MONITOROVÁNÍ ŽIVOTNÍHO PROSTŘEDÍ METODOU EIS
|
|
- Anežka Kadlecová
- před 6 lety
- Počet zobrazení:
Transkript
1 MONITOROVÁNÍ ŽIVOTNÍHO PROSTŘEDÍ METODOU EIS Jana Pařílková Luboš Pařílek Zuzana Műnsterová Náměšť nad Oslavou Historie Vysokého učení technického v Brně (VUT v Brně) sahá až k 19. září 1899, kdy rakouský císař a uherský král František Josef I. podepsal dekret o založení české vysoké školy technické v Brně. Byla první českou vysokou školou na Moravě. Univerzita začínala se čtyřmi profesory a 47 posluchači a po více než 11 letech dospěla do pozice mezinárodně uznávané vzdělávací instituce, která nabízí současné špičkové vědecké a odborné znalosti na 8 fakultách a 2 vysokoškolských ústavech v široké škále oborů od technických, přírodovědných, přes ekonomické až po umělecké. ŽIVOTNÍ PROSTŘEDÍ Životní prostředí je složitý systém složený z přírodních, umělých a sociálních složek materiálního světa, jež jsou nebo mohou být s uvažovaným objektem ve stálé interakci. Je to vše, co vytváří přirozené podmínky existence organismů, včetně člověka a je předpokladem jejich dalšího vývoje. Složkami je především ovzduší, voda, horniny, půda, organismy, ekosystémy a energie. Ministerstvo životního prostředí, 25; Zákon 17/1992 Sb. 2 MONITOROVÁNÍ Monitorování je systematické sledování vybraných veličin v prostoru a čase za účelem jejich porovnání a vyhodnocení. Každý monitorovací systém je tedy charakterizován oblastí, v nichž se provádí sběr dat, způsobem sběru dat (kontinuální, diskrétní) a množinou veličin, které se na dané oblasti sledují (bodově, plošně, objemově). Monitorování se týká celého procesu sběru, zpracování a využití environmentálních dat a informací. pevná částice obalová voda kapilární voda vzduch nebo gravitační voda Sledovaní elektrické impedance Z pórovitého prostředí a jejích změn (zatěžování vodou, změna obsahu vody, vlhkost, sací schopnost, infiltrace vody, vysoušení, šíření látek proměnných vodivostí, apod.), Složitost problému proudění tekutin pórovitým prostředím o nestacionární proudění, prostředí může být nasycené nenasycené, homogenní nehomogenní, izotropní neizotropní, různé materiálové, strukturální, granulometrické, atd. složení.
2 ELEKTRICKÁ IMPEDANČNÍ SPEKTROMETRIE Její popularita vzrostla na konci 2. století, uplatnila se při studiu fyzikálních a chemických vlastností organických a anorganických látek; Detekce zhoubných buněk v živých tkáních. glukometr Pendra (Zurich, Swiss), o Neinvazivní kontinuální měření obsahu cukru Lifegrad ICG impedanční kardiograf v krvi. (CAS Medical Systems, Inc., USA). o Impedanční kardiografie. o Skenování plic. o Detekce dutin v kmenech stromů. Skenování plic přístrojem OXBACT3 o Archeologický průzkum. EIT, (Universita Oxford Brookes, UK ). o Sledování chemické čistoty materiálů. o Detekce obsahu vody v látkách. o Stanovení koncentrace iontů v roztocích. o Monitorování vlhkosti zdiva. o Monitorování koroze železobetonových konstrukcí. Treetronic EIT, uprostřed sono o Nedestruktivní testování betonu (měření tomogram, EIT tomogram Z; zdroj: trhlin, rozložení konduktivity odpovídá obsahu vody uvnitř betonové desky, atd.). ( DE). o STANOVIŠTĚ4 STANOVIŠTĚ2 STANOVIŠTĚ3 STANOVIŠTĚ1 4, 3,5 h [m ] 3, 2,5 2, 1,5 n ávo dn í l íc 1, V z d u n ý líc,5,, 5, 1 G [S],1 5 FYZIKÁLNÍ PODSTATA METODY EIS n n Základním principem metody EIS je měření frekvenční charakteristiky elektrické impedance Z prostředí (organické i anorganické ). Elektrická impedance Z je komplexní veličina popisující zdánlivý odpor porézního prostředí a fázový posun elektrického napětí před elektrickým proudem při průchodu harmonického střídavého elektrického proudu (AC) určité frekvence. U Z= I Im Elektrická impedance Z je vždy větší nebo rovna reálnému elektrickému odporu R a obsahuje zdánlivý (jalový) elektrický odpor induktanci XL a kapacitanci XC. w = 2p f = R>>> W w Z= R+ j X Ohmův vztah pro AC obvody XC = 2p T Z Z X j R Re I 1 wc Vzdálenost elektrod snímače l je konstantní a malá (max. 2 m) silokřivky el. proudu I budou dané délkou l. Tok el. proudu I je podmíněn el. polem. Kolem vodiče se vytvoří kolmé magnetické pole. Rє(11 12) W I Zemina se chová Zemina se chová jako el. izolant. jako el. vodič. Výsledná indukčnost L bude obdobná indukčnosti přímého vodiče protékaného proudem, a bude pravděpodobně malá. Každý el. izolant lze polarizovat el. polem, tj. nabít jej elektrickým nábojem jako kapacitor. I suchá zemina se tedy projevuje kapacitou C. XL << XC.
