Elektromagnetická odolnost a její testování. Jiří Dřínovský UREL, FEKT, VUT v Brně

Rozměr: px
Začít zobrazení ze stránky:

Download "Elektromagnetická odolnost a její testování. Jiří Dřínovský UREL, FEKT, VUT v Brně"

Transkript

1 a její testování Jiří Dřínovský UREL, FEKT, VUT v Brně

2 Celková elektromagnetická odolnost interní EM odolnost odolnost systému vůči rušivým zdrojům nacházejícím se uvnitř vlastního systému externí EM odolnost odolnost systému vůči vnějším zdrojům elektromagnetického rušení Rozlehlé (distribuované) systémy jednotlivé části systému jsou od sebe navzájem geograficky vzdálené. Lokální (místní) systémy jednotlivé části systému jsou dislokovány v rámci jednoho místního areálu, budovy či místnosti. Systémy přístrojového typu individuální kompaktní celky. 2

3 Externí elektromagnetická odolnost (imunita): velké množství potenciálně možných zdrojů rušení, uvažují se jen nejpravděpodobnější a potenciálně nejnebezpečnější zdroje rušení, mez externí odolnosti se stanovuje pro každý vybraný typ rušení zvlášť. Interní elektromagnetická odolnost přístroje závisí na: obvodovém řešení a rozložení elektronických prvků; návrhu desek plošných spojů, uspořádání spojů a kabeláži; typu napájení, rozložení napájecích a signálových bloků přístroje; návrhu a provedení vnitřního stínění a zemnění; volbě a konstrukci stykových prvků k vnějším systémům. 3

4 Celková elektromagnetická odolnost externí interní Interní elektromagnetická odolnost systému je závislá na interní odolnosti jeho dílčích subsystémů. Výsledná interní elektromagnetická odolnost systému je určena elektromagnetickou odolností jeho nejslabšího článku, tj. subsystému s nejnižší vlastní elektromagnetickou odolností. Výsledná externí elektromagnetická odolnost systému může záviset na jeho interní elektromagnetické odolnosti, neboť zde může docházet k negativnímu skládání různých rušivých vlivů, a tím ke snižování celkové odolnosti systému. 4

5 Kritéria elektromagnetické odolnosti jakožto definované meze narušení funkcí technického zařízení či systému. Kvantitativní mez odolnosti dosažení určité hodnoty (určitých hodnot) vybrané měřené veličiny (veličin). Kvalitativní (funkční) kritérium EM odolnosti posouzení změny provozního stavu či ovlivnění funkčnosti zařízení. 5

6 Pět základních funkčních kritérií: Funkční kritérium A všechny funkce zařízení či systému jsou vykonávány správně dle specifikace jak během zkoušky, tak i po jejím ukončení. EM rušení nemá žádný vliv na chod zařízení či systému. Funkční kritérium B zařízení/systém pracuje dle specifikace, některé jeho části však během zkoušky vybočí z povolených tolerancí (nenastane však změna provozního stavu zařízení či změna dat v paměti). Po skončení zkoušky se všechny funkce musí automaticky (tj. bez zásahu operátora) obnovit v původním rozsahu a kvalitě a ve vymezených tolerancích. EM rušení kvalitativně změní chod zařízení či systému, po odeznění se správný chod zařízení automaticky obnoví. 6

7 Funkční kritérium C jedna či více funkcí zařízení či systému během zkoušky není plněna vůbec či správně dle specifikace. Po skončení zkoušky se všechny funkce musí automaticky (tj. bez zásahu operátora) obnovit v původním rozsahu a kvalitě. EM rušení naruší chod zařízení, po odeznění se plná funkčnost zařízení automaticky obnoví. Funkční kritérium D jedna či více funkcí zařízení či systému během zkoušky není plněna vůbec či správně dle specifikace. Po skončení zkoušky se funkce zařízení neobnoví automaticky, ale musí být obnovena (jednoduchým) zásahem operátora (uživatele) dle návodu k použití zařízení (reset). EM rušení naruší chod zařízení, po odeznění je nutno plnou funkčnost obnovit zásahem operátora. 7

8 Funkční kritérium E jedna či více funkcí zařízení či systému během i po skončení zkoušky není plněna správně dle specifikace. Všechny funkce zařízení lze obnovit jen profesionálním zásahem, tj. opravou či výměnou částí zařízení. EM rušení naruší chod zařízení, po odeznění lze plnou funkčnost zařízení obnovit jen opravou. V kmenové normě ČSN EN jsou zavedena jen tři funkční kritéria A, B a C: Funkční kritérium A je identické jako předchozí kritérium A. Funkční kritérium B je identické jako předchozí kritérium B. Funkční kritérium C slučuje předchozí kritéria C a D. Trvalá porucha zařízení či systému není považována za funkční kritérium EM odolnosti. 8

9 Metodika zkoušek elektromagnetické odolnosti Stanovení rušivých elektromagnetických vlivů, které mohou vyšetřované zařízení v daných pracovních podmínkách ovlivňovat. Určení možných bran vstupu rušivých signálů do zařízení. Stanovení kategorie požadované odolnosti zkoušeného zařízení. Definice přípustných rušivých účinků pro zkoušené zařízení. Simulace rušivých signálů, vazba do zkoušenému objektu. Provedení vlastních zkoušek a testů dle specifikace. Dílčí vyhodnocení po každé zkoušce. Vypracování dokumentace o provedených zkouškách. 9

10 Základní druhy rušivých elmag. vlivů jsou odvozeny ze skutečných elektromagnetických jevů v prostředí, v němž je dané zařízení provozováno nízkofrekvenční rušení v napájecí rozvodné síti nízkého napětí, přechodné (transientní) jevy a vysokofrekvenční rušení, elektrostatické výboje (nízkoenergetické a vysokoenergetické), magnetická rušení, rušení vyzařovaným elektromagnetickým polem. 10

11 Vstupy rušivých signálů do zkoušeného zařízení svorky střídavé sítě _ kryt přístroje I I ZKOUŠENÉ ZAŘÍZENÍ I I zemnicí svorky _ signálové svorky _ řídicí svorky Zkoušky jsou předepsány pro každý zjištěný vstup zařízení; Zkoušky se provádějí na těch vstupech, které jsou během normální činnosti zařízení přístupné; Zkoušky na jednotlivých vstupech se provádějí v libovolném pořadí a vždy jako samostatné. 11

12 Kategorie požadované odolnosti jsou mezinárodně standardizovány normami řady IEC , příp. ČSN EN pro typická elektrotechnická prostředí: Úroveň odolnosti 1: běžné prostředí s nízkou úrovní rušení, příp. dobře chráněné prostředí, v němž lze užívat citlivé přístroje; Úroveň odolnosti 2: prostředí s mírnou úrovní rušení, příp. částečně chráněné prostředí (domácnosti, obchody, kanceláře); Úroveň odolnosti 3: náročné prostředí s vysokou úrovní rušení, tj. typické průmyslové prostředí; Úroveň odolnosti 4: speciální prostředí s velmi vysokou úrovní rušení, příp. nechráněné průmyslové prostředí (těžký průmysl, elektrárny, rozvody). 12

13 Zkušební signály pro zkoušky elektromagnetické odolnosti Úzkopásmový periodický zkušební signál x = X 0 sinω t 0 ω 0 = 2π T 13

14 Širokopásmový neperiodický zkušební signál x X 0τ = + T n=1 c(n, ω ) cos(nω t) 0 0 ω 0 = 2π T 14

15 Úzkopásmový periodický zkušební signál x = X 0 e δ t cosω 0 t ω 0 = 2π T 15

16 16 Širokopásmový neperiodický zkušební signál ( ) ), ( ), ( ),, ( k e e k r 3 r 2 r 0 1 τ τ τ T f b T f a T X f x bt at = = = =

17 Přehled zkoušek elektromagnetické odolnosti Zkušební signál podle normy Principiální zapojení Časový průběh zkušebního signálu Parametry zkušebního signálu 1 Harmonické a meziharmonické síťového napětí energetické sítě ČSN EN u u f 1 1 n f 2 C V... f n ~ u f 1 = 1/T 1 = 50 Hz kmitočet sítě f n = 1/T n kmitočet n-té harmonické složky n = 2, 3, 4,, 40 17

18 Zkušební signál podle normy Principiální zapojení Časový průběh zkušebního signálu Parametry zkušebního signálu 2 Krátkodobé poklesy, krátká přerušení síťového napětí ČSN EN U N t 1 U ŘÍZENÍ U Pokles napětí ΔU = 30 %, 60 %. U N ΔU = 100 %. U N Doba trvání (počet period) 0,5, 1, 5, 10, 25, 50 3 Rázový impulz napětí / proudu 100 / 1300 μs IEC U N U = F R C u T r = 100 μs τ = 1300 μs ΔU = 1,3. U m 18

19 Zkušební signál podle normy Principiální zapojení Časový průběh zkušebního signálu Parametry zkušebního signálu 4 Vysokoenergetick ý rázový impulz napětí 1,2 / 50 μs a proudu 8 / 20 μs ČSN EN = R0 S C R 0 1 R 2 C1 L Z i Z i = 2 W při nesymetrickém výstupu < Z i = 50 W při symetrickém výstupu u provoz naprázdno U m = 0,25. 4 kv T r = 1,2 μs τ = 50 μs I m = A (nesymetrický výstup) I m = 0,25. 2 ka (symetrický výstup) provoz nakrátko T r = 8 μs τ = 20 μs 19

