Curve Tracer s mikrokontrolérem STM32
|
|
- Vladimír Valenta
- před 6 lety
- Počet zobrazení:
Transkript
1 UAMT VUT FEKT Curve Tracer s mikrokontrolérem STM32 BROB Vedoucí práce: František Burian Autoři: Michal Kalina (154757), Václav Kabátník (154754) V Brně květen 2014
2 Zadání projektu: Seznamte se se základními grafickými parametry aktivních i pasivních diskrétních součástek. Seznamte se s mikrokontroléry rodiny STM32. Navrhněte schéma i plošný spoj zařízení, které je schopno měřit grafické charakteristiky součástek dle zadání vedoucího. Jako řídicí obvod využijte mikrokontrolér rodiny STM32. Pro odesílání naměřených dat do počítače sloužícího jako vizualizační nástroj použijte rozhraní USB. Obsah: 1) Co je to Curve Tracer Curve Tracer, který realizujeme ) Program na straně mikrokontroléru Nastavení USB portu Nastavení frekvence vnitřního oscilátoru Nastavení vstupů a výstupů Nastavení DAC Nastavení ADC Nastavení přerušení Obsluha ADC Funkce main Obsluha přerušení s hlavní smyčkou, která proměřuje charakteristiky ) Program na straně PC Graf Tlačítko START Kulatá tlačítka Forward a Reverse Tlačítko Draw Tlačítko Clear chart Progress bar Hodnota Set max voltage Hodnota Set COM Rozbalovací menu File Save chart as Save data Exit Neviditelné položky: Port Další části programu Příjem dat... 6
3 4) Návrh DPS Funkční schéma Proudové posilnění výstupu DAC Oblast měření Zesilovací stupeň Schéma zapojení DPS Seznam použitých součástek pro DPS ) Naměřené charakteristiky Propustný směr LED Propustný směr diody přes odpor 270Ω Propustný i závěrný směr diody přes 270 Ω ) Měřící zapojení na nepájivém poli ) Závěr ) Co je to Curve Tracer Curve Tracer je v podstatě elektronické zařízení, které je schopné měřit a zobrazovat voltampérové charakteristiky diskrétních součástek, jako je například dioda, tranzistor, tyristor atp. Jedná se tedy o jakýsi osciloskop, který obsahuje i zdroje proudu či napětí Curve Tracer, který realizujeme Naše zařízení, je schopno měřit voltampérové charakteristiky diody. Uživatel má možnost nastavit si maximální povolený proud měřenou součástkou, dále vykreslovat její charakteristiky do grafu, který je možno ukládat jako obrázek ve formátu.jpg. Uživatel má taky možnost tisknout změřené hodnoty proudu a napětí do textového souboru ve formátu.txt. 2) Program na straně mikrokontroléru Pro řízení celého procesu používáme 32-bitový mikrokontrolér STM32F4, usazený na kitu od firmy STMicroelectronics s jádrem ARM Cortex. Jako debugger využíváme Black Magic Probe, namísto původního STlinku. Knihovna, kterou jsme pro tento projekt použili se jmenuje libopencm3 a obsahuje všechny potřebné části pro nás projekt. Program byl napsán ve vývojovém prostředí Code::Blocks v jazyce C#. Samotný program v mikrokontroléru se skládá z několika částí: 2.1. Nastavení USB portu Pro nastavení USB portu jsme využili již dostupné nastavení z knihovny libopencm Nastavení frekvence vnitřního oscilátoru Frekvenci oscilátoru jsme nastavili na 120Mhz.
4 2.3. Nastavení vstupů a výstupů V prvé řadě jsme povolili oscilátor na port A, který budeme využívat. Poté jsme nastavili pin PA4 jako analogový výstup, jelikož se jedná o výstup DAC a porty PA0 a PA1 jako analogové vstupy, jelikož se jedná o kanály 0 a 1 ADC Nastavení DAC Toto nastavení je velice jednoduché, jelikož stačí pouze povolit oscilátor pro DAC a poté povolit samotný DAC. Používáme kanál č. 1 a mód RIGHT 12 (resp. 12-bitová hodnota zarovnaná doprava) Nastavení ADC Opět v prvé řadě povolujeme oscilátor pro ADC, následně zakážeme scan mode (nepoužíváme více kanálu najednou). Nastavíme single conversion mode (dochází k odečtení pouze jedné hodnoty), poté nastavíme vzorkování a zapneme ADC Nastavení přerušení Nastavujeme hodnotu přerušení 100Hz (100 přerušení za sekundu) a poté ho jen povolujeme a zapínáme čítač Obsluha ADC ADC obsluhuje jednoduchá funkce, která má jeden vstupní parametr, a to číslo kanálu ADC, ze kterého chceme číst. Poté odečteme hodnotu na vstupu ADC a tato hodnota je návratovou hodnotou funkce Funkce main Ve funkci main se postupně projdou všechny nastavovací funkce a v nekonečné smyčce se stále dokola spouští funkce usbd_poll, která musí být volána alespoň jednou za 1ms a udržuje nám komunikaci přes druhé USB Obsluha přerušení s hlavní smyčkou, která proměřuje charakteristiky Toto je jádro celého programu mikrokontroléru. Beží zde smyčka, která inkrementuje hodnotu pomocné proměnné x, která se odesílá na vstup DAC a tedy určuje výstupní napětí DAC. V každém kroku se taktéž odečítá hodnotu vstupů kanálu 0 a 1 ADC. Kanál 0 určuje hodnotu vstupního napětí na ose x a kanál 1 určuje výstupní proud (resp. výstupní napětí, které se přepočítává na proud) měřené součástky. Během programování se vyskytly problémy s odesíláním dat do PC, kde na stranu PC došlo vždy něco kolem bajtů. Proto jsme se rozhodli odesílat maximálně 8 bajtu naráz. Jelikož jedna 12-bitová hodnota zabere 2 bajty, mohou se tedy odeslat 4 hodnoty naráz. Proto se každé čtyři kroky splní podmínka if která odešle poslední 4 hodnoty a tak stále dokola. V posledním kroku se odešlou zbývající hodnoty, bez ohledu na jejich počet.