3 Z-metr IV 1 Ω 1 Hz.2 V, ±2% z 1 MΩ 2 khz 1. V, rozsahu ±2 1, 8, USB 16, 32, SD karta interní, 64, externí ethernet 128, bluetooth 256 Bezpečnost práce Uživatelský program PŘÍKLADY POUŽÍVANÝCH SOND KONTAKTNÍ: mobilní stabilní; invazivní neinvazivní; laboratorní polní. Vyhodnocovací program Napájení Přepínač Počet kanálů Komunikační rozhraní Přesnost měření fáze Přesnost měření modulu Z Měřicí napětí Parametr Frekvenční rozsah TECHNICKÁ SPECIFIKACE Impedanční rozsah E!7614 LF1319 Metrologická návaznost, revizní zpráva, manuál. Dobíjecí bateriové články
4 APLIKACE V PORÉZNÍM PROSTŘEDÍ Vybrané aplikace aparatury ŽABČICE Stabilní sonda celkové délky,85 m, měření mobilní sondou, frekvenční analýza, odvození velikosti zrna matrice a písku, rozdílný travní porost. 1 m 1 m H_2_5 1 m G_2_5 G 5 F_2_5 F 5 E_2_5 E 5 FREKVENČNÍ ANALÝZA X [W] D_2_5 D 5 C_2_5 C 5 B_2_5 B 5 A_2_5 A_1_5 A 5 15/18 16 /1 8
5 Změny el. vodivosti s povětrnostními vlivy VL 1_2 R [W] 5 1 -, , , , , , , , ,9 VL 1_2 X [W] , , , , , , , ,8 -,9 VL 2_3 R [W] , , , , , , , , ,9 VL 2_3 X [W] , , , , , , ,7 -,8 -,9 VL 3_4 R [W] , , , , , , , , ,9 VL 3_4 X [W] , , , , , , , ,8 -, Mapy G (sucho) (popraskaná zemina) (po krátkém dešti, v Brně napršelo 21 mm) (déšť, v Brně 72 mm) (opět sucho)
6 Schéma hráze ZEMNÍ HRÁZ MALÉ VODNÍ NÁDRŽE Monitorování změn elektrické vodivosti od 8/26 do 12/212, kontrolní měření 216. Celková délka sondy 3,5 m. První měření úroveň je,15 m pod povrchem. Vzdálenost mezi sondami je 2, m. Délka elektrody i izolantu je,15 m průměr tyčí je,25 m. Měřicí frekvence je 8 khz. Ověření geoelektromagnetickou metodou (GEM) Kobeřice nádrž Bezedník III Relativní změna Gaktuální / Gpočáteční Nestabilní část je zobrazena modrou barvou, bezpečnostní přeliv zelenou a homogenní pískové hlíny materiálu červenou. Tomogram el. vodivosti, příčný řez. THE METER OF ELECTRICAL IMPEDANCE Z meter 3,5 m serial number of rods with electrodes m 12 1 monitoring profile downstream face upstream face n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8,5,5 area of increased moisture 1, 1, 1,5 P2 P1 water level in reservoir 1,5 m n=9 n = 1 n = 11 n = 12 P5 P4 P3 P6 rod with electrodes h =.2 m h =.5 m h =.8 m h = 1.1 m h = 1.4 m h = 1.7 m crown of dike electrode h = 2. m h = 2.3 m h = 2.6 m h = 2.9 m h = 3.2 m h = 3.5 m 2, 2,5 one electrode dike body 3, m evaluated points level of the dike bed 3,5,4,8 1,2 s[s/m] sensor L = 12 m length of the measured section 23 Výsledky GEM odpovídají zjištěním EIS.
7 Morfologie dna malé vodní nádrže R [W] Z VÝSLEDKŮ MONITOROVÁNÍ 25
8 ODKALOVACÍ NÁDRŽ RÝZMBURK Měření probíhalo v roce 26 a 27. Sledování hranice mezi vodou a kalem v usazovací nádrži, 2 stabilní sondy a 1 mobilní, dvousvorkové měření, doba měření v jedné svislé linii byla cca 2 minuty. STABILNÍ MĚŘICÍ ELEKTRODA 3,6 m Odkalovací nádrž Velký vliv počasí na měření. Z výsledků změn elektrické vodivosti lze odhadnout různé tloušťky kalu.
9 STABILNÍ MĚŘICÍ ELEKTRODA 6, m ZMĚNY KALU ROZHRANÍ URČENÉ RŮZNÝMI METODAMI Metoda hustotního rozhraní 1,2 m 2,2 m 2,9 m 3,6 3,3 3, 2,7 2,4 2,1 1,8 1,5 1,2,9,6,3, Echolot 1,5 m; 2,2 m 2 nezávislé metody,4,8 G [S] 6 5,7 5,4 5,1 4,8 4,5 4,2 3,9 3,6 3,3 3 2,7 2,4 2,1 1,8 1,5 1,2,9,6,3 stara dlouha nova u dlouhe,3,5,7,9 G [S] Echolot 2,1 m; 3,2 m Metoda hustotního rozhraní 2,3 m 3,3 m 3,7 m Stabilní systém 3,6 m sonda ,6 3,3 3, 2,7 2,4 2,1 1,8 1,5 1,2,9,6,3,,2,4,6,8,1,12 G [S] 6 5,7 5,4 5,1 4,8 4,5 4,2 3,9 3,6 3,3 3 2,7 2,4 2,1 1,8 1,5 1,2,9,6,3 Stabilní systém 6, m sonda ,2,4,6,8,1,12 G [S]
10 Z VÝSLEDKŮ MONITOROVÁNÍ První rozhraní mezi vodou a kalem, Porovnání v čase se satelitními snímky. Říjen 26 svislice č.12 prolifu 1 odkalovací nádrže,,1 profil 1 (první u návodního líce hráze),2 pozice měření 11 G [S] 11, , , ,5 15, 1 1, 2 2, 4 5 hloubka [m] 3 3, I II III 4, IV 5, V 6, 6 7, Říjen 27 Měřeno,52 m; 16 úrovní; aerace trvala 1 minut. Elektrické parametry snímány po (1, 2, 3, 4, 5, 6, 12 and 24) minutách, 24 hodinách a cca po 2 měsících , Aktivační nádrž ČOV Modřice 15 snímačů na sondě, celková délka 2 m. Měření Z-metrem III i Z-metrem IV. Různá intenzita provzdušnění, různé časové cykly, různá kvalita kalů. po 55 dnech 39 Mechanicky vyčištěná voda se přivede do 4 aktivačních nádrží biologického stupně, který je navržen jako aktivace s pre-denitrifikací a anaerobním odstraňováním fosforu. Celkový biologický objem nádrží je 11 3 m3. Každá nádrž má následující parametry objem m3, hloubka vody 6 m, objem anaerobní zóny 4, 2 m3, objem anoxické zóny DNRS 2, 25 m3, objem anoxické zóny 7 75 m3, objem provzdušňované zóny m3.