20 Zkušební signál podle normy Principiální zapojení Časový průběh zkušebního signálu Parametry zkušebního signálu 5 Skupiny rychlých přechodných jevů (tzv. rychlé transienty burst) ČSN EN = R0 S C0 R 1 R 2 C1 < Z i = 200 Ω Z i u U m = 0,25. 4 kv T r = 5 ns τ = 50 ns f = 1/T = 2,5 khz, příp. 5 khz t B = 15 ms T B = 300 ms 6 Tlumené oscilační vlny 0,1 / 1 MHz ČSN EN = R0 C0 S L R 1 R 2 < Z i u U m = 0,25. 4 kv f = 1/T = 0,1/1 MHz T r = 75 ns U = 0,5. U m po 3 až 6 periodách f o = 1/T o = 40/400 Hz 20

21 Zkušební signál podle normy Principiální zapojení Časový průběh zkušebního signálu Parametry zkušebního signálu 7 Elektrostatické výboje ČSN EN = S R0 R U C0 i ZO Výboj vzduchovou mezerou U = kv I m = A T r = 5 ns τ = 30 ns = S U R0 C0 R K i Kontaktní výboj ZO U = kv I m = 7, ,5-30 A T r = 0,7. 1 ns 21

22 Zkušební signál podle normy Principiální zapojení Časový průběh zkušebního signálu Parametry zkušebního signálu 8 Magnetická pole ČSN EN ČSN EN ČSN EN U nf. síťového kmitočtu N pulzní = A H B R S 0 R 2 L i C R 0 1 C1 i A B Ustálený provoz H m = A/m T D = doba zkoušky Krátkodobý provoz H m = A/m T D = 1. 3 s H m = A/m T r = 6,4 μs τ = 16 μs tlumené kmity = R0 S C C L 1 2 i A B H m =. 100 A/m H = 0,5. H m po 3 až 6 periodách f = 1/T = 0,1/1 MHz f o = 1/T o = 40/400 Hz 22

23 Zkušební signál podle normy Principiální zapojení Časový průběh zkušebního signálu Parametry zkušebního signálu 9 Vysokofrekvenční elektromagnetick á pole G ~ E ZO E = V/m f = 1/T = = 80 MHz... 1 GHz ČSN EN % AM 1 khz 23

24 Vazební a oddělovací obvod obvod CDN (Coupling-Decoupling Network) plní při zkouškách elektromagnetické odolnosti dvě základní funkce: Funkce vazební umožňuje přenos zkušebního (rušivého) signálu z generátoru do vstupů zkoušeného zařízení v požadovaném kmitočtovém pásmu a současně blokovat zpětný vliv síťového nebo signálního napětí zařízení na generátor. Funkce oddělovací zabraňuje šíření zkušebního signálu do vnější napájecí, signálové či datové sítě připojené ke zkoušenému zařízení. Tak je zajištěno, že působení zkušebního signálu se omezí jen na testované zařízení a jiná zařízení připojená k téže síti budou chráněna. Současně tak bude vyloučen i vliv impedance vnější sítě na tvar či velikost zkušebního signálu. 24

25 Kapacitní vazební a oddělovací obvod se vstupy pro symetrické, nesymetrické a asymetrické navázání rušivého zkušebního signálu do napájecího vedení ZG zkušební generátor; ZO zkoušený objekt, CDN vazební a oddělovací obvod 25

26 Induktivní vazební a oddělovací obvody pro navázání protifázového a soufázového rušivého zkušebního signálu do napájecího vedení ZG zkušební generátor; ZO zkoušený objekt, CDN vazební a oddělovací obvod 26

27 Uspořádání zkušebního pracoviště EMS Zkoušené zařízení ZO a použité měřicí přístroje jsou umístěny 10 cm nad kovovou deskou (Cu, Al) s minimální plochou 1 m 2 na dřevěném stole. Kovová deska je přitom spojena s referenční zemí celého systému. Vzdálenost zkoušeného zařízení ZO od všech ostatních vodivých 27 stěn musí být větší než 0,5 m.

28 Uspořádání zkušebního pracoviště EMS Zkušební generátor ZG je s vazebním-oddělovacím obvodem CDN spojen kabelem kratším než 1 m, síťový přívod od zkoušeného objektu ZO k CDN nesmí být delší než 1 m. Při větších délkách musí být přívodní kabely meandrovitě složeny a délka meandru nesmí přesáhnout 0,4 m. Případné kontrolní zařízení KZ sleduje zvolené funkční parametry 28 zkoušeného objektu ZO v průběhu a po ukončení zkoušky.

29 Kapacitní kleština (kapacitní vazební kleště) pro vazbu rušivého zkušebního signálu do zkoušeného zařízení bez galvanického spojení se svorkami jeho vstupů 29

30 Kleština je umístěna na zemní kovové rovině o ploše alespoň 1 m 2. Délka vazebního kabelu l 1 mezi kleštěmi a zkoušeným objektem ZO musí být kratší než 1m, délka l 2 kabelu mezi kleštěmi a dalším připojeným, avšak nezkoušeným zařízením PO musí být větší než 5. l 1. Tím se zajistí, že zkušební signál bude působit jen na zkoušený objekt ZO a ne na nezkoušené zařízení PO. Je-li však i zařízení PO předmětem zkoušky odolnosti, musí být l 1 = l 2 1 m. 30

31 Zkoušky odolnosti vůči rušivým vlivům v energetické napájecí síti Zkouška harmonickými složkami základního kmitočtu 50 Hz (ČSN EN ) kmitočty harmonických se mění od 100 Hz do 2 khz, tedy od druhé až po čtyřicátou harmonickou základního kmitočtu 50 Hz. Zkouška meziharmonickými složkami (ČSN EN ) zkušební signály nejsou harmonickými složkami základního kmitočtu 50 Hz, ale jejich kmitočty leží mezi těmito kmitočty (meziharmonické kmitočty). 31

32 Zkouška krátkodobými poklesy napájecího napětí (ČSN EN ) skokové poklesy napětí na hodnotu 40 % a 70 % nominální velikosti s dobou trvání 0, period síťového napětí 50 Hz. Zkouška krátkým přerušením napájecího napětí (ČSN EN ) skokové snížení napětí o 100 % nominální velikosti po dobu 0, period síťového napětí 50 Hz. 32

33 Zkouška (nezávazná) na pomalé změny napětí (ČSN EN ) napájecí napětí klesá na 40 %, příp. 0 % své nominální velikosti na dobu 1 s, doba klesání a zpětného stoupání velikosti napětí činí 2 s. Zařízení je zkoušeno ve třech 10 sekundových cyklech za sebou. 33

34 Zkoušky odolnosti vůči vysokoenergetickým širokopásmovým impulzům Zkušební signál rázové vlny napětí naprázdno a rázové vlny proudu nakrátko dle ČSN EN

35 Generátory kombinované vlny (hybridní generátory) CWG (Combination Wave Generator) vytváří oba druhy zkušebních signálů: napěťový rázový impulz 1,2/50 μs ve stavu naprázdno a proudový rázový impulz 8/20 μs ve stavu nakrátko. Napěťový průběh při výstupu naprázdno: T r = 2, 2 R m1 Lr + R m2 doba nárůstu impulzu τ = C S RS R S ( R + R m1 m1 + R + R doba trvání impulzu m2 35 m2 )

36 Generátory kombinované vlny (hybridní generátory) CWG (Combination Wave Generator) vytváří oba druhy zkušebních signálů: napěťový rázový impulz 1,2/50 μs ve stavu naprázdno a proudový rázový impulz 8/20 μs ve stavu nakrátko. Proudový průběh při výstupu nakrátko: T = r 2, 2 Lr R m1 doba nárůstu impulzu τ C S R R m1 doba trvání impulzu S S R + R m1 36

37 Zkoušky odolnosti vůči nízkoenergetickým širokopásmovým impulzům Normou ČSN EN ed. 2 byl zvolen jeden typ zkušebního rušivého signálu, který se prokázal jako nejnebezpečnější rychlé elektrické přechodné jevy (tzv. rychlé transienty EFT Electrical Fast Transients) seskupené do přesně definovaných skupin impulzů (tzv. burst). 37

38 Zkoušky odolnosti vůči nízkoenergetickým širokopásmovým impulzům 38

39 Generátor skupin impulzů (generátor EFT/ B) Náběžná hrana každého impulzu je dána především časovou konstantou L S /R S, zatímco sestupná strana impulzu je určena vybíjením kapacitoru s časovou konstantou C S R S. 39

40 Generátor skupin Uspořádání zkušebního pracoviště při zkouškách odolnosti vůči rychlým přechodným jevům Minimální doba trvání vlastní zkoušky je 1 minuta, po níž se vyhodnocuje změna funkčnosti zkoušeného zařízení. 40