5 3) Program na straně PC Program byl napsán v programu MS Visual Studio 2013 v jazyce C#. Jedná se o jednoduchou formulářovou aplikaci (viz. Obrázek 1) Obrázek 1 Formulářová aplikace Curve Tracer 3.1. Graf Celé aplikaci dominuje velký graf, ve kterém se budou zobrazovat změřené charakteristiky Tlačítko START Tímto tlačítkem spustíte celý proces měření. Mikrokontroléru se odešle pokyn pro to, aby začal měřit a zároveň se mu odešle hodnota maximálního napětí, který nesmí překročit Kulatá tlačítka Forward a Reverse Těmito tlačítky si vybíráte režim měření, tzn. zda-li měříme v propustném či závěrném směru. Zvolený režim se zobrazí i v pravé horní části okna Tlačítko Draw Po spuštění programu je toto tlačítko neaktivní. Aktivuje se až poté, co program obdrží všechny požadované hodnoty od mikrokontroléru. Tímto tlačítkem vykreslíte do grafu naměřené hodnoty 3.5. Tlačítko Clear chart Tímto tlačítkem vymažete všechny křivky v grafu a nastavíte ho do základního vzhledu.
6 3.6. Progress bar Malý progress bar mezi tlačítky START a Draw, který indikuje průběh měření. Nad tímto prvek se zároveň zobrazí text oznamující přijímání dat a následná informace, že byli data úspěšně přijaty Hodnota Set max voltage Tímto prvkem nastavíte maximální povolené napětí měřenou součástkou. Zvolené napětí se zobrazí i v pravé horní části okna Hodnota Set COM Tímto prvkem můžete nastavit COM port, na kterém máte připojeno rozhraní USB pro komunikaci s mikrokontrolérem Rozbalovací menu File Toto rozbalovací menu obsahuje tři další prvky: Save chart as Tato položka umožňuje uložit právě zobrazovaný graf do obrázkového souboru.jpg Save data Tato položka umožňuje uložit právě změřená data do textového souboru.txt Exit Touto položkou ukončíte celou aplikaci Neviditelné položky: Port Jedná se o pouhé nastavení portu pro komunikace s mikrokontrolérem. Nastavuje se zde rychlost, velikost zásobníku (buffer) a další důležité věci Další části programu Jedná se například o inicializaci proměnných, chybové hlášky a další vyskakující okna Příjem dat Data se přijímají dvěma funkcemi. Jedna obsahuje funkci while, která se vykonává do té doby, dokud jsou dostupná data ke čtení nebo dokud není ukončena příkazem break. V této funkci se v každém kroku volá druhá funkce, která načte do zásobníku dva bajty (2 bajty = jedna 12-bitová hodnota) a tyto dva bajty jsou návratovou hodnotou pro původní funkci. Poté co se načtou všechny hodnoty je cyklus ukončen příkazem break. V této funkci se také inkrementuje progress bar (viz. 3.6) 4) Návrh DPS 4.1. Funkční schéma Funkční schéma obsahuje tři části, které nadále rozepisujeme.
7 Proudové posilnění výstupu DAC Jelikož výstup DAC není schopen vyprodukovat více jak 25mA, bylo potřeba jeho výstup proudově posílit. To jsem vyřešil tak, že jsem na výstup DAC připojil operační zesilovač v neinvertujícím zapojení, který vstupní signál z DAC zesiluje dvakrát. Jako další stupeň jsou použity 2 tranzistory (NPN a PNP), které mají zajistit proudové zesílení signálu Oblast měření Zde se na svorky připojuje měřené zařízení do série s měřícím odporem 10mΩ, na kterém se měří úbytek napětí a výpočtem se získává hodnota proudu Zesilovací stupeň Jelikož úbytek napětí na tak malém odporu (10mΩ) je velmi malý, musí být tento úbytek patřičně zesílen. Zde je zesílen šestkrát, to stačí pro to, aby byl tento signál měřitelní ADC převodníkem Schéma zapojení
8 4.3. DPS 4.4. Seznam použitých součástek pro DPS Označení Název Hodnota T1 BD441 NPN T2 BD442 PNP U1 NE R1 rezistor 1kΩ R2 rezistor 1kΩ R3 rezistor 10mΩ R4 rezistor 200Ω R5 rezistor 1kΩ C1 kondenzátor 10μF C2 kondenzátor 10μF IC1 TC7660SCPA - D.U.T měřená součástka Device Under Test Tabulka 1 Seznam součástek
9 5) Naměřené charakteristiky 5.1. Propustný směr LED Obrázek 2 VA charakteristika LED 5.2. Propustný směr diody přes odpor 270Ω Obrázek 3 VA charakteristika diody v propustném směru
10 5.3. Propustný i závěrný směr diody přes 270 Ω Obrázek 4 VA charakteristika diody v obou směrech 6) Měřící zapojení na nepájivém poli
