEOTREND s.r.o. Smečenská 183, 274 01 SLANÝ tel.: 312 521 115 tel., fax: 312 525 706 e-mail: geotrend@geotrend.cz URL: www.geotrend.cz IDENTIFIKACE:
Interakce ocelové konstrukce s podložím
Rozvojové projekty MŠMT 1. Úvod Nejrozšířenějšími pozemními konstrukcemi užívanými za účelem průmyslové výroby jsou ocelové haly. Základní nosné prvky těchto hal jsou příčné vazby, ztužidla a základy.
VŠB TECHNICKÁ UNIVERZITA OSTRAVA Hornicko - geologická fakulta Institut geologického inženýrství. 17. listopadu 15/2172, 708 33 Ostrava - Poruba
VŠB TECHNICKÁ UNIVERZITA OSTRAVA Hornicko - geologická fakulta Institut geologického inženýrství 17. listopadu 15/2172, 708 33 Ostrava - Poruba předčasně ukončený projekt ČBÚ č. 60-08 Možnosti geosekvestrace
některých případech byly materiály po doformování nesoudržné).
VYUŽITÍ ORGANICKÝCH ODPADŮ PRO VÝROBU TEPELNĚ IZOLAČNÍCH MALT A OMÍTEK UTILIZATION OF ORGANIC WASTES FOR PRODUCTION OF INSULATING MORTARS AND PLASTERS Jméno autora: Doc. RNDr. Ing. Stanislav Šťastník,
ZÁKLADOVÉ KONSTRUKCE
ZÁKLADOVÉ KONSTRUKCE POZEMNÍ STAVITELSTVÍ II. DOC. ING. MILOSLAV PAVLÍK, CSC. Základové konstrukce Hlavní funkce: přenos zatížení do základové půdy ochrana před negativními účinky základové půdy ornice
MECHANIKA HORNIN A ZEMIN
MECHANIKA HORNIN A ZEMIN podklady k přednáškám doc. Ing. Kořínek Robert, CSc. Místnost: C 314 Telefon: 597 321 942 E-mail: robert.korinek@vsb.cz Internetové stránky: fast10.vsb.cz/korinek Katedra geotechniky
MECHANIKA HORNIN. Vyučující: Doc. Ing. Matouš Hilar, Ph.D. Kontakt: Mechanika hornin - přednáška 1 1
MECHANIKA HORNIN Vyučující: Doc. Ing. Matouš Hilar, Ph.D. Kontakt: matous.hilar@fsv.cvut.cz Mechanika hornin - přednáška 1 1 Doporučená literatura: Pruška, J. (2002): Geomechanika Mechanika hornin. ČVUT
Obr. 1 3 Prosakující ostění průzkumných štol.
VYUŽITÍ CHEMICKÝCH INJEKTÁŽÍ PRO RAŽBU KRÁLOVOPOLSKÉHO TUNELU JIŘÍ MATĚJÍČEK AMBERG Engineering Brno, a.s. Úvod Hlavní důvody pro provádění injektáží v Královopolském tunelu byly dva. V první řadě měly
Popis zeminy. 1. Konzistence (pro soudržné zeminy) měkká, tuhá apod. Ulehlost (pro nesoudržné zeminy)
Klasifikace zemin Popis zeminy 1. Konzistence (pro soudržné zeminy) měkká, tuhá apod. Ulehlost (pro nesoudržné zeminy) kyprá, hutná 2. Struktura (laminární) 3. Barva 4. Velikost částic frakc 5. Geologická
list číslo Číslo přílohy: číslo zakázky: stavba: Víceúčelová hala Březová DPS SO01 Objekt haly objekt: revize: 1 OBSAH
revize: 1 OBSAH 1 Technická zpráva ke statickému výpočtu... 2 1.1 Úvod... 2 1.2 Popis konstrukce:... 2 1.3 Postup při výpočtu, modelování... 2 1.4 Použité podklady a literatura... 3 2 Statický výpočet...
DRÁTKOBETON PRO SEGMENTOVÁ OSTĚNÍ TUNELŮ
Sborník 19. Betonářské dny (2012) ISBN 978-80-87158-32-6 Sekce XXX: YYY DRÁTKOBETON PRO SEGMENTOVÁ OSTĚNÍ TUNELŮ Václav Ráček 1 Hlavní autor Jan Vodička 1 Jiří Krátký 1 Matouš Hilar 2 1 ČVUT v Praze, Fakulta
SQZ, s.r.o. Ústřední laboratoř Praha Rohanský ostrov 641, Praha 8
Pracoviště zkušební laboratoře: 1 Rohanský ostrov 2 Zbraslav K Výtopně 1226, 156 00 Praha - Zbraslav 3 Fyzikálních veličin K Výtopně 1226, 156 00 Praha - Zbraslav Laboratoř je způsobilá aktualizovat normy
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 2, rok 2012, ročník XII, řada stavební článek č.