11 Z VÝSLEDKŮ MONITOROVÁNÍ SONDY Aerační zařízení jemné provzdušňování rov Sondy EIS vzduchové potrubí Kal KOMPOSTÁRNA NÁMĚŠŤ NAD OSLAVOU VÍCENICE VÝHODY NEVÝHODY kontaktní metoda, nutnost kalibrace, tj. jednoduchost, jednoznačnost, srozumitelnost, opakovatelnost, dostupnost. stanovení funkční závislosti mezi měřenými a požadovanými parametry. s.125 ST_1 R [ohm] X [ohm] 8 7 a podrcený surový bioodpad 2519,3-251,4 b bioodpad pro fázi provzdušňování 83,58-18,36 c zrající zavlažený kompost 16,8-1,5 d finální kompost před instalací na pole 21,6-25,3 s.5 s.1 s.15 s.2 achieve the desired temperature on T11 and T17 6 s [ms/m] vzorek t [s]
12
Sledování procesu kompostování metodou EIS Projekt - Nová technologie kompostování, projekt č. CZ /0.0/0.0/15_019/004646
Sledování procesu kompostování metodou EIS Projekt - Nová technologie kompostování, projekt č. CZ.01.1.02/0.0/0.0/15_019/004646 Za tým řešitelů doc. Ing. Jana Pařílková, CSc. 2 Kompostování Kompostování
Computerized Measuring System for Analysis of Chosen Characteristics and Processes in Porous Environment by EIS Method E!4981, EIS method PEM
Computerized Measuring System for Analysis of Chosen Characteristics and Processes in Porous Environment by EIS Method E!4981, EIS method PEM Projekt č. E!4981 programu EUREKA Automatizovaný systém pro
Elektrická impedanční tomografie
Biofyzikální ústav LF MU Projekt FRVŠ 911/2013 Je neinvazivní lékařská technika využívající nízkofrekvenční elektrické proudy pro zobrazení elektrických vlastností tkaní a vnitřních struktur těla. Různé
Umožňuje měření zdánlivého odporu smyčky nakrátko s rozlišením 0,01 Ω v obvodech chráněných RCD, bez jeho vypnutí.
dodavatel vybavení provozoven firem www.abetec.cz Měřič zdánlivého odporu smyčky nakrátko MZC-304 Obj. číslo: 106001351 Výrobce: SONEL S. A. Popis Bezpečností kategorie: CAT IV / 300 V. Stupeň krytí: IP
Základní otázky pro teoretickou část zkoušky.
Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.
Proudění podzemní vody
Podpovrchová voda krystalická a strukturní voda vázaná fyzikálně-chemicky adsorpční vázaná molekulárními silami na povrchu částic hygroskopická (pevně vázaná) obalová (volně vázaná) volná voda kapilární
Multimetr byl navržen za účelem měření AC/DC napětí, AC/DC proudu, odporu, kapacity, pracovního cyklu, teploty a testování diod.
dodavatel vybavení provozoven firem www.abetec.cz Multimetr CMM-10 Obj. číslo: 106001359 Výrobce: SONEL S. A. Popis Multimetr byl navržen za účelem měření AC/DC napětí, AC/DC proudu, odporu, kapacity,
monitorování stavebních konstrukcí a geotechnických projektů pomocí optických vláken Technologie SOFO 1
monitorování stavebních konstrukcí a geotechnických projektů pomocí optických vláken Technologie SOFO www.safibra.cz 1 Obsah prezentace proč monitorovat co se měří prvky a schéma systému aplikace výhody
Proudové převodníky AC proudů
řada MINI MINI série 10 Malé a kompaktní. Řada navržená pro měření proudů od několika miliampérů až do 150 A AC. Díky svému tvaru jsou velmi praktické a snadno použitelné i v těsných prostorech. Jsou navrženy
NTIS-VP1/1: Laboratorní napájecí zdroj programovatelný
NTIS-VP1/1: Laboratorní napájecí zdroj programovatelný stejnosměrný zdroj s regulací výstupního napětí a proudu s programovatelnými funkcemi 3 nezávislé výstupní kanály výstupní rozsah napětí u všech kanálů:
On-line datový list FLOWSIC200 FLOWSIC200 / FLOWSIC200 PŘÍSTROJE PRO MĚŘENÍ RYCHLOSTI PROUDĚNÍ
On-line datový list FLOWSIC200 FLOWSIC200 / FLOWSIC200 A B C D E F H I J K L M N O P Q R S T Objednací informace Typ Výrobek č. FLOWSIC200 Na vyžádání Tento produkt nespadá podle článku 2 (4) do oblasti
Funkční vzorek. Geofyzikální ústředna GU100 modulární ústředna pro záznam dat v autonomním i síťovém režimu
Technická univerzita v Liberci Ústav pro nanomateriály, pokročilé technologie a inovace Evidenční list funkčního vzorku stupeň utajení: bez utajení Funkční vzorek Geofyzikální ústředna GU100 modulární
On-line datový list FLOWSIC200 PŘÍSTROJE PRO MĚŘENÍ RYCHLOSTI PROUDĚNÍ
On-line datový list FLOWSIC200 A B C D E F H I J K L M N O P Q R S T Objednací informace Typ Výrobek č. FLOWSIC200 Na vyžádání Přesné specifikace přístrojů a údaje o výkonu výrobku se mohou odlišovat a
ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA
ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých
TERMOFYZIKÁLNÍ VLASTNOSTI. Radek Vašíček
TERMOFYZIKÁLNÍ VLASTNOSTI Radek Vašíček Základní termofyzikální vlastnosti Tepelná konduktivita l (součinitel tepelné vodivosti) vyjadřuje schopnost dané látky vést teplo jde o množství tepla, které v
Elektřina. Elektrostatika: Elektrostatika: Elektrostatika: Analogie elektřiny s mechanikou: Elektrostatika: Souvislost a analogie s mechanikou.