11 7) Závěr Když jsem si vybíral tuto semestrální práci, neviděl jsem nějaký větší problém v její praktické realizace. Od začátku jsem měl nějakou ucelenou představu a té jsem se držel. V prvé řadě jsem se musel seznámit s vývojovým prostředím Code::Blocks a řešit mnoho problému s komunikací. To nebylo zrovna nejjednodušší vzhledem k tomu, že kit STM32F4 velmi rád přestával komunikovat a bylo zapotřebí restart celého počítače k opětovnému navázání komunikace. Dále jsem se zaměřil na knihovnu libopencm3. Vzhledem k tomu, že jsem nikdy takovéto aplikace v jazyce C neprogramoval (jen lehké aplikace v jazyce assembler), začátky byli velmi obtížné. Po pár týdnech zkoušení, testovaní, googlování a konzultaci, se mi povedlo zprovoznit první část programu, a to digitálně-analogový převodník (DAC). Dalším krokem bylo zprovoznění čtení hodnoty z analog-digitálního převodníku (ADC). Vzhledem ke zkušenostem z DAC pro mě bylo toto už jednodušší. Součástí tohoto kroku bylo i napsání funkce, která proměří charakteristiky v celém rozsahu. V další části jsem se zaměřil na napsání programu v PC. Využil jsem program Visual Studio Professional Soustředil jsem se na vytvoření jednoduché, uživatelsky přístupné formulářové aplikace, která je popsána v sekci 3) Program na straně PC. Následně bylo třeba vytvořit komunikaci. K tomu jsem využil dostupný example (příklad) od knihovny libopencm3. Tato část mi zabrala velmi mnoho času, jelikož jsem opět neměl žádné zkušenosti s komunikace přes rozhraní USB. Ale podařilo se a mikrokontrolér komunikoval s PC a byl schopný odesílat i přijímat data. V posledním kroku bylo třeba navrhnout desku plošných spojů (DPS). Měl jsem představu, že budu měřit pouze úbytek napětí na malém odporu (10mΩ), který budu patřičně zesilovat, aby byl měřitelný, a výpočtem budu získávat hodnotu proudu. Bohužel se objevil problém, který jsem neočekával. Mikrokontrolér má maximální výstupní proud 25mA a to bylo velmi málo pro moji aplikaci. Proto bylo třeba vytvořit proudové posilnění výstupu DAC, které je blíže popsáno v sekci Proudové posilnění výstupu DAC. To se neobešlo bez větších potíží, jako například zničené tranzistory, diody, odpory atp. Opět se jedná o oblast, ve kterém nemám praktické zkušenosti a tak mi tento problém zabral asi nejvíce času a i kvůli tomu jsem nestihl dotáhnout tuto aplikaci do podoby, která by mi vyhovovala. Vzhledem k tomu, že jsem se prakticky zasekl při návrhu DPS a ztratil tak velmi moc cenného času nebyl jsem schopný dotáhnout aplikaci do úplné finální podoby tak, jak jsem si to představoval. A to, uživatelsky nastavitelné omezení proudu měřenou součástkou, zpřesnění měření, schopnost měřit různé druhy součástek a mnoho dalšího co jsem si představoval. Zároveň se mi nepodařilo fyzicky realizovat plošný spoj, opět kvůli nedostatku času. Ve výsledku si myslím, že finální podoba není tak zlá a do budoucna by se dala dotáhnout do dokonalosti při dostatku času a snahy. I přes všechny problémy, které nastaly, jsem získal mnoho cenných zkušeností, které se mi do budoucna budou velmi hodit. Závěrem bych chtěl poděkovat inženýru Františku Burianovi, za mnoho cenných informací, které mi sdělil a za čas, který mi věnoval v průběhu celého semestru.
1.1 Usměrňovací dioda
1.1 Usměrňovací dioda 1.1.1 Úkol: 1. Změřte VA charakteristiku usměrňovací diody a) pomocí osciloskopu b) pomocí soustavy RC 2000 2. Ověřte vlastnosti jednocestného usměrňovače a) bez filtračního kondenzátoru
Manuální, technická a elektrozručnost
Manuální, technická a elektrozručnost Realizace praktických úloh zaměřených na dovednosti v oblastech: Vybavení elektrolaboratoře Schématické značky, základy pájení Fyzikální principy činnosti základních
1.6 Operační zesilovače II.
1.6 Operační zesilovače II. 1.6.1 Úkol: 1. Ověřte funkci operačního zesilovače ve funkci integrátoru 2. Ověřte funkci operačního zesilovače ve funkci derivátoru 3. Ověřte funkci operačního zesilovače ve
- Stabilizátory se Zenerovou diodou - Integrované stabilizátory
1.2 Stabilizátory 1.2.1 Úkol: 1. Změřte VA charakteristiku Zenerovy diody 2. Změřte zatěžovací charakteristiku stabilizátoru se Zenerovou diodou 3. Změřte převodní charakteristiku stabilizátoru se Zenerovou
Jízda po čáře pro reklamní robot
Jízda po čáře pro reklamní robot Předmět: BROB Vypracoval: Michal Bílek ID:125369 Datum: 25.4.2012 Zadání: Implementujte modul do podvozku robotu, který umožňuje jízdu robotu po předem definované trase.
Návrh konstrukce odchovny 2. dil
1 Portál pre odborné publikovanie ISSN 1338-0087 Návrh konstrukce odchovny 2. dil Pikner Michal Elektrotechnika 19.01.2011 V minulem dile jsme si popsali návrh konstrukce odchovny. senzamili jsme se s
Měření vlastností lineárních stabilizátorů. Návod k přípravku pro laboratorní cvičení v předmětu EOS.
Měření vlastností lineárních stabilizátorů Návod k přípravku pro laboratorní cvičení v předmětu EOS. Cílem měření je seznámit se s funkcí a základními vlastnostmi jednoduchých lineárních stabilizátorů
2. Pomocí Theveninova teorému zjednodušte zapojení na obrázku, vypočtěte hodnoty jeho prvků. U 1 =10 V, R 1 =1 kω, R 2 =2,2 kω.