41 Zkoušky odolnosti vůči tlumeným oscilačním vlnám Podle ČSN EN ed. 2 je zkušební napětí tvořeno exponenciálně tlumenými kmity o kmitočtu mezi 3 khz a 10 MHz ; preferovanými hodnotami jsou 0,1 MHz a 1 MHz. Tyto kmity jsou při zkoušce použity s opakovacím kmitočtem 40 Hz, příp. 400 Hz. 41

42 Zkoušky odolnosti vůči elektrostatickým výbojům Simulace elektrostatických výbojů podle ČSN-EN ed. 2 se provádí pomocí zkušebního zařízení (tzv. simulátoru ESD), jehož koncová část má obvykle vnější podobu pistole s výměnným vybíjecím hrotem. C 0 = 150 pf U = 2 15 kv R 0 = MΩ R = 330 Ω 42

43 Zkouška přímým vybitím vzduchovým výbojem se uskutečňuje přiblížením hrotu vybíjecí pistole P (při sepnutém spínači S) ke zkoušenému objektu ZO, až se nabitý kondenzátor C 0 vybije přeskokem jiskry do daného objektu. NZ napájecí zdroj vysokého napětí, OF oddělovací filtr, P pistole simulátoru ESD, ZO zkoušený objekt, KZ kontrolní zařízení 43

44 Zkouška přímým vybitím vzduchovým výbojem se uskutečňuje přiblížením hrotu vybíjecí pistole P (při sepnutém spínači S) ke zkoušenému objektu ZO, až se nabitý kondenzátor C 0 vybije přeskokem jiskry do daného objektu. Výboj ve vzduchové mezeře je značně závislý na rychlosti přibližování hrotu pistole, na vlhkosti, teplotě a tlaku vzduchu a na konstrukci zkoušeného zařízení nízká reprodukovatelnost výsledků zkoušek Teoretický průběh vybíjecího proudu při výboji vzduchovou mezerou 44

45 Zkouška přímým vybitím kontaktním výbojem se uskutečňuje pevným přiložením hrotu simulátoru ESD na zkoušený objekt a vysoké napětí nabitého kondenzátoru C 0 se připojí (tj. výboj se odpálí ) sepnutím kontaktu K v simulátoru. NZ napájecí zdroj vysokého napětí, OF oddělovací filtr, P pistole simulátoru ESD, ZO zkoušený objekt, KZ kontrolní zařízení 45

46 Zkouška přímým vybitím kontaktním výbojem se uskutečňuje pevným přiložením hrotu simulátoru ESD na zkoušený objekt a vysoké napětí nabitého kondenzátoru C 0 se připojí (tj. výboj se odpálí ) sepnutím kontaktu K v simulátoru. Impulz výstupního proudu simulátoru ESD při kontaktním výboji 46

47 Zkušební hroty simulátoru ESD pro vzduchový výboj ESD pro kontaktní výboj ESD 47

48 Zkušební výboje statické elektřiny se provádějí do těch míst a povrchů zkoušeného zařízení, která jsou přístupná obsluze při užívání zařízení. Jde např. o všechna místa na ovládacím panelu či klávesnici, příp. jiná místa styku člověka se zařízením (vypínače, knoflíky, tlačítka, ovládací elementy), která jsou přístupná operátorovi zařízení; všechny kovové části skříně zařízení elektricky izolované od země; všechny indikační a jiné z vnějšku přístupné elementy (ukazatele, světelné diody, mřížky, kryty konektorů apod.). 48

49 Do každého místa se provede nejméně deset jednotlivých výbojů, a to v polaritě, na kterou je zařízení citlivější. Interval mezi po sobě jdoucími výboji je minimálně 1 s. Zkušební napětí výboje se zvyšuje od nejmenší předepsané hodnoty, až po úroveň specifikovanou výrobcem zkoušeného zařízení pro požadovaný stupeň odolnosti. 49

50 Zkouška nepřímým výbojem se uskutečňuje vybitím simulátoru ESD kontaktním výbojem do kovové vazební desky v blízkosti zkoušeného zařízení, přičemž vazební deska může být situována svisle či vodorovně. NZ napájecí zdroj vysokého napětí, OF oddělovací filtr, P pistole simulátoru ESD, ZO zkoušený objekt, KZ kontrolní zařízení 50

51 Laboratorní zkušební pracoviště pro zkoušky odolnosti vůči elektrostatickým výbojům ESD 51

52 Zkoušky odolnosti vůči magnetickým polím se provádějí dle harmonizovaných českých norem ČSN EN pro magnetická pole síťového kmitočtu, ČSN EN pro pulzní magnetická pole a ČSN EN pro tlumená vysokofrekvenční magnetická pole. Výstupní proud budicího generátoru je veden do speciální indukční cívky ve tvaru rámové antény, kterou je vytvářeno zkušební magnetické pole příslušného časového průběhu a prostorového rozložení. Základním požadavkem je přitom dostatečná prostorová homogennost generovaného magnetického pole v co největším prostoru, příp. v co největší ploše uvnitř indukční cívky. 52

53 Jednoduchá jednozávitová, pří. vícezávitová indukční cívka čtvercového tvaru o normalizované délce strany 1 m. Magnetické pole s intenzitou až 100 A/m pro dlouhodobé zkoušky a až 1000 A/m pro zkoušky krátkodobé. Využitelný prostor má rozměry jen cca 60 x 60 x 50 cm. Při zkoušce se testuje odolnost zařízení při všech třech prostorových orientacích magnetického pole, tj. rámová anténa mění vůči zkoušenému objektu ZO postupně svou prostorovou orientaci. 53

54 Dvojitá indukční cívka (Helmholtzova cívka) má čtvercový, příp. kruhový tvar o délce strany 1 m. Cívka je rozdělena na dvě poloviny, jejichž vzájemná vzdálenost je 0,6 m, příp. 0,8 m. Mezi oběma polovinami cívky vzniká přibližně kulová oblast využitelného prostoru s velikostí přibližně 60 x 60 x 100 cm nebo 60 x 60 x 120 cm. Helmholtzovy cívky čtvercového a kruhového tvaru 54

55 Velká jednoúčelová indukční cívka pro velká zkoušená zařízení, např. skříňového typu. Zařízení (skříň) je umístěno na izolační podložce 10 cm vysoké na kovové rovině spojené se zemnicím systémem. Zařízení je obklopeno třemi jednovrstvými indukčními cívkami, jejichž magnetická pole jsou vzájemně ortogonální. Zkušební generátor budicího proudu se postupně připojuje k jednotlivým indukčním cívkám, tj. mezi živé vodiče cívky a kovovou zemní plochu. 55

56 Zkoušky odolnosti vůči vysokofrekvenčním elektromagnetickým polím se provádějí dle normy ČSN EN ed. 3 v pásmu MHz pro zkušební úrovně intenzity elektrického pole o hodnotách 1, 3, 10 a 30 V/m, příp. i vyšší dle požadavků výrobce. Úrovně odpovídají efektivním hodnotám intenzity pole harmonického nemodulovaného signálu. Pro vlastní zkoušku odolnosti je signál amplitudově modulován do hloubky 80 % nízkofrekvenčním harmonickým napětím 1 khz. 56

57 Základní technické a přístrojové vybavení pro zkoušky odolnosti vůči vysokofrekvenčním polím Vf. signální generátor pro požadované pásmo kmitočtů s možností amplitudové modulace sinusovou vlnou 1 khz do hloubky 80 %. Širokopásmový výkonový zesilovač k dosažení patřičného výkonu zkušebního signálu, a to jak nemodulovaného, tak i modulovaného. Vysílací směrová anténa (antény) pro daný rozsah kmitočtů a schopností vyzářit potřebný vysoký výkon. Obvyklými typy jsou bikónická anténa a logaritmicko-periodická anténa. Elektrické filtry zapojené ve všech vstupech a výstupech kabelů a vedení do zkušební komory. Pomocná elektronická zařízení ke kontrole a vyhodnocování funkčnosti zkoušeného zařízení, příp. k zajištění dalších funkcí během zkoušky. 57

58 Zkušební pracoviště pro zkoušky odolnosti vůči vyzařovanému vysokofrekvenčnímu poli 58

59 Zkušební pracoviště pro zkoušky odolnosti vůči vyzařovanému vysokofrekvenčnímu poli Provizorní zajištění bezodrazovosti zkušebního prostoru absorpčními panely 59

60 Potřebný budicí výkon vysílací antény pro dosažení požadovaných vysokých hodnot intenzity zkušebního elektrického pole: P [dbw] = 20 log E [V/m] + 20 log r [m] 20 log f [MHz] + AF [db/m] + 15 V VA r vzdálenost vysílací antény od zkoušeného objektu, E zkušební intenzita elektrického pole v místě objektu, f kmitočet měřicího signálu, AF VA anténní faktor vysílací antény. 60

61 Kalibrace zkušebního pole se provádí podle ČSN EN ed. 3 nemodulovaným harmonickým signálem měřením velikosti generovaného pole v tzv. ploše homogenního pole. Je to pomyslná vertikální plocha o velikosti 1,5 x 1,5 m ve výšce 0,8 m nad podlahou. Pole v uvedené ploše je považováno za homogenní, kolísáli jeho měřená velikost o méně než ± 3 db na 75 % plochy, tj. alespoň ve 12 z celkových 16 měřicích bodů. Kalibrace se provádí v celém měřicím kmitočtovém pásmu pro horizontální i vertikální polarizaci generovaného pole. 61