Elektrostatika: Elektřina pro bakalářské obory Souvislost a analogie s mechanikou. Elektron ( v antice ) =?? Petr Heřman Ústav biofyziky, UK.LF Elektrostatika: Souvislost a analogie s mechanikou. Elektron
Měření kapacity kondenzátoru a indukčnosti cívky. Ověření frekvenční závislosti kapacitance a induktance pomocí TG nebo SC
Měření kapacity kondenzátoru a indukčnosti cívky. Ověření frekvenční závislosti kapacitance a induktance pomocí TG nebo SC Kondenzátor i cívka kladou střídavému proudu odpor, který nazýváme kapacitance
Rovinná harmonická elektromagnetická vlna
Rovinná harmonická elektromagnetická vlna ---- 1. příklad -------------------------------- 2 GHz prochází prostředím s parametry: r 5, r 1, 0.005 S / m. Amplituda intenzity magnetického pole je H m 0.25
Displej 1999 čít., 200 A ACA/DCA, 600 V ACV/DCV, True RMS, Ohm, Vodivost, Data Hold VIDLICOVÝ PROUDOVÝ MULTIMETR. Model : FT-9950
Displej 1999 čít., 200 A ACA/DCA, 600 V ACV/DCV, True RMS, Ohm, Vodivost, Data Hold VIDLICOVÝ PROUDOVÝ MULTIMETR Model : FT-9950 Symboly Upozornění : * Nebezpečí úrazu elektrickým proudem! Výstraha : *
Elektřina: Elektrostatika: Elektrostatika: Elektrostatika: Analogie elektřiny s mechanikou: Elektrostatika: Souvislost a analogie s mechanikou.
Elektřina pro bakalářské obory Elektron ( v antice ) =?? Petr Heřman Ústav biofyziky, K.LF Elektron ( v antice ) = jantar Jak souvisí jantar s elektřinou?? Jak souvisí jantar s elektřinou: Mechanické působení
Základní otázky ke zkoušce A2B17EPV. České vysoké učení technické v Praze ID Fakulta elektrotechnická
Základní otázky ke zkoušce A2B17EPV Materiál z přednášky dne 10/5/2010 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2. Coulombův zákon, orientace vektorů
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV VODNÍCH STAVEB FACULTY OF CIVIL ENGINEERING INSTITUTE OF WATER STRUCTURES MOŽNOSTI DETEKCE OBSAHU VODY V PÓROVITÉM PROSTŘEDÍ
Uživatelský manuál. DALIcus
LIcus Uživatelský manuál verze 1.1 senzor pro měření střídavého proudu měření true RMS galvanické oddělení měřeného obvodu měřící rozsah 0-12A AC napájení ze sběrnice LI až šest senzorů v jednom zařízení
VÍŘIVÉ PROUDY DZM 2013 1
VÍŘIVÉ PROUDY DZM 2013 1 2 VÍŘIVÉ PROUDY ÚVOD Vířivé proudy tvoří druhou skupinu v metodách, které využívají ke zjišťování vad materiálu a výrobků působení elektromagnetického pole. Na rozdíl od metody
Pracovní list žáka (ZŠ)
Pracovní list žáka (ZŠ) Účinky elektrického proudu Jméno Třída.. Datum.. 1. Teoretický úvod Elektrický proud jako jev je tvořen uspořádaným pohybem volných částic s elektrickým nábojem. Elektrický proud
Chyby spektrometrických metod
Chyby spektrometrických metod Náhodné Soustavné Hrubé Správnost výsledku Přesnost výsledku Reprodukovatelnost Opakovatelnost Charakteristiky stanovení 1. Citlivost metody - směrnice kalibrační křivky 2.
Rezistor je součástka kmitočtově nezávislá, to znamená, že se chová stejně v obvodu AC i DC proudu (platí pro ideální rezistor).