A5M34ELE - testy 1. Vypočtěte velikost odporu rezistoru R 1 z obrázku. U 1 =15 V, U 2 =8 V, U 3 =10 V, R 2 =200Ω a R 3 =1kΩ. 2. Pomocí Theveninova teorému zjednodušte zapojení na obrázku, vypočtěte hodnoty
Měřící a senzorová technika
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ Měřící a senzorová technika Semestrální projekt Vypracovali: Petr Osadník Akademický rok: 2006/2007 Semestr: zimní Původní zadání úlohy
Inovace a zkvalitnění výuky prostřednictvím ICT Elektrický proud střídavý. Název: Téma: Autor:
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Inovace a zkvalitnění výuky prostřednictvím ICT Elektrický proud střídavý MĚŘENÍ EL. VELIČIN
ETC Embedded Technology Club setkání 3, 3B zahájení třetího ročníku
ETC Embedded Technology Club setkání 3, 3B 9.10. 2018 zahájení třetího ročníku Katedra měření, Katedra telekomunikací,, ČVUT- FEL, Praha doc. Ing. Jan Fischer, CSc. ETC club, 3, 3B 23.10.2018, ČVUT- FEL,
Návrh a analýza jednostupňového zesilovače
Návrh a analýza jednostupňového zesilovače Zadání: U CC = 35 V I C = 10 ma R Z = 2 kω U IG = 2 mv R IG = 220 Ω Tolerance u napětí a proudů, kromě Id je ± 1 % ze zadaných hodnot. Frekvence oscilátoru u
Programovatelný časový spínač 1s 68h řízený jednočip. mikroprocesorem v3.0a
Programovatelný časový spínač 1s 68h řízený jednočip. mikroprocesorem v3.0a Tato konstrukce představuje časový spínač řízený mikroprocesorem Atmel, jehož hodinový takt je odvozen od přesného krystalového
Středoškolská technika SCI-Lab
Středoškolská technika 2016 Setkání a prezentace prací středoškolských studentů na ČVUT SCI-Lab Kamil Mudruňka Gymnázium Dašická 1083 Dašická 1083, Pardubice O projektu SCI-Lab je program napsaný v jazyce
Mikropočítačová vstupně/výstupní jednotka pro řízení tepelných modelů. Zdeněk Oborný
Mikropočítačová vstupně/výstupní jednotka pro řízení tepelných modelů Zdeněk Oborný Freescale 2013 1. Obecné vlastnosti Cílem bylo vytvořit zařízení, které by sloužilo jako modernizovaná náhrada stávající
Operační zesilovač. Úloha A2: Úkoly: Nutné vstupní znalosti: Diagnostika a testování elektronických systémů
Diagnostika a testování elektronických systémů Úloha A2: 1 Operační zesilovač Jméno: Datum: Obsah úlohy: Diagnostika chyb v dvoustupňovém operačním zesilovači Úkoly: 1) Nalezněte poruchy v operačním zesilovači
Projekt BROB B13. Jízda po čáře pro reklamní robot. Vedoucí projektu: Ing. Tomáš Florián
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCHTECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY Projekt BROB 2013 B13. Jízda po čáře pro reklamní robot Vedoucí projektu: Ing. Tomáš Florián Autoři práce: Martin
Zařízení pro měření teploty, atmosférického tlaku a nadmořské výšky
FREESCALE TECHNOLOGY APPLICATION 2012-2013 Zařízení pro měření teploty, atmosférického tlaku a nadmořské výšky Jméno: Libor Odstrčil Ročník: 3. Obor: IŘT Univerzita Tomáše Bati ve Zlíně, Fakulta aplikované
11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr
11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr Otázky k úloze (domácí příprava): Pro jakou teplotu je U = 0 v případě použití převodníku s posunutou nulou dle obr. 1 (senzor Pt 100,
Fakulta elektrotechniky a komunikačních technologií Vysokého Učení Technického v Brně. Semestrální práce
Fakulta elektrotechniky a komunikačních technologií Vysokého Učení Technického v Brně Semestrální práce Měřič saturace indukčností pro spínané zdroje Obor: BAMT Předmět: BROB Rok: 2014 Vedoucí: František
Návod k použití PROFESIONÁLNÍ DIGITÁLNÍ TESTER. Popis Symboly Popis.... Prověření spojitosti
Návod k použití PROFESIONÁLNÍ DIGITÁLNÍ TESTER Mod. VE 8020 Čtěte pozorně všechny instrukce!!! Rozměry Popis testeru Tabulka symbolů Symbo ly Popis Symboly Popis DC V případě stejnosměrných... Test diody
Elektronické praktikum EPR1
Elektronické praktikum EPR1 Úloha číslo 4 název Záporná zpětná vazba v zapojení s operačním zesilovačem MAA741 Vypracoval Pavel Pokorný PINF Datum měření 9. 12. 2008 vypracování protokolu 14. 12. 2008
Elektrická měření pro I. ročník (Laboratorní cvičení)
Střední škola informatiky a spojů, Brno, Čichnova 23 Elektrická měření pro I. ročník (Laboratorní cvičení) Studentská verze Zpracoval: Ing. Jiří Dlapal B R N O 2011 Úvod Výuka předmětu Elektrická měření
FILIP SCHWANK. Katedra měření, listopad 2017
FILIP SCHWANK Katedra měření, listopad 2017 CO JE TO MBED Knihovna pro programování mikrokontrolérů Jazyk C++ Jednoduché funkce dělají složité věci Od řidiče auta až po jeho mechanika JAK NA TO Registrovat
Výuková laboratorní sestava seminář pro učitele
Výuková laboratorní sestava seminář pro učitele Programování kitů v ARM MBED Bc. Petr Kůrka (kurkape6@fel.cvut.cz) Katedra měření Fakulta elektrotechnická České vysoké učení technické v Praze Možnosti
DIGI Timer 8 8 kanálové stopky se záznamem dat
www.dhservis.cz 8 kanálové stopky se záznamem dat Úvod Digi Timer 8 jsou osmikanálové jednoúčelové stopky, určené k časování po pěti minutových intervalech. Sdružují v sobě osm časovačů, z nichž každý
B6. Odpojovače baterií
Projekt BROB - 2013 B6. Odpojovače baterií Autor práce: Karel Kozumplík, UAMT VUT FEKT Martin Krčmář, UAMT VUT FEKT Vedoucí práce: Ing. Tomáš Florián Obsah Zadání:...3 Úvod:...3 Popis zapojení:...4 Schéma
www.snailinstruments.com www.picaxe.cz www.hobbyrobot.cz
Začínáme www.snailinstruments.com www.picaxe.cz www.hobbyrobot.cz Co všechno budete potřebovat: počítač třídy PC, vybavený operačním systémem Windows (2000 až W7) mikrokontrolér PICAXE (zde pracujeme s
ČÍSLICOVÝ MULTIMETR AX-100
ČÍSLICOVÝ MULTIMETR AX-100 NÁVOD K OBSLUZE 1. Bezpečnostní pokyny 1. Nepřivádějte na vstup veličiny, jejichž hodnota během měření překračuje mezní hodnotu. 2. Při měření napětí většího než 36 V DCV nebo
Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící, výpočetní a regulační technice. Má napěťové zesílení alespoň A u
Fyzikální praktikum č.: 7 Datum: 7.4.2005 Vypracoval: Tomáš Henych Název: Operační zesilovač, jeho vlastnosti a využití Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící,
TENZOMETRICKÝ PŘEVODNÍK
TENZOMETRICKÝ PŘEVODNÍK typ TZA1xxxx s proudovým aktivním výstupem www.aterm.cz 1 Obsah 1. Úvod 3 2. Obecný popis tenzometrického převodníku 4 3. Technický popis tenzometrického převodníku 4 4. Nastavení
SA 340. Indikace rychlosti s analogovým výstupem. Zkrácený návod. control motion interface
control motion interface motrona GmbH Zwischen den Wegen 32 78239 Rielasingen - Germany Tel. +49 (0)7731-9332-0 Fax +49 (0)7731-9332-30 info@motrona.com www.motrona.de SA 340 Indikace rychlosti s analogovým
Střední průmyslová škola elektrotechnická a informačních technologií Brno
Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.07/1.5.00/34.0521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tématická sada:
Multimetr byl navržen za účelem měření AC/DC napětí, AC/DC proudu, odporu, kapacity, pracovního cyklu, teploty a testování diod.