62 Speciální antény pro simulaci zkušebních elektromagnetických polí Páskové (deskové) vedení (Parallel Plate Antenna) Při l >> d existuje mezi oběma deskami příčné elektromagnetické pole TEM s elektrickou intenzitou E = U / d. Zkoušený objekt se umísťuje do pole doprostřed mezi desky na izolační podložku. Šířka desek je obvykle stejná jako jejich vzájemná vzdálenost d = 80 cm, takže lze testovat objekty s rozměry nejvýše cca 30 x 30 x 30 cm. 62

63 63

64 64

65 vstupní přizpůsobení výstupní zakončení 65

66 vstupní přizpůsobení výstupní zakončení 66

67 Zkušební komora TEM (Crawfordova komora) Pracovní prostor komory je tvořen rozšířeným úsekem uzavřeného (tj. elektromagneticky stíněného) koaxiálního vedení s vnějším vodičem obdélníkového či čtvercového příčného průřezu a s vnitřním vodičem ve tvaru plochého pásku (desky). Z 0 = a b 30 π 2 ln sinh π πg 2b 67

68 Až do mezního kmitočtu prvního vlnovodového vidu 8 TE10 c 3 10 fm = = 4a 4a má elektromagnetické pole v komoře charakter vlny TEM s homogenní intenzitou elektrického pole v pracovním prostoru mezi středním páskovým vodičem a horní či dolní částí vnějšího vodiče. E = U b Horní pracovní kmitočty činí obvykle 100 až 800 MHz při maximálních hodnotách intenzity zkušebního elektrického pole V/m. 68

69 Komora GTEM (Gigahertz-Transversal Electromagnetic Cell) Komora má tvar dlouhého pyramidálně se rozšiřujícího koaxiálního vedení pravoúhlého příčného průřezu s nesymetricky umístěným vnitřním páskovým vodičem. Impedanční přizpůsobení komory na vysokých kmitočtech zajišťují absorpční jehlany A na čelní stěně, v oblasti nižších kmitočtů vnitřní odporová síť R = Z 0 na konci vnitřního páskového vodiče. V komoře GTEM lze tak vytvářet pole s intenzitou až 200 V/m v kmitočtovém pásmu od 0 Hz do několika GHz. 69

70 Konstrukce měřicí komory GTEM odporová síť vnitřní páskový vodič absorbéry zkoušený objekt od generátoru 70

71 Konstrukce měřicí komory GTEM 71

EMC. Úvod do měření elektromagnetické kompatibility. cvičení VZ1. (ElektroMagnetic Compatibility) ing. Pavel Hrzina

EMC. Úvod do měření elektromagnetické kompatibility. cvičení VZ1. (ElektroMagnetic Compatibility) ing. Pavel Hrzina EMC (ElektroMagnetic Compatibility) Úvod do měření elektromagnetické kompatibility cvičení VZ1 ing. Pavel Hrzina EMC - historie první definice EMC v 60.letech minulého století vojenská zařízení USA nástup

Více

Měřená veličina. Rušení vyzařováním: magnetická složka (9kHz 150kHz), magnetická a elektrická složka (150kHz 30MHz) Rušivé elektromagnetické pole

Měřená veličina. Rušení vyzařováním: magnetická složka (9kHz 150kHz), magnetická a elektrická složka (150kHz 30MHz) Rušivé elektromagnetické pole 13. VYSOKOFREKVENČNÍ RUŠENÍ 13.1. Klasifikace vysokofrekvenčního rušení Definice vysokofrekvenčního rušení: od 10 khz do 400 GHz Zdroje: prakticky všechny zdroje rušení Rozdělení: rušení šířené vedením

Více

Zkušební laboratoř č akreditovaná ČIA ke zkouškám elektromagnetické kompatibility, elektrické bezpečnosti, metalických kabelů a trubek

Zkušební laboratoř č akreditovaná ČIA ke zkouškám elektromagnetické kompatibility, elektrické bezpečnosti, metalických kabelů a trubek ABEGU, a.s. ZKUŠEBNA Zkušební laboratoř č. 1184 akreditovaná ČIA ke zkouškám elektromagnetické kompatibility, elektrické bezpečnosti, metalických kabelů a trubek Protokol o zkoušce č. P/13/01/74 : SOS

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ. Katedra aplikované elektroniky a telekomunikací BAKALÁŘSKÁ PRÁCE

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ. Katedra aplikované elektroniky a telekomunikací BAKALÁŘSKÁ PRÁCE ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ Katedra aplikované elektroniky a telekomunikací BAKALÁŘSKÁ PRÁCE Modelování generátorů používaných v elektromagnetické kompatibilitě v prostředí

Více

Zkušenosti z testování a zkoušení v EMC a KLIMA laboratořích EUROSIGNAL

Zkušenosti z testování a zkoušení v EMC a KLIMA laboratořích EUROSIGNAL a Laboratoř KLIMA Zkušenosti z testování a zkoušení v EMC a KLIMA laboratořích EUROSIGNAL (akreditovaných ČIA podle ČSN EN ISO/IEC 17025) Ing. Martin Otradovec manažer zkušebních a testovacích laboratoří

Více

Základní informace o nabídce společnosti. Ing. Vladimír Kampík

Základní informace o nabídce společnosti. Ing. Vladimír Kampík Základní informace o nabídce společnosti Ing. Vladimír Kampík Služby Certifikační orgán a Hodnotitel bezpečnosti Zkušební a testovací laboratoře Expertní posudky a analýzy Kancelářské a laboratorní zázemí

Více

Strana 1 z celkového počtu 14 stran

Strana 1 z celkového počtu 14 stran Pracoviště zkušební laboratoře: 1. Pracoviště 1: 2. 2. Pracoviště 2: Ocelářská 35, 190 00 Praha 9 Laboratoř je způsobilá aktualizovat normy identifikující zkušební postupy. Laboratoř uplatňuje flexibilní

Více

Institut pro testování a certifikaci, a. s. Zkušební laboratoř Sokolovská 573, Uherské Hradiště

Institut pro testování a certifikaci, a. s. Zkušební laboratoř Sokolovská 573, Uherské Hradiště Pracoviště zkušební laboratoře: 1. Pracoviště 1:, 2. Pracoviště 2:, Ocelářská 35, 190 00 Praha 9 Laboratoř je způsobilá aktualizovat normy identifikující zkušební postupy. Laboratoř uplatňuje flexibilní

Více

5. RUŠENÍ, ELEKTROMAGNETICKÁ KOMPATIBILITA (EMC) a NORMY EMC

5. RUŠENÍ, ELEKTROMAGNETICKÁ KOMPATIBILITA (EMC) a NORMY EMC 5. RUŠENÍ, ELEKTROMAGNETICKÁ KOMPATIBILITA (EMC) a NORMY EMC Závažným problémem konstrukce impulsních regulátorů je jejich odrušení. Výkonové obvody měničů představují aktivní zdroj impulsního a kmitočtového

Více

Testování elektromagnetické kompatibility spotřebičů

Testování elektromagnetické kompatibility spotřebičů VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROENERGRTIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

Elektromagnetická kmpatibilita (BEMC) 2017/18. Úvodní informace. Jiří Dřínovský. Ústav radioelektroniky FEKT VUT v Brně

Elektromagnetická kmpatibilita (BEMC) 2017/18. Úvodní informace. Jiří Dřínovský. Ústav radioelektroniky FEKT VUT v Brně Elektromagnetická kmpatibilita (BEMC) 2017/18 Úvodní informace Jiří Dřínovský Ústav radioelektroniky FEKT VUT v Brně Elektromagnetická kompatibilita (BEMC) Rozsah: 39P 20 L 6 ost. Garant kurzu: Ing. Jiří

Více

shody výrobků podle nařízení vlády č. 616/2006 Sb. ve smyslu 12 odst. 1 zákona č. 22/1997 Sb. o technických požadavcích na výrobky,

shody výrobků podle nařízení vlády č. 616/2006 Sb. ve smyslu 12 odst. 1 zákona č. 22/1997 Sb. o technických požadavcích na výrobky, Zkušebna elektromagnetické kompatibility (EMC) vznikla v roce 1993 a je tedy nejdéle působící zkušebnou svého druhu na území ČR. Disponuje kvalitním technickým vybavením a zkušenými pracovníky. V rámci

Více

ZDROJ 230V AC/DC DVPWR1

ZDROJ 230V AC/DC DVPWR1 VLASTNOSTI Zdroj DVPWR1 slouží pro napájení van souboru ZAT-DV řídícího systému ZAT 2000 MP. Výstupní napětí a jejich tolerance, časové průběhy logických signálů a jejich zatížitelnost odpovídají normě

Více

Vazební mechanismy přenosu rušivých signálů. Jiří Dřínovský UREL, FEKT, VUT v Brně