Rezistor: Pasivní elektrotechnická součástka, jejíž hlavní vlastností je schopnost bránit průchodu elektrickému proudu. Tuto vlastnost nazýváme elektrický odpor. Do obvodu se zařazuje za účelem snížení
Základy elektrotechniky - úvod
Elektrotechnika se zabývá výrobou, rozvodem a spotřebou elektrické energie včetně zařízení k těmto účelům používaným, dále sdělovacími a informačními technologiemi. Elektrotechnika je úzce spjata s matematikou
Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka
Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka Kondenzátor je schopen uchovat energii v podobě elektrického náboje Q. Kapacita C se udává ve Faradech [F]. Kapacita je úměrná ploše elektrod
Snímače hladiny. Učební text VOŠ a SPŠ Kutná Hora. Základní pojmy. měření výšky hladiny kapalných látek a sypkých hmot
Snímače hladiny Učební text VOŠ a SPŠ Kutná Hora Základní pojmy Použití snímačů hladiny (stavoznaků) měření výšky hladiny kapalných látek a sypkých hmot O výběru vhodného snímače rozhoduje požadovaný rozsah
Sypaná hráz výpočet ustáleného proudění
Inženýrský manuál č. 32 Aktualizace: 3/2016 Sypaná hráz výpočet ustáleného proudění Program: MKP Proudění Soubor: Demo_manual_32.gmk Úvod Tento příklad ilustruje použití modulu GEO5 MKP Proudění při analýze
Příloha č.: 1 ze dne: je nedílnou součástí osvědčení o akreditaci č.: 456/2012 ze dne: List 1 z 6
List 1 z 6 Obor měřené veličiny: elektrické veličiny Kalibrace: Nominální teplota pro kalibraci: ( 23 ± 2 ) C 1 Elektrický odpor KP 01/2001 0,0 0,5 1,0 mω 0,5 1,0 0,25 % 1,0 4,0 0,070% 4,0 1,0 M 0,035
Přístroj je vybaven hodinami reálného času (RTC), pamětí až pro 10000 naměřených hodnot a podsvíceným grafickým LCD displejem.
PU 294 DELTA Přístroj pro revize elektrických spotřebičů a zdravotnických elektrických zařízení PŘÍSTROJEM PU 294 DELTA LZE MĚŘIT: izolační odpory odpor ochranného vodiče unikající proudy včetně unikajících
Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.
FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických
Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky
Tématické okruhy teoretických zkoušek Part 66 1 3.1 Teorie elektronu 1 1 1 Struktura a rozložení elektrických nábojů uvnitř: atomů, molekul, iontů, sloučenin; Molekulární struktura vodičů, polovodičů a
Simulační model a identifikace voice coil servopohonu
Simulační model a identifikace voice coil servopohonu Tomáš Hladovec Prezentace diplomové práce 2.9.2014 1 / 48 Obsah Úvod Seznámení s voice coil motorem 1 Úvod Seznámení s voice coil motorem Magnetické
MT Multimetr klešťový. Uživatelský manuál. První vydání Copyright by Prokit's Industries Co. Ltd.
MT-3102 Multimetr klešťový Uživatelský manuál První vydání 2010 2010 Copyright by Prokit's Industries Co. Ltd. Úvod Klešťový multimetr MT-3102 je 3 1/2 číslový LCD multimetr pro měření AC a DC napětí,
Příloha č. 3 TECHNICKÉ PARAMETRY PRO DODÁVKU TECHNOLOGIE: UNIVERZÁLNÍ MĚŘICÍ ÚSTŘEDNA
Příloha č. 3 TECHNICKÉ PARAMETRY PRO DODÁVKU TECHNOLOGIE: UNIVERZÁLNÍ MĚŘICÍ ÚSTŘEDNA 1. Technická specifikace Možnost napájení ze sítě nebo akumulátoru s UPS funkcí - alespoň 2 hodiny provozu z akumulátorů
Nedestruktivní metody 210DPSM
Nedestruktivní metody 210DPSM Jan Zatloukal Diagnostické nedestruktivní metody proces stanovení určitých charakteristik materiálu či prvku bez jeho destrukce pomocí metod založených na principu interakce
FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy
FYZIKA II Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy Osnova přednášky Energie magnetického pole v cívce Vzájemná indukčnost Kvazistacionární
Revize elektrických zařízení (EZ) Měření při revizích elektrických zařízení. Měření izolačního odporu
Revize elektrických zařízení (EZ) Provádí se: před uvedením EZ do provozu Výchozí revize při zakoupení spotřebiče je nahrazena Záručním listem ve stanovených termínech Periodické revize po opravách a rekonstrukcích
Navrženo pro profesionální vodohospodáře
Navrženo pro profesionální vodohospodáře Vysoce čistá voda používaná v energetice, výrobě polovodičů, farmacii a dalších odvětvích může být obtížně měřitelná kvůli schopnosti oxidu uhličitého (CO₂) difundovat
Účinky elektrického proudu. vzorová úloha (SŠ)
Účinky elektrického proudu vzorová úloha (SŠ) Jméno Třída.. Datum.. 1. Teoretický úvod Elektrický proud jako jev je tvořen uspořádaným pohybem volných částic s elektrickým nábojem. Elektrický proud jako
List 1 z 6. Akreditovaný subjekt podle ČSN EN ISO/IEC 17025:2005: FORTE a.s. Metrologická laboratoř Mostkovice 529
List 1 z 6 Obor měřené veličiny: elektrické veličiny Kalibrace: Nominální teplota pro kalibraci: (23 ± 2) ºC 1. Elektrický odpor KP 01/2001 0,0 0,5 1,0 mω 0,5 1,0 0,25 % 1,0 4,0 0,070% 4,0 1,0 M 0,035