dodavatel vybavení provozoven firem www.abetec.cz Multimetr CMM-10 Obj. číslo: 106001359 Výrobce: SONEL S. A. Popis Multimetr byl navržen za účelem měření AC/DC napětí, AC/DC proudu, odporu, kapacity,
1. Navrhněte RC oscilátor s Wienovým článkem, operačním zesilovačem a žárovkovou stabilizací amplitudy, podle doporučeného zapojení, je-li dáno:
C OSCILÁTO 20-4. Navrhněte C oscilátor s Wienovým článkem, operačním zesilovačem a žárovkovou stabilizací amplitudy, podle doporučeného zapojení, je-li dáno: - rozsah frekvencí: f 60 Hz, f 600Hz - operační
2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je operační zesilovač. Pro měření byla použita souprava s operačním zesilovačem, kde napájení bylo 5V
IEDL 4.EB 8 1/8 1.ZADÁNÍ a) Změřte napěťovou nesymetrii operačního zesilovače pro různé hodnoty zpětné vazby (1kΩ, 10kΩ, 100kΩ) b) Změřte a graficky znázorněte přenosovou charakteristiku invertujícího
MĚŘENÍ TEPLOTY TERMOČLÁNKY
MĚŘENÍ TEPLOTY TERMOČLÁNKY Úkoly měření: 1. Změřte napětí termočlánku a) přímo pomocí ručního multimetru a stolního multimetru U3401A. Při výpočtu teploty uvažte skutečnou teplotu srovnávacího spoje termočlánku,
5. A/Č převodník s postupnou aproximací
5. A/Č převodník s postupnou aproximací Otázky k úloze domácí příprava a) Máte sebou USB flash-disc? b) Z jakých obvodů se v principu skládá převodník s postupnou aproximací? c) Proč je v zapojení použit
Měření vlastností a základních parametrů elektronických prvků
Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny Předmět Ročník /y/ CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_EM_1.08_měření VA charakteristiky usměrňovací diody Střední odborná škola a Střední
Fyzikální praktikum 3 Operační zesilovač
Ústav fyzikální elekotroniky Přírodovědecká fakulta, Masarykova univerzita, Brno Fyzikální praktikum 3 Úloha 7. Operační zesilovač Úvod Operační zesilovač je elektronický obvod hojně využívaný téměř ve
Voltampérová charakteristika diody
Voltampérová charakteristika diody Pozn.: Voltampérovou charakteristiku diod, resp. i rezistorů, žárovek aj. lze proměřovat se soupravou ISES-PCI a též i s ISES-USB. Souprava ISES-PCI, resp. ISES-PCI Professional
Ukázka práce na nepájivém poli pro 2. ročník SE. Práce č. 1 - Stabilizovaný zdroj ZD + tranzistor
Ukázka práce na nepájivém poli pro 2. ročník SE Práce č. 1 - Stabilizovaný zdroj ZD + tranzistor Seznam součástek: 4 ks diod 100 V/0,8A, tranzistor NPN BC 337, elektrolytický kondenzátor 0,47mF, 2ks elektrolytického
Laboratorní zdroj - 3. část
Laboratorní zdroj - 3. část Publikované: 20.03.2016, Kategória: Silové časti www.svetelektro.com Měření statických a dynamických vlastností zdroje. Vývoj zdroje dospěl do fáze, kdy se mi podařilo odladit
1.3 Bipolární tranzistor
1.3 Bipolární tranzistor 1.3.1 Úkol: 1. Změřte vstupní charakteristiku bipolárního tranzistoru 2. Změřte převodovou charakteristiku bipolárního tranzistoru 3. Změřte výstupní charakteristiku bipolárního
4x vstup pro měření unifikovaného signálu 0 10 V, 0 20 ma, 4 20 ma. komunikace linkami RS232 nebo RS485
měřící převodník 4x vstup pro měření unifikovaného signálu 0 10 V, 0 20 ma, 4 20 ma komunikace linkami RS232 nebo RS485 13. ledna 2017 w w w. p a p o u c h. c o m 0294.01.02 Katalogový list Vytvořen: 4.5.2007
TENZOMETRICKÝ PŘEVODNÍK
TENZOMETRICKÝ PŘEVODNÍK typ TZA3xxxx s proudovým aktivním výstupem www.aterm.cz 1 Obsah 1. Úvod 3 2. Obecný popis tenzometrického převodníku 4 3. Technický popis tenzometrického převodníku 4 4. Nastavení
- + C 2 A B V 1 V 2 - U cc
RIEDL 4.EB 10 1/6 1. ZADÁNÍ a) Změřte frekvenční charakteristiku operačního zesilovače v invertujícím zapojení pro růžné hodnoty zpětné vazby (1, 10, 100, 1000kΩ). Vstupní napětí volte tak, aby nedošlo
1. Připojení analogových senzorů
Z minulých lekcí víme, jak k našemu systému připojit základní prvky uživatelského rozhraní (tlačítka, LED, LCD displej, sériová linka), jak detekovat přiblížení uživatele, měřit úroveň osvětlení a jak
Obslužný software. PAP ISO 9001