Vazební mechanismy přenosu rušivých signálů. Jiří Dřínovský UREL, FEKT, VUT v Brně Vazební mechanismy přenosu rušivých signálů Jiří Dřínovský UREL, FEKT, VUT v Brně Vazební mechanismy přenosu rušivých signálů Galvanická vazba (vazba společnou impedancí) Kapacitní vazba Induktivní vazba

Více

Bezkontaktní spínací prvky: kombinace spojitého a impulsního rušení: strmý napěťový impuls a tlumené vf oscilace výkonové polovodičové měniče

Bezkontaktní spínací prvky: kombinace spojitého a impulsního rušení: strmý napěťový impuls a tlumené vf oscilace výkonové polovodičové měniče 12. IMPULZNÍ RUŠENÍ 12.1. Zdroje impulsního rušení Definice impulsního rušení: rušení, které se projevuje v daném zařízení jako posloupnost jednotlivých impulsů nebo přechodných dějů Zdroje: spínání elektrických

Více

Příloha je nedílnou součástí osvědčení o akreditaci č.: 290/2015 ze dne: 27.04.2015

Příloha je nedílnou součástí osvědčení o akreditaci č.: 290/2015 ze dne: 27.04.2015 Pracoviště zkušební laboratoře: 1. Pracoviště 1: 2. 2. Pracoviště 2: Ocelářská 35, 190 00 Praha 9 Laboratoř je způsobilá aktualizovat normy identifikující zkušební postupy. Laboratoř uplatňuje flexibilní

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROENERGETIKY A EKOLOGIE DIPLOMOVÁ PRÁCE

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROENERGETIKY A EKOLOGIE DIPLOMOVÁ PRÁCE ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROENERGETIKY A EKOLOGIE DIPLOMOVÁ PRÁCE Laboratoř pro testování elektromagnetické odolnosti Martin Cwienczek 2017 Abstrakt Diplomová

Více

1. ZÁKLADNÍ POJMY A NORMALIZACE V EMC. 1.1 Úvod do problematiky

1. ZÁKLADNÍ POJMY A NORMALIZACE V EMC. 1.1 Úvod do problematiky 1. ZÁKLADNÍ POJMY A NORMALIZACE V EMC 1.1 Úvod do problematiky Vznik EMC: 60. léta 20. století v USA Důvod: problémy v komunikaci mezi subjekty či zařízeními ve vojenské a kosmické oblasti Od ca počátku

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA TECHNOLOGIÍ A MĚŘENÍ DIPLOMOVÁ PRÁCE

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA TECHNOLOGIÍ A MĚŘENÍ DIPLOMOVÁ PRÁCE ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA TECHNOLOGIÍ A MĚŘENÍ DIPLOMOVÁ PRÁCE Zkoušky odolnosti v elektromagnetické kompatibilitě vedoucí práce: Ing. Miroslav Hromádka autor: Bc.

Více

6. ÚČINKY A MEZE HARMONICKÝCH

6. ÚČINKY A MEZE HARMONICKÝCH 6. ÚČINKY A MEZE HARMONICKÝCH 6.1. Negativní účinky harmonických Poruchová činnost ochranných přístrojů nadproudové ochrany: chybné vypínání tepelné spouště proudové chrániče: chybné vypínání při nekorektním

Více

Hlavní parametry rádiových přijímačů

Hlavní parametry rádiových přijímačů Hlavní parametry rádiových přijímačů Zpracoval: Ing. Jiří Sehnal Pro posouzení základních vlastností rádiových přijímačů jsou zavedena normalizovaná kritéria parametry, podle kterých se rádiové přijímače

Více

Rovinná harmonická elektromagnetická vlna

Rovinná harmonická elektromagnetická vlna Rovinná harmonická elektromagnetická vlna ---- 1. příklad -------------------------------- 2 GHz prochází prostředím s parametry: r 5, r 1, 0.005 S / m. Amplituda intenzity magnetického pole je H m 0.25

Více

SINEAX U 554 Převodník střídavého napětí s různými charakteristikami

SINEAX U 554 Převodník střídavého napětí s různými charakteristikami S připojením napájecího napětí Měření efektivní hodnoty Pouzdro P13/70 pro montáž na lištu Použití Převodník SINEAX U 554 (obr. 1) převádí sinusové nebo zkreslené střídavé napětí na vnucený stejnosměrný

Více

Revize elektrických zařízení (EZ) Měření při revizích elektrických zařízení. Měření izolačního odporu

Revize elektrických zařízení (EZ) Měření při revizích elektrických zařízení. Měření izolačního odporu Revize elektrických zařízení (EZ) Provádí se: před uvedením EZ do provozu Výchozí revize při zakoupení spotřebiče je nahrazena Záručním listem ve stanovených termínech Periodické revize po opravách a rekonstrukcích

Více

Rušivé signály a jejich zdroje. Jiří Dřínovský UREL, FEKT, VUT v Brně

Rušivé signály a jejich zdroje. Jiří Dřínovský UREL, FEKT, VUT v Brně Jiří Dřínovský UREL, FEKT, VUT v Brně přírodní (přirozené) umělé (technické), tzv. man made noise funkční nefunkční (parazitní, nežádoucí) impulzní (mžikové) spojité kvazi-impulzní úzkopásmové širokopásmové

Více

Řada 78 - Spínané napájecí zdroje

Řada 78 - Spínané napájecí zdroje Spínané napájecí zdroje na DIN-lištu výstup: 12 V DC; 12 nebo 50 24 V DC; 12, 36 nebo 60 vstup: (110...240) V AC 50/60 Hz nebo 220 V DC nízká spotřeba naprázdno < 0,4 ochrana proti přetížení a zkratu na

Více

Účinky měničů na elektrickou síť

Účinky měničů na elektrickou síť Účinky měničů na elektrickou síť Výkonová elektronika - přednášky Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Definice pojmů podle normy ČSN

Více

NÁVOD K OBSLUZE REPEATER PICO NEW (XA6742, XA6742_V2)

NÁVOD K OBSLUZE REPEATER PICO NEW (XA6742, XA6742_V2) NÁVOD K OBSLUZE REPEATER PICO NEW (XA6742, XA6742_V2) POPIS PŘÍSTROJE REPEATER PICO NEW a PICO NEW je zařízení, které se používá v místech, kde se vyskytují problémy se signálem mobilních operátorů. Instaluje

Více

Základy elektrotechniky 2 (21ZEL2) Přednáška 1

Základy elektrotechniky 2 (21ZEL2) Přednáška 1 Základy elektrotechniky 2 (21ZEL2) Přednáška 1 Úvod Základy elektrotechniky 2 hodinová dotace: 2+2 (př. + cv.) zakončení: zápočet, zkouška cvičení: převážně laboratorní informace o předmětu, kontakty na

Více

Zásady návrhu a aplikace A/Č obvodů

Zásady návrhu a aplikace A/Č obvodů ásady návrhu a aplikace A/Č obvodů působy buzení A/Č převodníků Rušivé signály Napájení A/Č systémů Impedanční přizpůsobení Stínění elektronických obvodů ásady návrhu tištěných spojů Přenos signálů z hlediska

Více

Anténní rozbočovač pro bezdrátové mikrofony

Anténní rozbočovač pro bezdrátové mikrofony Anténní rozbočovač pro bezdrátové mikrofony Anténní rozbočovač pro bezdrátové mikrofony je určen především pro rozbočování VF signálu pro bezdrátové mikrofony v pásmu 700 MHz. K rozbočovači je možné připojit

Více

Napájecí systém NS-500-545_1U Návod k obsluze a technická specifikace

Napájecí systém NS-500-545_1U Návod k obsluze a technická specifikace BKE Napájecí systém NS-500-545_1U Návod k obsluze a technická specifikace - 1 - OTD 45007509 1 Obsah 1 Obsah...2 2 Provozní podmínky...3 2.1 Vstupní napětí...3 2.2 Chlazení...3 2.3 Externí jištění...3

Více

Řada 85 - Časové relé miniaturní, 7-10 A

Řada 85 - Časové relé miniaturní, 7-10 A Řada 85 - Časové relé miniaturní, 7-10 A časové relé do patice shodné s relé řady 55 2P, 3P nebo 4P multifunkční: 4 časové funkce mononapěťové multirozsahové: 7 časovyćh rozsahů od 0,05 s do 100 h patice

Více

Pokyny a prohlášení výrobce Elektromagnetické emise a odolnost

Pokyny a prohlášení výrobce Elektromagnetické emise a odolnost Pokyny a prohlášení výrobce Elektromagnetické emise a odolnost Česky Strana AirMini 1-2 Air10 Series Lumis Series 3-5 S9 Series 6-8 Stellar 9-11 S8 & S8 Series II VPAP Series III 12-14 Pokyny a prohlášení

Více

E35C. AD-FE/CE, verze 4.0. Technická data. Komunikační modul pro domácnosti

E35C. AD-FE/CE, verze 4.0. Technická data. Komunikační modul pro domácnosti Komunikační modul pro domácnosti AD-FE/CE, verze 4.0 E35C Technická data Komunikační moduly E35C AD-FE verze 4.0 zajišťují komunikaci TCP/IP přes Ethernet mezi měřidly E350 a centrálním systémem. Pomocí

Více

BEZPEČNOST PRÁCE V ELEKTROTECHNICE

BEZPEČNOST PRÁCE V ELEKTROTECHNICE BEZPEČNOST PRÁCE V ELEKTROTECHNICE ELEKTROTECHNIKA TO M Á Š T R E J BAL Bezpečnostní tabulky Příklady bezpečnostních tabulek Grafické značky na elektrických předmětech Grafické značky na elektrických předmětech

Více

B Testy pro písemnou část zkoušky RT EZ z ochrany před úrazem elektrickým proudem

B Testy pro písemnou část zkoušky RT EZ z ochrany před úrazem elektrickým proudem B Testy pro písemnou část zkoušky RT EZ z ochrany před úrazem elektrickým proudem (označené otázky nejsou uplatňovány v testech pro rozsah E4 na nářadí a spotřebiče) 1) Z čeho musí sestávat ochranné opatření?