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 2, rok 2012, ročník XII, řada stavební článek č. 12 Lukáš ĎURIŠ 1, Josef ALDORF 2, Marek MOHYLA 3 MODELOVÁNÍ CHOVÁNÍ TUHÉHO
PARAMETRICKÁ STUDIE VÝPOČTU KOMBINACE JEDNOKOMPONENTNÍCH ÚČINKŮ ZATÍŽENÍ
PARAMETRICKÁ STUDIE VÝPOČTU KOMBINACE JEDNOKOMPONENTNÍCH ÚČINKŮ ZATÍŽENÍ Ing. David KUDLÁČEK, Katedra stavební mechaniky, Fakulta stavební, VŠB TUO, Ludvíka Podéště 1875, 708 33 Ostrava Poruba, tel.: 59
Katedra geotechniky a podzemního stavitelství
Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda oddělených elementů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního
Údaje o vzdělávací a vědecké, výzkumné, vývojové a další tvůrčí činnosti Fakulty mechatroniky a mezioborových inženýrských studií
Příloha č. 4 k žádosti o akreditaci habilitačního řízení a řízení ke jmenování profesorem v oboru Přírodovědné inženýrství na Fakultě mechatroniky a mezioborových inženýrských studií Technické univerzity
MEZNÍ STAVY POUŽITELNOSTI PŘEDPJATÝCH PRŮŘEZŮ DLE EUROKÓDŮ
20. Betonářské dny (2013) Sborník Sekce ČT1B: Modelování a navrhování 2 ISBN 978-80-87158-34-0 / 978-80-87158-35-7 (CD) MEZNÍ STAVY POUŽITELNOSTI PŘEDPJATÝCH PRŮŘEZŮ DLE EUROKÓDŮ Jaroslav Navrátil 1,2
Katedra geotechniky a podzemního stavitelství
Katedra geotechniky a podzemního stavitelství Zakládání staveb Fyzikálně chemické vlastnosti hornin doc. Dr. Ing. Hynek Lahuta CZ.1.07/2.2.00/28.0009. Tento projekt je spolufinancován Evropským sociálním
-Asfaltového souvrství
Zvyšov ování únosnosti konstrukčních vrstev: -Silničního a železničního tělesat -Asfaltového souvrství Ing. Dalibor GREPL Kordárna rna a.s. I. Železniční (silniční) ) tělesot NOVÉ TRENDY VE VYUŽITÍ GEOSYNTETIK
Modelová interpretace hydraulických a migračních laboratorních testů na granitových vzorcích
Modelová interpretace hydraulických a migračních laboratorních testů na granitových vzorcích Přehled obsahu Problematika puklinových modelů Přehled laboratorních vzorků a zkoušek Použité modelové aplikace
VYUŽITÍ NAMĚŘENÝCH HODNOT PŘI ŘEŠENÍ ÚLOH PŘÍMÝM DETERMINOVANÝM PRAVDĚPODOBNOSTNÍM VÝPOČTEM
Proceedings of the 6 th International Conference on New Trends in Statics and Dynamics of Buildings October 18-19, 2007 Bratislava, Slovakia Faculty of Civil Engineering STU Bratislava Slovak Society of
LABORATORNÍ VÝZKUM DOSTUPNÝCH EPOXIDOVÝCH MATERIÁLŮ PRO ZPEVŇOVÁNÍ HORNIN SKALNÍHO TYPU
Ing. Kamil Souček, RNDr. Lubomír Staš, CSc., Doc. Ing. Richard Šňupárek, CSc. Ústav geoniky AV ČR, Studentská 768, 708 00 Ostrava Poruba, tel.: +420 596 979, E-mail: soucek@ugn.cas.cz, snuparek@ugn.cas.cz,
Průzkumné metody v geotechnice. VŠB-TUO - Fakulta stavební Katedra geotechniky a podzemního stavitelství
Průzkumné metody v geotechnice VŠB-TUO - Fakulta stavební Katedra geotechniky a podzemního stavitelství Geotechnika Aplikovaná geologie (inženýrská geologie a hydrogeologie; IG + HG)? Geomechanika (GM)
OPTIMALIZACE NÁVRHU CB VOZOVEK NA ZÁKLADĚ POČÍTAČOVÉHO A EXPERIMENTÁLNÍHO MODELOVÁNÍ. GAČR 103/09/1746 ( )
OPTIMALIZACE NÁVRHU CB VOZOVEK NA ZÁKLADĚ POČÍTAČOVÉHO A EXPERIMENTÁLNÍHO MODELOVÁNÍ. GAČR 103/09/1746 (2009 2011) Dílčí část projektu: Experiment zaměřený na únavové vlastnosti CB desek L. Vébr, B. Novotný,
Posouzení skupiny pilot Vstupní data
Posouzení skupiny pilot Vstupní data Projekt Datu : 6.12.2012 Název : Skupina pilot - Vzorový příklad 3 Popis : Statické schéa skupiny pilot - Pružinová etoda Fáze : 1 7,00 2,00 +z 12,00 HPV Nastavení
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2009, ročník IX, řada stavební článek č.10
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2009, ročník IX, řada stavební článek č.10 Karel VOJTASÍK 1, Eva HRUBEŠOVÁ 2, Lukáš ĎURIŠ 3 POROVNÁNÍ STAVU NAPJATOSTI
FEM ANALYSIS OF HOSE SPRNIG CLAMP DEFORMATION BEHAVIOUR
Education, Research, Innovation FEM ANALYSIS OF HOSE SPRNIG CLAMP DEFORMATION BEHAVIOUR FEM ANALÝZA DEFORMAČNÍHO CHOVÁNÍ HADICOVÉ SPONY Pavel HRONEK 1+2, Ctibor ŠTÁDLER 2, 1 Úvod Bohuslav MAŠEK 2, Zdeněk
1 ÚVOD 2 SPECIFIKACE PROBLÉMU
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 2, rok 2010, ročník X, řada stavební článek č. 15 Tomáš PETŘÍK 1, Martin STOLÁRIK 2 NUMERICKÉ MODELOVÁNÍ DYNAMICKÝCH ÚČINKŮ