Obslužný software PAP www.apoelmos.cz ISO 9001 červen 2008, TD-U-19-20 OBSAH 1 Úvod... 4 2 Pokyny pro instalaci... 4 2.1 Požadavky na hardware...4 2.2 Postup při instalaci...4 3 Popis software... 5 3.1
(s výjimkou komparátoru v zapojení č. 5) se vyhněte saturaci výstupního napětí. Volte tedy
Operační zesilovač Úvod Operační zesilovač je elektronický obvod hojně využívaný téměř ve všech oblastech elektroniky. Jde o diferenciální zesilovač napětí s velkým ziskem. Jinak řečeno, operační zesilovač
Obr. 1. Grafické programovací prostředí LabVIEW
Úloha č. 1: Měření časové konstanty RC členu Úvod Laboratorní úloha se zabývá měřením časové konstanty RC členu pomocí měřicí karty NI USB-6009, která je přes USB port připojena k počítači a řízena (ovládána)
AD4RS. měřící převodník. 4x vstup pro měření unifikovaného signálu 0 10 V, 0 20 ma, 4 20 ma. komunikace linkami RS232 nebo RS485
měřící převodník 4x vstup pro měření unifikovaného signálu 0 10 V, 0 20 ma, 4 20 ma komunikace linkami RS232 nebo RS485. Katalogový list Vytvořen: 4.5.2007 Poslední aktualizace: 15.6 2009 09:58 Počet stran:
Konferenční zařízení. Cíl projektu. Vybavení. Jak jsem postupoval. Projekt Nekoř 2009 Jan Sixta, jan.16@seznam.cz
Konferenční zařízení Projekt Nekoř 2009 Jan Sixta, jan.16@seznam.cz Cíl projektu Cílem projektu bylo vytvořit zařízení zvané Konferenční časomíra. Zařízení by mělo umožňovat (nejen) přednášejícím na konferencích
Architektura systému Pro zajištění shodnosti s normami EMC může být měnič volitelně vybaven odrušovacím filtrem.
OMRON Frekvenční měnič 3G3JV Obecné informace Frekvenční měnič 3G3JV je miniaturní frekvenční převodník se širokými uživatelskými možnostmi nastavení parametrů. Jedinečné řešení napájecí sekce umožnilo,
TENZOMETRICKÝ PŘEVODNÍK
TENZOMETRICKÝ PŘEVODNÍK typ TENZ2109-5 Výrobu a servis zařízení provádí: ATERM, Nad Hřištěm 206, 765 02 Otrokovice Telefon/Fax: 577 932 759 Mobil: 603 217 899 E-mail: matulik@aterm.cz Internet: http://www.aterm.cz
Laboratorní cvičení z předmětu Elektrická měření 2. ročník KMT
MĚŘENÍ S LOGICKÝM ANALYZÁTOREM Jména: Jiří Paar, Zdeněk Nepraš Datum: 2. 1. 2008 Pracovní skupina: 4 Úkol: 1. Seznamte se s ovládáním logického analyzátoru M611 2. Dle postupu měření zapojte pracoviště
2-LC: Měření elektrických vlastností výkonových spínačů (I)
2-LC: Měření elektrických vlastností výkonových spínačů (I) Cíl měření: Ověření a porovnání vlastností výkonových spínačů: BJT, MOSFET a tyristoru. Zkratování řídících vstupů Obr. 1 Přípravek pro měření
Návod k obsluze řídící jednotky TSC48-2
Návod k obsluze řídící jednotky TSC48-2 Obsah Stav po zapnutí... 3 Nabídka Menu... 4 Nastavení Zobrazení... 4 Nastavení Dimery... 5 Nastavení Krivky... 6 Nastaveni TSC... 7 Funkce v režimu Servis... 8
1.1 Pokyny pro měření
Elektronické součástky - laboratorní cvičení 1 Bipolární tranzistor jako zesilovač Úkol: Proměřte amplitudové kmitočtové charakteristiky bipolárního tranzistoru 1. v zapojení se společným emitorem (SE)
2. MĚŘENÍ TEPLOTY TERMOČLÁNKY
2. MĚŘENÍ TEPLOTY TERMOČLÁNKY Otázky k úloze (domácí příprava): Jaká je teplota kompenzačního spoje ( studeného konce ), na kterou koriguje kompenzační krabice? Dá se to zjistit jednoduchým měřením? Čemu
Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/
Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0452 OV_2_28_Vf oscilátor Název školy Střední
Petr Myška Datum úlohy: Ročník: první Datum protokolu:
Úloha číslo 1 Zapojení integrovaného obvodu MA 785 jako zdroje napětí a zdroje proudu Úvod: ílem úlohy je procvičit techniku měření napětí a proudu v obvodové struktuře, měření vnitřní impedance zdroje,
Popis obvodu U2403B. Funkce integrovaného obvodu U2403B
ASICentrum s.r.o. Novodvorská 994, 142 21 Praha 4 Tel. (02) 4404 3478, Fax: (02) 472 2164, E-mail: info@asicentrum.cz ========== ========= ======== ======= ====== ===== ==== === == = Popis obvodu U2403B
SEMESTRÁLNÍ PROJEKT Y38PRO
SEMESTRÁLNÍ PROJEKT Y38PRO Závěrečná zpráva Jiří Pomije Cíl projektu Propojení regulátoru s PC a vytvoření knihovny funkcí pro práci s regulátorem TLK43. Regulátor TLK43 je mikroprocesorový regulátor s