Více

M-142 Multifunkční kalibrátor

M-142 Multifunkční kalibrátor M-142 Multifunkční kalibrátor DC/AC napětí do 1000 V, přesnost 10ppm/rok DC/AC proud do 30A Odpor do 1000 MΩ, kapacita do 100 uf Simulace teplotních snímačů TC/RTD Kmitočtový výstup do 20MHz Funkce elektrického

Více

ZDROJ PRO VME DVPWR4 VLASTNOSTI

ZDROJ PRO VME DVPWR4 VLASTNOSTI VLASTNOSTI Zdroj DVPWR4 (MELCHER LPC 1902-7D) je jednostupňový převodník AC/DC s PFC (Power Factor Corrector), určen do van souboru ZAT-DV řídícího systému ZAT 2000 MP a slouží k napájení DC/DC konvertoru

Více

Tel-30 Nabíjení kapacitoru konstantním proudem [V(C1), I(C1)] Start: Transient Tranzientní analýza ukazuje, jaké napětí vytvoří proud 5mA za 4ms na ka

Tel-30 Nabíjení kapacitoru konstantním proudem [V(C1), I(C1)] Start: Transient Tranzientní analýza ukazuje, jaké napětí vytvoří proud 5mA za 4ms na ka Tel-10 Suma proudů v uzlu (1. Kirchhofův zákon) Posuvným ovladačem ohmické hodnoty rezistoru se mění proud v uzlu, suma platí pro každou hodnotu rezistoru. Tel-20 Suma napětí podél smyčky (2. Kirchhofův

Více

Měřicí a kontrolní relé, A

Měřicí a kontrolní relé, A ŘADA ŘADA síťová kontrolní a měřicí relé, 1- a 3-fázová multifunkční pro kontrolní a měřicí účely: podpětí, přepětí, podpětí a přepětí současně, výpadek fáze, sled fází, asymetrie fází a přerušení N-vodiče

Více

Měření ve stíněné komoře

Měření ve stíněné komoře Měření ve stíněné komoře Zadání: Zúčastněte se demonstarativního měření ve školní stíněné komoře. Sledujte, jakým způsobem vyučující nastavuje měřící přístroje před vlastním začátkem měření, jak instaluje

Více

ochranným obvodem, který chrání útlumové články před vnějším náhodným přetížením.

ochranným obvodem, který chrání útlumové články před vnějším náhodným přetížením. SG 2000 je vysokofrekvenční generátor s kmitočtovým rozsahem 100 khz - 1 GHz (s option až do 2 GHz), s možností amplitudové i kmitočtové modulace. Velmi užitečnou funkcí je také rozmítání výstupního kmitočtu

Více

Radioklub OK2KOJ při VUT v Brně: Kurz operátorů 1 ANTÉNY A NAPÁJEČE. Kurz operátorů Radioklub OK2KOJ při VUT v Brně 2016/2017

Radioklub OK2KOJ při VUT v Brně: Kurz operátorů 1 ANTÉNY A NAPÁJEČE. Kurz operátorů Radioklub OK2KOJ při VUT v Brně 2016/2017 Radioklub OK2KOJ při VUT v Brně: Kurz operátorů 1 ANTÉNY A NAPÁJEČE Kurz operátorů Radioklub OK2KOJ při VUT v Brně 2016/2017 Radioklub OK2KOJ při VUT v Brně: Kurz operátorů 2 Vedení Z hlediska napájení

Více

Časová relé pro drážní vozidla A

Časová relé pro drážní vozidla A multifunkční a monofunkční časové relé pro drážní vozidla.02 - multifunkční a multinapěťové 2P jeden kontakt časový a jeden okamžitý (varianta) nastavení času externím potenciometrem (varianta).62 - zpožděný

Více

VŠB-Technická univerzita Ostrava ZPĚTNÉ VLIVY POLOVODIČOVÝCH MĚNIČŮ NA NAPÁJECÍ SÍŤ

VŠB-Technická univerzita Ostrava ZPĚTNÉ VLIVY POLOVODIČOVÝCH MĚNIČŮ NA NAPÁJECÍ SÍŤ VŠB-Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra elektroniky ZPĚTNÉ VLIVY POLOVODIČOVÝCH MĚNIČŮ NA NAPÁJECÍ SÍŤ Studijní text úvodní část Prof. Ing. Petr Chlebiš, CSc. Ostrava

Více

Odolnost zařízení vůči elektromagnetickým rušivým vlivům

Odolnost zařízení vůči elektromagnetickým rušivým vlivům Odolnost zařízení vůči elektromagnetickým rušivým vlivům Devices resistance against electromagnetic interference Martin Vávra Bakalářská práce 2013 UTB ve Zlíně, Fakulta aplikované informatiky, 2013

Více

Sada 1 - Elektrotechnika

Sada 1 - Elektrotechnika S třední škola stavební Jihlava Sada 1 - Elektrotechnika 20. Přepětí, ochrany před přepětím Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona:

Více

Pohybová a prezenční čidla, 10 A

Pohybová a prezenční čidla, 10 A ŘADA ŘADA pohybová a prezenční čidla Pohybová čidla identifikují pohyb osob a zvířat, prezenční čidla identifikují činnosti sedících osob (.31-0031,.51). zabudované nastavení prahu osvětlení, časového

Více

XU1-E - Napěťové relé zemního spojení

XU1-E - Napěťové relé zemního spojení XU1-E - Napěťové relé zemního spojení Obsah 1. Použití a vlastnosti 2. Provedení 3. Funkce 4. Činnost při nastavení 4.1 Nastavení spínačů DIP 4.2 Nastavení vypínacích hodnot 4.3 Komunikace pomocí adaptéru

Více

Ochranné prvky pro výkonovou elektroniku

Ochranné prvky pro výkonovou elektroniku Ochranné prvky pro výkonovou elektroniku Výkonová elektronika - přednášky Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Poruchový stav některá

Více

I/O modul VersaPoint. Analogový výstupní modul, 16 bitový, napětí, 1 kanál IC220ALG321. Specifikace modulu. Spotřeba. Vlastnosti. Údaje pro objednávku

I/O modul VersaPoint. Analogový výstupní modul, 16 bitový, napětí, 1 kanál IC220ALG321. Specifikace modulu. Spotřeba. Vlastnosti. Údaje pro objednávku Analogový výstupní modul, 16 bitový, napětí, 1 kanál Modul slouží pro výstup analogových napěťových signálů. Tyto signály jsou k dispozici v 16 bitovém rozlišení. Specifikace modulu Rozměry pouzdra (šířka

Více

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením.

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Na čem závisí účinnost vedení? účinnost vedení závisí na činiteli útlumu β a na činiteli odrazu

Více

Přenosová technika 1

Přenosová technika 1 Přenosová technika 1 Přenosová technika Základní pojmy a jednotky Přenosová technika je oblast sdělovací techniky, která se zabývá konstrukčním provedením, stavbou i provozem zařízení sloužících k přenášení,

Více

dipól: tlustý bočníkově napájený dipól s bočníkem skládaný

dipól: tlustý bočníkově napájený dipól s bočníkem skládaný 7.3 Antény pro metrové a decimetrové vlny - prostorová vlna - vysoko umístěné antény - stožáry, napájení - směrové i všesměrové, různá šířka pásma a) symetrický dipól - půlvlnný - l 0,25 λ, D max = 1,64,

Více

Novar 314RS. Regulátor jalového výkonu. Vlastnosti. pro kompenzaci rychlých změn účiníku (rozběh motorů atd.)