Fyzika. 8. ročník. LÁTKY A TĚLESA měřené veličiny. značky a jednotky fyzikálních veličin
list 1 / 7 F časová dotace: 2 hod / týden Fyzika 8. ročník (F 9 1 01.1) F 9 1 01.1 (F 9 1 01.3) prakticky změří vhodně vybranými měřidly fyzikální veličiny a určí jejich změny elektrické napětí prakticky
Laboratoř vodohospodářského výzkumu Ústav vodních staveb Fakulta stavební Vysoké učení technické v Brně. Veveří 95, Brno
Laboratoř vodohospodářského výzkumu Ústav vodních staveb Fakulta stavební Vysoké učení technické v Brně Veveří 95, 602 00 Brno Hydraulické okruhy Hydraulický okruh č. 1 Hydraulický okruh č. 3 Hydraulický
On-line datový list. SHC500 SHC500 Gravimat GRAVIMETRICKÉ PRACHOMĚRY
On-line datový list SHC500 SHC500 Gravimat A B C D E F H I J K L M N O P Q R S T 13284-1 certified Objednací informace Typ Výrobek č. SHC500 Na vyžádání Přesné specifikace přístrojů a údaje o výkonu výrobku
snímače využívají trvalé nebo pružné deformace měřicích členů
MĚŘENÍ SÍLY snímače využívají trvalé nebo pružné deformace měřicích členů a) Měřiče s trvalou deformací měřicích členů Jsou málo přesné Proto se používají především pro orientační měření tvářecích sil,
Maturitní témata fyzika
Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený
Inteligentní koberec ( )
Inteligentní koberec (10.4.2007) Řešení projektu bylo rozděleno do dvou fází. V první fázi byly hledány vhodné principy konstrukce senzorového pole. Druhá fáze se zaměřuje na praktické ověření vlastností
DIGITÁLNÍ UČEBNÍ MATERIÁL
DIGITÁLNÍ UČEBNÍ MATERIÁL škola Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 číslo projektu číslo učebního materiálu předmět, tematický celek ročník CZ.1.07/1.5.00/34.1037 VY_32_INOVACE_ZIL_VEL_123_12
Ultrazvuková defektoskopie. Vypracoval Jan Janský
Ultrazvuková defektoskopie Vypracoval Jan Janský Základní principy použití vysokých akustických frekvencí pro zjištění vlastností máteriálu a vad typické zařízení: generátor/přijímač pulsů snímač zobrazovací
Použití. Výhody. Popis. Certifikace. Převodník vodivosti ZEPACOND 800
str. 1/8 Použití převodník je určen k měření měrné elektrické vodivosti roztoků pomocí elektrodových i bezelektrodových (indukčních) roztoků a prostřednictvím měření vodivosti k případnému určení koncentrace
4a. Základy technického měření (měření trhlin)
Technická měření a diagnostika staveb 4a. Základy technického měření (měření trhlin) Libor Žídek 1 Vytvořeno za podpory projektu FRVŠ č. 2529/2009 Průzkum trhlin Zaměření na vznik a rozvoj trhlin (příčina
Biologické signály. X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů
Biologické signály X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Biologické signály mají původ v živém organismu jsou vyvolány buď samotnými životními projevy
Kontaktní adresa METRA BLANSKO s.r.o. Pražská 2536/ BLANSKO Telefon :
1 e-mail : mcu@metra.cz Kontaktní adresa METRA BLANSKO s.r.o. http:// www.metra.cz Pražská 2536/7 678 01 BLANSKO Telefon : +420 602 410 258 Platnost: od 1. 1. 2018 Uvedené ceny jsou v CZK bez DPH a bez
PSK1-15. Metalické vedení. Úvod
PSK1-15 Název školy: Autor: Anotace: Vzdělávací oblast: Předmět: Tematická oblast: Výsledky vzdělávání: Klíčová slova: Druh učebního materiálu: Typ vzdělávání: Ověřeno: Zdroj: Vyšší odborná škola a Střední
ZADÁVACÍ LIST VÝBĚROVÉHO ŘÍZENÍ
1. Základní údaje: Identifikační údaje zadavatele: Centrum organické chemie s.r.o. Rybitví č.p. 296,, IČ: 28778758 zapsán v obchodním rejstříku, vedeném Krajským soudem v Hradci Králové, oddíl C, vložka
Ultrasonografická diagnostika v medicíně. Daniel Smutek 3. interní klinika 1.LF UK a VFN
Ultrasonografická diagnostika v medicíně Daniel Smutek 3. interní klinika 1.LF UK a VFN frekvence 2-15 MHz rychlost šíření vzduch: 330 m.s -1 kost: 1080 m.s -1 měkké tkáně: průměrně 1540 m.s -1 tuk: 1450
3.5 Ověření frekvenční závislosti kapacitance a induktance
3.5 Ověření frekvenční závislosti kapacitance a induktance Online: http://www.sclpx.eu/lab3r.php?exp=10 I tento experiment patří mezi další původní experimenty autora práce. Stejně jako v předešlém experimentu
Možnosti monitoringu a řízení pro ekonomiku a spolehlivý provoz ČOV. Prof. Ing. Jiří Wanner, DrSc. VŠCHT Praha
Možnosti monitoringu a řízení pro ekonomiku a spolehlivý provoz ČOV Prof. Ing. Jiří Wanner, DrSc. VŠCHT Praha Co lze měřit v aktivačním procesu fyzikální teplota, tlak, průtok měřitelné v reálném čase
Elektromagnetický oscilátor
Elektromagnetický oscilátor Již jsme poznali kmitání mechanického oscilátoru (závaží na pružině) - potenciální energie pružnosti se přeměňuje na kinetickou energii a naopak. T =2 m k Nejjednodušší elektromagnetický