Manuál přípravku FPGA University Board (FUB)
Manuál přípravku FPGA University Board (FUB) Rozmístění prvků na přípravku Obr. 1: Rozmístění prvků na přípravku Na obrázku (Obr. 1) je osazený přípravek s FPGA obvodem Altera Cyclone III EP3C5E144C8 a
NTIS-VP1/1: Laboratorní napájecí zdroj programovatelný
NTIS-VP1/1: Laboratorní napájecí zdroj programovatelný stejnosměrný zdroj s regulací výstupního napětí a proudu s programovatelnými funkcemi 3 nezávislé výstupní kanály výstupní rozsah napětí u všech kanálů:
Kategorie M. Test. U všech výpočtů uvádějte použité vztahy včetně dosazení! 1 Sběrnice RS-485 se používá pro:
Krajské kolo soutěže dětí a mládeže v radioelektronice, Vyškov 2009 Test Kategorie M START. ČÍSLO BODŮ/OPRAVIL U všech výpočtů uvádějte použité vztahy včetně dosazení! 1 Sběrnice RS-485 se používá pro:
14. AKCELEROMETR. Úkol měření. Postup měření
Úkol měření 14. AKCELEROMETR 1. Seznamte se s fyzikální podstatou činnosti mikroelektromechanického akcelerometru ADXL05, programu pro ovládání a sběr dat z akcelerometrického senzoru a strukturou mikropočítačem
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ v Praze Ú12110 Ústav přístrojové a řídící techniky
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ v Praze Ú12110 Ústav přístrojové a řídící techniky Semestrální práce Python pro vědecké výpočty Generátor pulzů pro simulaci vstupů kontroly trakce vozu Formule student Vypracoval:
Programování mikropočítačů platforma Arduino
Programování mikropočítačů platforma Arduino Obsah Arduino... 1 Digitální výstupy a vstupy... 2 Připojení LED k Arduinu... 2 Co je to LED?... 3 Výpočet hodnoty předřadného rezistoru pro LED... 3 Barevné
TENZOMETRICKÉ PŘEVODNÍKY
TENZOMETRICKÉ PŘEVODNÍKY řady TZP s aktivním frekvenčním filtrem www.aterm.cz 1 Obsah 1. Úvod 3 2. Obecný popis tenzometrického převodníku 3 3. Technický popis tenzometrického převodníku 4 4. Nastavení
Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/
Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0452 OV_2_24_Relaxační oscilátor Název školy
KOMUNIKACE PC DAT 400/500. přes USB programem INOVATION
KOMUNIKACE PC DAT 400/500 přes USB programem INOVATION O programu Inovation Umožňuje konfigurovat analogově/digitální převodník DAT400/500 dálkovým ovládáním, přes PC a sériové rozhraní RS232 nebo přes
Moduly zpětné vazby v DCC kolejišti
120419-moduly 006 až 010 Moduly zpětné vazby v DCC kolejišti Vytvořil jsem si sadu vlastních modulů pro řešení zpětné vazby v DCC kolejišti. Z praktických důvodů jsem moduly rozdělil na detektory obsazení
Frekvence. BCM V 100 V (1 MΩ) - 0,11 % + 40 μv 0 V 6,6 V (50 Ω) - 0,27 % + 40 μv
Obor měřené veličiny: elektrické veličiny Kalibrace: Nominální teplota pro kalibraci: (23 ± 2) C 1. STEJNOSMĚRNÉ NAPĚTÍ generování BCM3751 0 mv 220 mv - 0,0010 % + 0,80 μv 220 mv 2,2 V - 0,00084 % + 1,2
Název: Tranzistorový zesilovač praktické zapojení, měření zesílení
Název: Tranzistorový zesilovač praktické zapojení, měření zesílení Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika Tematický celek:
Čtyřnohý kráčející robot
Čtyřnohý kráčející robot Jan Šimurda (134 629) Martin Řezáč (134 600) Ivan Štefanisko (138 952) Radek Sysel (133 850) Vedoucí projektu: Ing. Vlastimil Kříž ÚSTAV AUTOMATIZACE A MĚŘÍCÍ TECHNIKY Obsah 1.
MIDAM Verze 1.1. Hlavní okno :
MIDAM Verze 1.1 Podporuje moduly Midam 100, Midam 200, Midam 300, Midam 400, Midam 401, Midam 410, Midam 411, Midam 500, Midam 600, Ghc 2x. Umožňuje nastavení parametrů, sledování výstupních nebo vstupních
Přednáška A3B38MMP. Bloky mikropočítače vestavné aplikace, dohlížecí obvody. 2015, kat. měření, ČVUT - FEL, Praha J. Fischer
Přednáška A3B38MMP Bloky mikropočítače vestavné aplikace, dohlížecí obvody 2015, kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2015, J.Fischer, kat. měření, ČVUT - FEL Praha 1 Hlavní bloky procesoru
IOFLEX02 PROGRAMOVATELNÁ DESKA 16 VSTUPŮ A 32 VÝSTUPŮ. Příručka uživatele. Střešovická 49, Praha 6, s o f c o s o f c o n.