Novar 314RS. Regulátor jalového výkonu. Vlastnosti. pro kompenzaci rychlých změn účiníku (rozběh motorů atd.) Novar 314RS Regulátor jalového výkonu Vlastnosti pro kompenzaci rychlých změn účiníku (rozběh motorů atd.) 8 reléových stupňů pro standardní kompenzaci + alarmové relé 6 tranzistorových výstupů pro připojení

Více

Časové relé miniaturní, 7-10 A

Časové relé miniaturní, 7-10 A ŘADA Časové relé miniaturní, 7-10 A ŘADA časové relé do patice Typ.02-2P / 10 A Typ.03-3P / 10 A Typ.04-4P, 7 A multifunkční: 4 časové funkce mononapěťové multirozsahové: časový ch rozsahů od 0,05 s 100

Více

Cvičení č.7. Zásady projektování výkonových zařízení, systémů a instalací z hlediska EMC Rozdělení zařízení vzhledem k citlivosti na rušení

Cvičení č.7. Zásady projektování výkonových zařízení, systémů a instalací z hlediska EMC Rozdělení zařízení vzhledem k citlivosti na rušení Cvičení č.7 Zásady projektování výkonových zařízení, systémů a instalací z hlediska EMC 7.1. Rozdělení zařízení vzhledem k citlivosti na rušení Zařízení velmi citlivá: o čidla elektrických a neelektrických

Více

Využití komplementarity (duality) štěrbiny a páskového dipólu M

Využití komplementarity (duality) štěrbiny a páskového dipólu M Přechodné typy antén a) štěrbinové antény - buzení el. polem napříč štěrbinou (vlnovod) z - galvanicky generátor mezi hranami - zdrojem záření - pole ve štěrbině (plošná a.) nebo magnetický proud (lineární

Více

Č e s k ý m e t r o l o g i c k ý i n s t i t u t Okružní 31, 638 00

Č e s k ý m e t r o l o g i c k ý i n s t i t u t Okružní 31, 638 00 Č e s k ý m e t r o l o g i c k ý i n s t i t u t Okružní 31, 638 00 Brno Č.j.: 0313/002/15/Pos. Vyřizuje: Ing. Miroslav Pospíšil Telefon: 545 555 135, -131 V E Ř E J N Á V Y H L Á Š K A Český metrologický

Více

Vysokofrekvenční a mikrovlnná technika návody pro mikrovlnné laboratorní experimenty MĚŘENÍ MIKROVLNNÉHO VÝKONU

Vysokofrekvenční a mikrovlnná technika návody pro mikrovlnné laboratorní experimenty MĚŘENÍ MIKROVLNNÉHO VÝKONU rotokol č. 1 MĚŘENÍ MIKROVLNNÉHO VÝKONU Jméno studenta (-ů):........... Datum měření:.................. 1. Měřič výkonu TESLA QXC 9 automatický bolometrický můstek se samočinným vyvažováním a přímým čtením

Více

I/O modul VersaPoint. Analogový výstupní modul, 16 bitový, napětí/proud, 1 kanál IC220ALG320. Specifikace modulu. Spotřeba. Údaje pro objednávku

I/O modul VersaPoint. Analogový výstupní modul, 16 bitový, napětí/proud, 1 kanál IC220ALG320. Specifikace modulu. Spotřeba. Údaje pro objednávku Analogový výstupní modul, 16 bitový, napětí/proud, 1 kanál Modul slouží pro výstup analogových napěťových nebo proudových signálů. Tyto signály jsou k dispozici v 16 bitovém rozlišení. Specifikace modulu

Více

V E Ř E J N Á V Y H L Á Š K A

V E Ř E J N Á V Y H L Á Š K A Český metrologický institut Okružní 31, 638 00 Brno Manažerské shrnutí pro EK (není součástí tohoto právního předpisu) Průtočné vibrační převodníky relativní hustoty jsou v ČR uváděny na trh a do provozu

Více

Relé elektronické (SSR) A

Relé elektronické (SSR) A ŘAA ŘAA polovodičové relé (SSR), optron, spínač v nule napětí nebo spínač okamžitý 230 V AC nebo 400 V AC vstupní obvod 12 V C, 24 V C, 24 V AC nebo 230 V AC napěťová pevnost vstup/výstup 5 kv (1,2/50

Více

Patice s časovými funkcemi pro relé řady 34

Patice s časovými funkcemi pro relé řady 34 úzká patice s časový mi funkcemi, šířka 6,2 mm, kompatibilní s relé řady 34 napájení (12...24) V AC/DC 8 časových funkcí a 4 časové rozsahy volitelné DIP-přepínačem nastavení doby a LED signalizace na

Více

elektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech

elektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech Jiří Petržela filtry založené na jiných fyzikálních principech piezoelektrický jev při mechanickém namáhání krystalu ve správném směru na něm vzniká elektrické napětí po přiložení elektrického napětí se

Více

České vysoké učení technické v Praze Fakulta elektrotechnická Katedra elektroenergetiky. Komunikace po silových vedeních Úvod do problematiky

České vysoké učení technické v Praze Fakulta elektrotechnická Katedra elektroenergetiky. Komunikace po silových vedeních Úvod do problematiky České vysoké učení technické v Praze Fakulta elektrotechnická Katedra elektroenergetiky Komunikace po silových vedeních Úvod do problematiky 8. přednáška ZS 2011/2012 Ing. Tomáš Sýkora, Ph.D. Šíření signálů

Více

Řada 78 - Spínané napájecí zdroje

Řada 78 - Spínané napájecí zdroje Řada 78 - Spínané napájecí zdroje Řada 78 Spínané síťové zdroje na DIN-lištu výstup:12 V DC; 12 nebo 50 24 V DC; (12-36 - 60-120 - 130) vstup: (110...240) V AC 50/60 Hz (120...240) V AC/DC nebo 220 V DC

Více

Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka

Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka Kondenzátor je schopen uchovat energii v podobě elektrického náboje Q. Kapacita C se udává ve Faradech [F]. Kapacita je úměrná ploše elektrod

Více

Výhody/Použití. Varianty. prostředí. Flexibilní vícekomponentní měřící. Třída přesnosti 0,0025. Měřící zesilovač. Ovládání dotykovou obrazovkou

Výhody/Použití. Varianty. prostředí. Flexibilní vícekomponentní měřící. Třída přesnosti 0,0025. Měřící zesilovač. Ovládání dotykovou obrazovkou Datový list Měřící zesilovač MCMpro Výhody/Použití Flexibilní vícekomponentní měřící zesilovač Třída přesnosti 0,0025 Konfigurovatelný uživatelský software Ovládání dotykovou obrazovkou Konfigurovatelné

Více

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky Tématické okruhy teoretických zkoušek Part 66 1 3.1 Teorie elektronu 1 1 1 Struktura a rozložení elektrických nábojů uvnitř: atomů, molekul, iontů, sloučenin; Molekulární struktura vodičů, polovodičů a

Více

VSTUPNÍ VÝSTUPNÍ ROZSAHY

VSTUPNÍ VÝSTUPNÍ ROZSAHY Univerzální vysokonapěťový oddělovací modul VariTrans P 29 000 P0 ní signály ±30 mv až ±1000 V ±20 ma, ±10 V nebo 0(4)..20 ma Pracovní napětí až 1000 V ac/dc Přesnost 0,1 nebo 0,2 % z rozsahu Zkušební

Více

DM-GSM2 Modem pro síť GSM

DM-GSM2 Modem pro síť GSM Modem pro síť GSM Návod na obsluhu Verze 1.00 dm-gsm2_g_cz_100 AMiT, spol. s r. o. nepřejímá žádné záruky, pokud se týče obsahu této publikace a vyhrazuje si právo měnit obsah dokumentace bez závazku tyto

Více

Řada 77 - Relé elektronické (SSR) 5-15 - 25-30 - 40-50 A

Řada 77 - Relé elektronické (SSR) 5-15 - 25-30 - 40-50 A Řada 77 - Relé elektronické (SSR) 5-15 - 25-30 - 40-50 A Řada 77 polovodičové relé (SSR), optron, spínač v nule napětí nebo spínač okamžitý 77.01.x.xxx.8050 77.01.x.xxx.8051 230 V AC nebo 400 V AC vstupní

Více

DOHNÁLEK, Úpská 132, Mladé Buky, Czech Republic tel.: fax:

DOHNÁLEK, Úpská 132, Mladé Buky, Czech Republic tel.: fax: ON Strana 2 Použití: VT 12 DX0 se používá jako přesná jednofázová nadpěťová / podpěťová ochrana elektrických zařízení při zvýšení resp. snížení napětí nad, resp. pod nastavenou hodnotu. Je časově nezávislá,

Více

Třída přesnosti proudu. Principy senzorů

Třída přesnosti proudu. Principy senzorů Kombinovaný senzor pro vnitřní použití 12, 17,5 a 25 kv, 1250 A a 3200 A KEVCD Nejvyšší napětí pro zařízení kv 12.25 Jmenovitý trvalý tepelný proud A 1250.3200 Jmenovitý transformační převod proudu, K

Více

Relé úzké do patice / do PS, 6 A (EMR)

Relé úzké do patice / do PS, 6 A (EMR) ŘD Relé úzké do patice / do PS, 6 (EMR) ŘD úzké síťové relé, 1-pólové 6 montáž do plošných spojů - přímo nebo pomocí patice do plošných spojů montáž na DIN-Lištu ČSN EN 60175 TH35 - pomocí patic se šroubovými,

Více

Měřící přístroje a měření veličin

Měřící přístroje a měření veličin Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT Měřící přístroje a měření veličin Číslo projektu

Více

TENZOMETRICKÝ PŘEVODNÍK

TENZOMETRICKÝ PŘEVODNÍK TENZOMETRICKÝ PŘEVODNÍK typ TENZ2109-5 Výrobu a servis zařízení provádí: ATERM, Nad Hřištěm 206, 765 02 Otrokovice Telefon/Fax: 577 932 759 Mobil: 603 217 899 E-mail: matulik@aterm.cz Internet: http://www.aterm.cz

Více

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3.