SMS farm security. GPS cow tracker
SMS farm security GPS cow tracker Sledovací GPS zařízení přizpůsobené pro monitoring pohybu zvířat na pastvině. Zařízení je umístění na krčním obojku, do kterého je integrováno 8 ks solárních panelů pro
ELEKTROMAGNETICKÉ POLE
ELEKTROMAGNETICKÉ POLE 1. Magnetická síla působící na náboj v magnetickém poli Fyzikové Lorentz a Ampér zjistili, že silové působení magnetického pole na náboj Q, závisí na: 1. velikosti náboje Q, 2. relativní
Analyzátory baterií řady Fluke 500
Analyzátory baterií řady Fluke 500 Technické údaje Inteligentní sonda s integrovaným LCD displejem Méně složité testování, zjednodušený pracovní postup a intuitivní uživatelské prostředí přispívají ke
Přenos signálů, výstupy snímačů
Přenos signálů, výstupy snímačů Topologie zařízení, typy průmyslových sběrnic, výstupní signály snímačů Přenosy signálů informací Topologie Dle rozmístění ŘS Distribuované řízení Většinou velká zařízení
TECOMAT TC700 ZÁKLADNÍ DOKUMENTACE K MODULU UC-7201. 1. vydání - červen 2004
TECOMAT TC700 ZÁKLADNÍ DOKUMENTACE K MODULU UC-7201 1. vydání - červen 2004 Podrobná uživatelská dokumentace je k dispozici v elektronické podobě na CD INFO, lze ji také objednat v tištěné podobě - název
Diagnostika a zkušebnictví
Diagnostika a zkušebnictví 1 Technická diagnostika Diagnostika izolačních systémů elektrických strojů Izolační systém z hlediska spolehlivosti je nejslabším místem Spolehlivost je pravděpodobnost, že v
Universální přenosný potenciostat (nanopot)
Universální přenosný potenciostat (nanopot) (funkční vzorek 2014) Autoři: Michal Pavlík, Jiří Háze, Lukáš Fujcik, Vilém Kledrowetz, Marek Bohrn, Marian Pristach, Vojtěch Dvořák Funkční vzorek universálního
Digitální panelové měřící přístroje
Digitální panelové měřící přístroje Digitální panelové měřící přístroje Moderní digitální měřící přístroje s mikroprocesorovým řízením sloužící na měření elektrických veličin v jedno- a třífázové síti
CHEMICKÁ A BIOLOGICKÁ KOROZE STAVEBNÍCH HMOT... Biologická koroze (biokoroze) obecně Základní pojmy, členění, charakteristika Podmínky pro působení
CHEMICKÁ A BIOLOGICKÁ KOROZE STAVEBNÍCH HMOT... Biologická koroze (biokoroze) obecně Základní pojmy, členění, charakteristika Podmínky pro působení biodeteriogenů Biokoroze stavebních materiálů Vznik a
Jednoduchý elektrický obvod
21 25. 05. 22 01. 06. 23 22. 06. 24 04. 06. 25 28. 02. 26 02. 03. 27 13. 03. 28 16. 03. VI. A Jednoduchý elektrický obvod Jednoduchý elektrický obvod Prezentace zaměřená na jednoduchý elektrický obvod
Bezkontaktní půdní senzor pro mapování půdního profilu a variabilní zpracování půdy.
Bezkontaktní půdní senzor pro mapování půdního profilu a variabilní zpracování půdy. PODÍVEJTE SE POD POVRCH. Precizní zemědělství je klíčem ke zvýšení vaší produktivity. Nový půdní senzor SoilXplorer
Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Elektřina a magnetismus - elektrický náboj tělesa, elektrická síla, elektrické pole, kapacita vodiče - elektrický proud v látkách, zákony
On-line datový list MCS100FT-C SYSTÉMY CEMS
On-line datový list A B C D E F Technická data v detailu Systém Objednací informace Typ Výrobek č. Na vyžádání Přesné specifikace přístrojů a údaje o výkonu výrobku se mohou odlišovat a závisí na dané
ELEKTRICKÉ POLE V BUŇKÁCH A V ORGANISMU. Helena Uhrová
ELEKTRICKÉ POLE V BUŇKÁCH A V ORGANISMU Helena Uhrová Hierarichické uspořádání struktury z fyzikálního hlediska organismus člověk elektrodynamika Maxwellovy rovnice buňka akční potenciál fenomenologická
Dodávka rozhraní a měřících senzorů
Dodávka rozhraní a měřících senzorů Příloha 1 Specifikace předmětu zakázky Zakázka: 2/2012 OPVK Zadavatel: Střední škola technická a zemědělská, Nový Jičín, příspěvková organizace U Jezu 7, 741 01 Nový
Obvod střídavého proudu s kapacitou
Obvod střídavého proudu s kapacitou Na obrázku můžete vidět zapojení obvodu střídavého proudu s kapacitou. Pomocí programů Nové přístroje 2012 a Dvoukanálový osciloskop pro SB Audigy 2012 proveďte daná
SANAČNÍ A VÝPLŇOVÉ SMĚSI PŘIPRAVENÉ PRO KOMPLEXNÍ ŘEŠENÍ PROBLEMATIKY METANU VE VAZBĚ NA STARÁ DŮLNÍ DÍLA
Vysoká škola báňská Technická univerzita Ostrava Hornicko-geologická fakulta Institut čistých technologií těžby a užití energetických surovin SANAČNÍ A VÝPLŇOVÉ SMĚSI PŘIPRAVENÉ PRO KOMPLEXNÍ ŘEŠENÍ PROBLEMATIKY
Měřicí princip hmotnostních průtokoměrů
Měřicí princip hmotnostních průtokoměrů 30.7.2006 Petr Komp 1 Úvod Department once on the title page Co to je hmotnostní průtokoměr? Proč měřit hmotnostní průtok? Měření hmotnostního průtoku s využitím
Sundaram KS. Vysoce účinný sinusový měnič a nabíječ. Uživatelská konfigurace provozu. Snadná montáž. Detailní displej.