IOFLEX02 PROGRAMOVATELNÁ DESKA 16 VSTUPŮ A 32 VÝSTUPŮ Příručka uživatele Střešovická 49, 162 00 Praha 6, e-mail: s o f c o n @ s o f c o n. c z tel./fax : 220 610 348 / 220 180 454, http :// w w w. s o
Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr
Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,
II. Nakreslete zapojení a popište funkci a význam součástí následujícího obvodu: Integrátor s OZ
Datum: 1 v jakém zapojení pracuje tranzistor proč jsou v obvodu a jak se projeví v jeho činnosti kondenzátory zakreslené v obrázku jakou hodnotu má odhadem parametr g m v uvedeném pracovním bodu jakou
Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/
Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0452 OV_2_59_Digitálně analogový převodník
2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě zenerova dioda její hodnoty jsou uvedeny v tabulce:
REDL 3.EB 9 1/11 1.ZADÁNÍ a) Změřte voltampérovou charakteristiku zenerovy diody v propustném i závěrném směru. Charakteristiky znázorněte graficky. b) Vypočtěte a graficky znázorněte statický odpor diody
Manuální, technická a elektrozručnost
Manuální, technická a elektrozručnost Realizace praktických úloh zaměřených na dovednosti v oblastech: Vybavení elektrolaboratoře Schématické značky, základy pájení Fyzikální principy činnosti základních
Návrh konstrukce odchovny 3. dil
1 Portál pre odborné publikovanie ISSN 1338-0087 Návrh konstrukce odchovny 3. dil Pikner Michal Elektrotechnika 16.02.2011 V minulém díle jsme se seznámily s elektronickým zapojením. Popsali jsme si principy
Projekt BROB. Základy robotiky. Téma: Digitální časomíra. Vedoucí projektu: Tomáš Jílek
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Základy robotiky Projekt BROB Téma: Digitální časomíra Vedoucí projektu: Tomáš Jílek Projektanti: Petr Bilík (ID:191970)
MĚŘENÍ NA INTEGROVANÉM ČASOVAČI Navrhněte časovač s periodou T = 2 s.
MĚŘENÍ NA INTEGOVANÉM ČASOVAČI 555 02-4. Navrhněte časovač s periodou T = 2 s. 2. Časovač sestavte na modulovém systému Dominoputer, startovací a nulovací signály realizujte editací výstupů z PC.. Změřte
2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě nízkofrekvenční nevýkonový tranzistor KC 639. Mezní hodnoty jsou uvedeny v tabulce:
RIEDL 3.EB 10 1/11 1.ZADÁNÍ a) Změřte statické hybridní charakteristiky tranzistoru KC 639 v zapojení se společným emitorem (při měření nesmí dojít k překročení mezních hodnot). 1) Výstupní charakteristiky
1.Zadání 2.POPIS MĚŘENÉHO PŘEDMĚTU 3.TEORETICKÝ ROZBOR
RIEDL 4.EB 11 1/8 1.Zadání a) Změřte převodní charakteristiku optočlenu WK16321 U 2 =f(i f ) b) Ověřte přesnost obdélníkových impulzů o kmitočtu 100Hz a 10kHz při proudu vysílače 0,3I fmax a 0,9I fmax
Úloha č. 4. Připojení 7-segmentového zobrazovače LED s posuvným registrem, připojení tlačítek
Úloha č. 4. Připojení 7-segmentového zobrazovače LED s posuvným registrem, připojení tlačítek Úkol: K STM32F100 připojte pomocí sério-paralelního posuvného registru 7-segmetový zobrazovač s LED a dále
10. Měření. Chceme-li s měřícím přístrojem cokoliv dělat, je důležité znát jeho základní napěťový rozsah, základní proudový rozsah a vnitřní odpor!
10. Měření V elektrotechnice je měření základní a zásadní činností každého, kdo se jí chce věnovat. Elektrika není vidět a vše, co má elektrotechnik k tomu, aby zjistil, co se v obvodech děje, je měření.
Elektronické praktikum EPR1
Elektronické praktikum EPR1 Úloha číslo 2 název Vlastnosti polovodičových prvků Vypracoval Pavel Pokorný PINF Datum měření 11. 11. 2008 vypracování protokolu 23. 11. 2008 Zadání 1. Seznamte se s funkcí
Teoretický úvod: [%] (1)
Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Číslo úlohy ZESILOVAČ OSCILÁTOR 101-4R Zadání 1. Podle přípravku
TECHNICKÁ DOKUMENTACE
Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace TECHNICKÁ DOKUMENTACE Rozmístění a instalace prvků a zařízení Ing. Pavel Chmiel, Ph.D. OBSAH VÝUKOVÉHO MODULU 1. Součástky v elektrotechnice
PROGRAMOVÁNÍ MIKROPOČÍTAČŮ CVIČENÍ 6
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROGRAMOVÁNÍ MIKROPOČÍTAČŮ CVIČENÍ 6 Práce s analogově digitálním převodníkem Jan Dolinay Petr Dostálek Zlín 2013 Tento studijní materiál
1. Navrhněte a prakticky realizujte pomocí odporových a kapacitních dekáda derivační obvod se zadanou časovou konstantu: τ 2 = 320µs
1 Zadání 1. Navrhněte a prakticky realizujte pomocí odporových a kapacitních dekáda integrační obvod se zadanou časovou konstantu: τ 1 = 62µs derivační obvod se zadanou časovou konstantu: τ 2 = 320µs Možnosti
MĚŘENÍ Laboratorní cvičení z měření. Měření parametrů tyristoru, část 3-5-4
MĚŘENÍ Laboratorní cvičení z měření Měření parametrů tyristoru, část Číslo projektu: Název projektu: Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 20 Číslo materiálu: VY_32_INOVACE_
VOLTAMPÉROVÉ CHARAKTERISTIKY DIOD
Universita Pardubice Ústav elektrotechniky a informatiky Elektronické součástky Laboratorní cvičení č.1 VOLTAMPÉROVÉ CHARAKTERISTIKY DIOD Jméno: Pavel Čapek, Aleš Doležal, Lukáš Kadlec, Luboš Rejfek Studijní
Tenzometrické měřidlo
Tenzometrické měřidlo typ www.aterm.cz 1 Obsah 1. ÚVOD... 3 2. OBECNÝ POPIS ZAŘÍZENÍ...4 3. POPIS OBSLUHY ZAŘÍZENÍ...5 4. KALIBRACE ZAŘÍZENÍ...5 5. BEZPEČNOSTNÍ OPATŘENÍ A ELEKTROMAGNETICKÁ KOMPATIBILITA...7