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3. Předmět: Elektromagnetické vlny, antény a vedení Úloha: Symetrizační obvody Jméno: Jan Švec Měřeno dne: 3.3.29 Odevzdáno dne: 6.3.29 ID: 78 357 Číslo úlohy: 7 Klasifikace: 1. Zadání 1. Změřte kmitočtovou

Více

V E Ř E J N Á V Y H L Á Š K A

V E Ř E J N Á V Y H L Á Š K A Manažerské shrnutí pro EK (není součástí tohoto právního předpisu) Průtočné vibrační hustoměry jsou v ČR uváděny na trh a do provozu jako stanovená měřidla se schválením typu a prvotním ověřením podle

Více

Napájecí zdroj JS-2K0-2K0_NV. Návod k obsluze

Napájecí zdroj JS-2K0-2K0_NV. Návod k obsluze Napájecí zdroj JS-2K0-2K0_NV Návod k obsluze OTD 2K207900 1 Obsah 1 Obsah... 1 2 Upozornění... 2 3 Doprava, přejímka... 2 4 Instalace a uvedení do provozu... 4 5 Provozní podmínky... 6 5.1 Vstupní napětí...

Více

Rozsah měřené veličiny

Rozsah měřené veličiny Obor měřené veličiny: délka Kalibrace: Nominální teplota pro kalibraci: (20 ±1 ) C Rozsah měřené veličiny Identifikace kalibračního postupu 1. Posuvná měřidla 0 300 mm (30+ 30L) µm LIII-D001 (DAkkS-DKD-R

Více

Experiment s FM přijímačem TDA7000

Experiment s FM přijímačem TDA7000 Experiment s FM přijímačem TDA7 (návod ke cvičení) ílem tohoto experimentu je zkonstruovat FM přijímač s integrovaným obvodem TDA7 a ověřit jeho základní vlastnosti. Nejprve se vypočtou prvky mezifrekvenčního

Více

13. Značka na elektrickém zařízení označuje a/ zařízení třídy ochrany I b/ zařízení třídy ochrany II c/ zařízení třídy ochrany III

13. Značka na elektrickém zařízení označuje a/ zařízení třídy ochrany I b/ zařízení třídy ochrany II c/ zařízení třídy ochrany III 9. Vzájemné spojení ochranného vodiče, uzemňovacího přívodu, kovového potrubí, kovových konstrukčních částí a kovových konstrukčních výztuží, se nazývá a/ ochrana nevodivým okolím b/ pracovní uzemnění

Více

PCM30U-OCH, PCM30U Ostatní technické specifikace

PCM30U-OCH, PCM30U Ostatní technické specifikace PCM30U-OCH, PCM30U Ostatní technické specifikace TTC Telekomunikace, s.r.o. Třebohostická 5, 100 00, Praha 10 Česká republika tel: +420 234 052 386, 1111 fax: +420 234 052 999 e-mail: pcm30u@ttc.cz web:

Více

Řada 88 - Časové relé do panelu, 5-8 A

Řada 88 - Časové relé do panelu, 5-8 A multifunkční, multinapěťové a časově multirozsahové relé do panelu nebo patice multifunkční: až 7 časovyćh funkcí multirozsahové: 14 časovyćh rozsahů od 0,5 s do 100 h montáž do patice nebo do panelu 88.02

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 1. Základní informace o této fyzikální veličině Symbol vlastní indukčnosti je L, základní jednotka henry, symbol

Více

E230 ZMR100AR/CR. Technické údaje. Elektroměry BS/IEC/MID pro domácnosti

E230 ZMR100AR/CR. Technické údaje. Elektroměry BS/IEC/MID pro domácnosti Elektroměry BS/IEC/MID pro domácnosti ZMR100AR/CR E230 Technické údaje Elektroměry E230 ToU zaznamenávají spotřebu činné a jalové energie primárně ve třífázových čtyřvodičových sítích. Elektroměr lze použít

Více

Oddělovací zesilovač VariTrans P 15000

Oddělovací zesilovač VariTrans P 15000 Oddělovací zesilovač VariTrans P 15000 Profesionál na galvanické oddělení a převod standardních signálů Flexibilní a extrémně přesný s kalibrovanými rozsahy Univerzální napájení 20 253 Vac/dc Bezpečné

Více

Ochrana citlivých součástek a zařízení před škodlivými účinky elektrostatických jevů

Ochrana citlivých součástek a zařízení před škodlivými účinky elektrostatických jevů Ochrana citlivých součástek a zařízení před škodlivými účinky elektrostatických jevů Základní pojmy: Elektrostatický výboj přenos náboje mezi tělesy o různých elektrostatických potenciálech Součástka citlivá

Více

Univerzální vysokonapěťový oddělovací modul VariTrans P P0

Univerzální vysokonapěťový oddělovací modul VariTrans P P0 Univerzální vysokonapěťový oddělovací modul VariTrans P 29 000 P0 ní signály ±30 mv až ±1000 V ±20 ma, ±10 V nebo 0(4)..20 ma Pracovní napětí až 1000 V ac/dc Přesnost 0,1 nebo 0,2 % z rozsahu Zkušební

Více

Návod k použití výkonového modulu KP10M

Návod k použití výkonového modulu KP10M Návod k použití výkonového modulu KP10M výrobce : sdružení, 552 03 Česká skalice, Pod lesem 763, Česká republika typ : KP0M 1.Technické údaje 1.1 Úvod Výkonový modul KP10M je určen pro řízení dvoufázového

Více

E350. ZxF100Ax/Cx řada 2. Technická data. Elektroměry IEC/MID pro domácnosti

E350. ZxF100Ax/Cx řada 2. Technická data. Elektroměry IEC/MID pro domácnosti Elektroměry IEC/MID pro domácnosti ZxF100Ax/Cx řada 2 E350 Technická data Společnost Landis+Gyr vychází ze své tradice měřidel s otevřenou komunikací a uvádí na trh nejnovější generaci flexibilního modulárního

Více

E35C. Komunikační modul Pro domácnosti. AD-FU/CU/GU verze 4.0. Technické údaje

E35C. Komunikační modul Pro domácnosti. AD-FU/CU/GU verze 4.0. Technické údaje Komunikační modul Pro domácnosti AD-FU/CU/GU verze 4.0 E35C Technické údaje Komunikační moduly E35C AD-xU verze 4.0 zajišťují komunikaci TCP/IP prostřednictvím mobilní sítě 2G/3G mezi měřidly E350 a centrálním

Více

Míra vjemu flikru: flikr (blikání): pocit nestálého zrakového vnímání vyvolaný světelným podnětem, jehož jas nebo spektrální rozložení kolísá v čase

Míra vjemu flikru: flikr (blikání): pocit nestálého zrakového vnímání vyvolaný světelným podnětem, jehož jas nebo spektrální rozložení kolísá v čase . KVLIT NPĚTÍ.. Odchylky napájecího napětí n ± % (v intervalu deseti minut 95% průměrných efektivních hodnot během každého týdne) spínání velkých zátěží jako např. pohony s motory, obloukové pece, bojlery,

Více

Příloha č.: 1 ze dne: je nedílnou součástí osvědčení o akreditaci č.: 456/2012 ze dne: List 1 z 6

Příloha č.: 1 ze dne: je nedílnou součástí osvědčení o akreditaci č.: 456/2012 ze dne: List 1 z 6 List 1 z 6 Obor měřené veličiny: elektrické veličiny Kalibrace: Nominální teplota pro kalibraci: ( 23 ± 2 ) C 1 Elektrický odpor KP 01/2001 0,0 0,5 1,0 mω 0,5 1,0 0,25 % 1,0 4,0 0,070% 4,0 1,0 M 0,035

Více

I. N Á V R H O P A T Ř E N Í O B E C N É P O V A H Y

I. N Á V R H O P A T Ř E N Í O B E C N É P O V A H Y Český metrologický institut Okružní 31, 638 00 Brno Vyřizuje: Mgr. Tomáš Hendrych Telefon: 545 555 414 Český metrologický institut (ČMI), jako orgán věcně a místně příslušný ve věci stanovování metrologických

Více

Proudové převodníky AC proudů

Proudové převodníky AC proudů řada MINI MINI série 10 Malé a kompaktní. Řada navržená pro měření proudů od několika miliampérů až do 150 A AC. Díky svému tvaru jsou velmi praktické a snadno použitelné i v těsných prostorech. Jsou navrženy

Více

FYZIKÁLNĚ TECHNICKÝ ZKUŠEBNÍ ÚSTAV, s.p. zkušební laboratoř Pikartská 1337/7, Ostrava - Radvanice

FYZIKÁLNĚ TECHNICKÝ ZKUŠEBNÍ ÚSTAV, s.p. zkušební laboratoř Pikartská 1337/7, Ostrava - Radvanice Laboratoř je způsobilá aktualizovat normy identifikující zkušební postupy. Laboratoř uplatňuje flexibilní přístup k rozsahu akreditace upřesněný v dodatku. Aktuální seznam činností prováděných v rámci

Více