Sundaram KS Vysoce účinný sinusový měnič a nabíječ Sundaram KS 1K/2K/3K Sundaram KS 4K/5K > Střídač s čistým sinusovým průběhem > Výběr rozsahu vstupního napětí pro domácí spotřebiče a osobní počítače
Výtvarné umění jako součást architektury 60. a 70. let 20. století
Výtvarné umění jako součást architektury 60. a 70. let 20. století WORKSHOP konaný v rámci projektu NAKI II Analýza a prezentace hodnot moderní architektury 60. a 70. let 20. století jako součásti národní
Elektrický proud 2. Zápisy do sešitu
Elektrický proud 2 Zápisy do sešitu Směr elektrického proudu v obvodu 1/2 V různých materiálech vedou elektrický proud různé částice: kovy volné elektrony kapaliny (roztoky) ionty plyny kladné ionty a
Ultrazvukové diagnostické přístroje. X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz
Ultrazvukové diagnostické přístroje X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Ultrazvuková diagnostika v medicíně Ultrazvuková diagnostika diagnostická zobrazovací
LABORATOŘ KOVŮ A KOROZE VZDĚLÁVÁNÍ ODBORNÉ KURZY A SEMINÁŘE
ODBORNÉ KURZY A SEMINÁŘE Vysoké učení technické v Brně Fakulta chemická Purkyňova 464/118 612 00 Brno wasserbauer@fch.vutbr.cz Využijte bohaté know-how odborných pracovníků Laboratoře kovů a koroze při
COMBI420. Multifunkční revizní přístroj pro testování instalací a měření výkonu. 1. Hlavní výhody multifunkčních přístrojů řady 400
COMBI420 1. Hlavní výhody multifunkčních přístrojů řady 400 Nápověda k dispozici u každého měření Každý model umožňuje aktivaci měření sondou s test tlačítkem (PR400 volitelné příslušenství) Přehledné
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_01_FY_A
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_01_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Úvod
NOVINKY V PORTFOLIU. Ing. Bohdana Hrbáčková, Mgr. Filip Teper
NOVINKY V PORTFOLIU Ing. Bohdana Hrbáčková, Mgr. Filip Teper DIGITÁLNÍ MIKROSKOPY TAGARNO DIGITÁLNÍ MIKROSKOPY TAGARNO Model TAGARNO FHD ZIP Specifikace 48x zvětšení Jednoduché zpracování obrazu do PC
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV VODNÍCH STAVEB FACULTY OF CIVIL ENGINEERING INSTITUTE OF WATER STRUCTURES VYHODNOCENÍ ZMĚN V RYBNIČNÍ HRÁZI MONITOROVANÝCH
2. přednáška. Petr Konvalinka
EXPERIMENTÁLNÍ METODY MECHANIKY 2. přednáška Petr Konvalinka Experimentální vyšetřování pevnostních vlastností betonu Nedestruktivní metody zkoušky pevnosti Schmidtovo kladívko odpor v otlačení pull-out
Kalibrace: Nominální teplota pro kalibraci v laboratoři: (23 ± 2) C Nominální teplota pro kalibraci mimo laboratoř: (23 ± 5) C
List 1 z 19 Obor měřené veličiny: elektrické veličiny Kalibrace: Nominální teplota pro kalibraci v laboratoři: (23 ± 2) C Nominální teplota pro kalibraci mimo laboratoř: (23 ± 5) C 1. Napětí stejnosměrné
vodič u něho dochází k transportu el. nabitých částic, který je nevratný, dochází ke vzniku proudu a disipaci energie
Chování polymerů v elektrickém a magnetickém poli vodič u něho dochází k transportu el. nabitých částic, který je nevratný, dochází ke vzniku proudu a disipaci energie dielektrikum, izolant, nevodič v
On-line datový list. FLOWSIC150 Carflow MĚŘÍCÍ PŘÍSTROJE PRŮTOKU
On-line datový list FLOWSIC150 Carflow A B C D E F H I J K L M N O P Q R S T Objednací informace Typ Výrobek č. FLOWSIC150 Carflow Na vyžádání Přesné specifikace přístrojů a údaje o výkonu výrobku se mohou
Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok
Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok 2014-15 Stavba hmoty Elementární částice; Kvantové jevy, vlnové vlastnosti částic; Ionizace, excitace; Struktura el. obalu atomu; Spektrum
Kompenzační transformátory proudu Proudové senzory
Kompenzační transformátory proudu Proudové senzory Edisonova 3, Brno 612 00 www.ghvtrading.cz Tel.: +420 541 235 386 Fax: +420 541 235 387 E-Mail: ghv@ghvtrading.cz CCT 31.3 RMS (Kompenzační proudový transformátor,
PQA823 PQA824 Rel /09/12
Profesionální analyzátor sítě v souladu s EN50160 Pag 1 of 10 1. PQA82X Inovativní funkce Široký (320x240pxls) grafický barevný TFT displej s dotykovou obrazovkou ovládání pomocí dotykového pera Uživatelsky
Monitor mikroklimatu v pracovním prostředí QUESTemp 36
Monitor mikroklimatu v pracovním prostředí QUESTemp 36 QUESTemp 36 je monitor mikroklimatu v prostředí, který zabezpečuje pro uživatele všechny informace potřebné pro organizaci pracovního času na základě
Multimetr LUTRON CM-9940 klešťový mini DCA/ACA
Multimetr LUTRON CM-9940 klešťový mini DCA/ACA Nákup tohoto DCA / ACA klešťového multimetru pro Vás představuje krok vpřed v oblasti přesného měření. Správným používaním tohoto multimetru předejdete případným
ZKOUŠEČ IZOLACE NÁVOD K POUŽITÍ OBECNĚ POPIS PŘEDNÍHO PANELU
ZKOUŠEČ IZOLACE NÁVOD K POUŽITÍ OBECNĚ Tento přístroj využívá měnič stejnosměrného napětí s nízkou spotřebou a vysokým poměrem mezi indukčností a akumulací energie k přeměně napětí 9V na stejnosměrné napětí
KABELOVÉ VLASTNOSTI BIOLOGICKÝCH VODIČŮ. Helena Uhrová
KABELOVÉ VLASTNOSTI BIOLOGICKÝCH VODIČŮ Helena Uhrová 19. století Lord Kelvin 1870 - Hermann namodelování elektrického napětí na nervovém vlákně 20. stol - Hermann a Cremer nezávisle na sobě rozpracovali